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Abstract

The optogenetically driven manipulation of circuit-specific activity has been very successful
to enable functional causality studies in animals, but its global effect on the brain is rarely
reported. Optical fiber-mediated optogenetic activation and neuronal Ca?* recording in
combination with fMRI provide a multi-modal fMRI platform with cross-scale brain dynamic
mapping schemes, which can elucidate network activity upon circuit-specific optogenetic
activation. However, despite highly promising prospects in animal brain research, there are
still methodological and conceptual deficiencies, e.g., off-target effects and antidromic
activity effects, which remain challenging for the current state of the art. To overcome these
difficulties, this thesis describes two technical advances applied at the multi-modal fMRI
platform, bridging the methodological and conceptual gap in optogenetics, brain function and

animal behavior.

First, an MRI-guided robotic arm (MgRA\) is developed to increase the target accuracy for
optogenetic manipulation or microinjection at the multi-modal fMRI platform, merging fMRI
with concurrent deep brain optogenetics in rats. The 4-degrees-of-freedom MgRA allows
high precision (50 um per step) and sufficient mobility range (10 mm in the ventral-dorsal,
rostral-caudal and medial-lateral directions) to manipulate fiber optic or injection needles into
the brain in real time and provide high flexibility for multi-site targeting along the trajectory,

which shows a clear advantage over the standard stereotaxic-based implantation strategy.

Second, the multi-modal fMRI platform provides a specific calcium amplitude-based
correlation analysis to study corpus callosum (CC)-mediated brain-wide network dynamics
with taking antidromic activity effect into consideration. Since the callosal fibers are
reciprocally projecting to two hemispheres, bilateral ortho-vs. antidromically evoked neural
activity is difficult to disentangle. Here we not only detected strong antidromic activity, but
also detailed temporal dynamics through CC-mediated orthodromic inhibitory activity. The
calcium amplitude-based correlation map was created to reveal the brain-wide inhibitory

effects from the CC-specific optogenetic stimulation.

Last, this multi-modal fMRI platform was used to acquire the optogenetically driven neuronal
Ca?* with single-vessel BOLD and cerebral-blood-volume weighted signal from individual
venules and arterioles, respectively, in the hippocampus. We characterized distinct

spatiotemporal patterns of hippocampal hemodynamic responses that were correlated to the



optogenetically evoked Ca?* events and further demonstrated the significantly reduced
neurovascular coupling (NVC) efficiency upon spreading depression-like Ca®* events. These
results provide a direct measure of the NVC function at varied hippocampal states in animal
models.

Overall, the technical advances described in this thesis demonstrate the powerful multi-modal
fMRI platform to map, analyze and characterize the dynamic brain function across multiple
scales and underscore the caution to interpret circuit-specific regulatory mechanisms

underlying behavioral or functional outcomes with optogenetic tools.



Abstract in German (Zusammenfassung)

Die optogenetisch gesteuerte Manipulation der kreisspezifischen Aktivitdt war sehr
erfolgreich, um funktionale Kausalitatsstudien an Tieren zu ermdglichen, aber ihre globale
Wirkung auf das Gehirn wird selten berichtet. Die faservermittelte optische Aktivierung und
die neuronale Ca?*-Aufzeichnung in Kombination mit fMRI bilden eine multimodale fMRI-
Plattform mit skalenlbergreifenden hirndynamischen Mapping-Schemata, die die
Netzwerkaktivitat bei schaltungsspezifischer optogenetischer Aktivierung verdeutlichen
kénnen. Trotz vielversprechender Perspektiven in der tierischen Hirnforschung gibt es jedoch
immer noch methodische und konzeptionelle Defizite, z.B. Off-Target-Effekte und
antidromische Aktivitatseffekte, die nach wie vor eine Herausforderung fiir den aktuellen
Stand der Technik darstellen. Um diese Schwierigkeiten zu Uberwinden, beschreibt diese
Arbeit zwei technische Fortschritte, die auf der multimodalen fMRI-Plattform angewendet
werden und die methodische und konzeptionelle Licke in der Optogenetik, der

Gehirnfunktion und dem Verhalten der Tiere schlieRen.

Zunéchst wird ein MRT-gefuhrter Roboterarm (MgRA) entwickelt, um die Zielgenauigkeit
fir die optogenetische Manipulation oder Mikroinjektion auf der multimodalen fMRI-
Plattform zu erhohen, indem fMRI mit gleichzeitiger Tiefenhirnoptik bei Ratten kombiniert
wird. Das MgRA mit 4 Freiheitsgraden ermdglicht eine hohe Prézision (50 um pro Schritt)
und einen ausreichenden Mobilitatsbereich (10 mm in ventral-dorsaler, rostral-caudaler und
medial-lateraler Richtung), um Lichtwellenleiter- oder Injektionsnadeln in Echtzeit in das
Gehirn zu manipulieren und eine hohe Flexibilitat flr Multi-Site-Targeting entlang der
Trajektorie zu bieten, was einen klaren Vorteil gegenlber der standardmaRigen

stereotaxischen Implantationsstrategie zeigt.

Zweitens bietet die multimodale fMRI-Plattform eine spezifische amplitudenbasierte
Korrelationsanalyse zur Untersuchung der Corpus Callosum (CC)-vermittelten hirnweiten
Netzwerkdynamik unter Berlcksichtigung des antidromischen Aktivitatseffekts. Da die
Kallosalfasern wechselseitig in zwei Hemisphéren vorstehen, ist es schwierig, die bilaterale
ortho-vs. antidromisch evozierte neuronale Aktivitat zu entwirren. Hier konnten wir nicht nur
eine starke antidromatische Aktivitat feststellen, sondern auch eine detaillierte zeitliche

Dynamik  durch  CC-vermittelte  orthodromische inhibitorische  Aktivitdt. Die



amplitudenbasierte Korrelationskarte wurde erstellt, um die hirnweiten hemmenden Effekte

der CC-spezifischen optischen Stimulation aufzuzeigen.

Schliel3lich wurde mit dieser multimodalen fMRI-Plattform das optogenetisch gesteuerte
neuronale Ca®* mit Single-Vessel BOLD und cerebral-blood-volume-gewichtetem Signal von
einzelnen Venolen bzw. Arteriolen im Hippocampus erfasst. Wir charakterisierten
unterschiedliche  rdaumlich-zeitliche Muster von hippocampalen hé&modynamischen
Reaktionen, die mit den optisch evozierten Ca?*-Ereignissen korreliert waren, und zeigten
weiterhin die signifikant reduzierte Effizienz der neurovaskuldren Kopplung (NVC) bei der
Ausbreitung depressionsartiger Ca?*-Ereignisse. Diese Ergebnisse liefern ein direktes MaR

fiir die NV C-Funktion bei verschiedenen Hippocampus-Zustédnden in Tiermodellen.

Insgesamt zeigen die in dieser Arbeit beschriebenen technischen Fortschritte die
leistungsstarke multimodale fMRI-Plattform zur Abbildung, Analyse und Charakterisierung
der dynamischen Gehirnfunktion Uber mehrere Skalen hinweg und unterstreichen die
Vorsicht bei der Interpretation schaltkreisspezifischer Regulationsmechanismen, die
verhaltens- oder funktionellen Ergebnissen mit optogenetischen Werkzeugen zugrunde
liegen.



Introduction

The genetic expression of channelrhodopsin (ChR2) has been extensively applied to target
specific cell types to ensure the activation of neuronal ensembles of interest [1-5].
Optogenetic tools have revolutionized the strategy to perturb or manipulate the behavior of
animals [6-9]. Interpreting the linkage of the brain function to specific behavioral readout
relies on the assumed circuit-specific neural activity manipulated (on or off) through in vivo
optogenetic activation [10-12]. However, there is a lack of systematic mapping of the brain-
wide network activity modulations, which may relay and critically effect the proposed link
between function and behavior. Progress in this direction crucially depends on the combined

application of methods to explore large scale brain dynamics as well [13-15].

For this purpose, wide-field camera imaging [16, 17] and multi-photon mesoscopes
(millimeter-sized field of view) [18, 19] can be used to explore large areas of the surface in
the mammalian brain, and other approaches like electrophysiology [20, 21] and multi-fiber
photometry remain point-specific [15]. One useful and widely used imaging modality to
investigate whole brain activity is functional magnetic resonance imaging (fMRI), which has
been successfully combined with optogenetics [20, 22-26] and is advantaged by subcortical
region visualization and non-invasiveness. Optical-fibers, given their non-magnetic
properties, can be used in combination with fMRI for stimulation or recording without
electromagnetic interference with the radio frequency transmission and magnetic gradient
switching of the MR scanner. The addition of concurrent GCaMP-mediated cell-specific
calcium recordings through optical fibers to the fMRI platform provides a multi-modal cross-
scale brain dynamic mapping scheme, which can elucidate network activity upon circuit-
specific optogenetic activation at the specific target level as well as across large brain regions
[27-29].

It can be well said that the multi-modal fMRI platform has transformed into one of the most
promising avenues of neuro-imaging investigation to bridge the gap between cellular specific
optogentics and animal behavior. However, important methodological advances and
conceptual steps are still needed to further unfold its invaluable potential to decipher the brain
function/dysfunction in animal studies, eventually providing essential knowledge to help to

understand the human brain organization and function/dysfunction, as introduced below.

Whole brain function mediated by corpus callosum with multi-modal fMRI



Here, we take the corpus callosum (CC) as an example which can be manipulated to produce
both, local and global changes in the brain activity, and which, therefore, benefits from the
use of combined optogenetics, fiber-mediated calcium recording and whole brain fMRI. The
CC is a structure in the brain containing the major neural fiber bundles connecting the two
brain hemispheres and also plays a critical role to mediate the interhemispheric cortico-
cortical connections [30-32]. Despite the highly-correlated structural anomalies of the CC
with a wide range of disorders, e.g., schizophrenia [33, 34], autism [35, 36], epilepsy [37, 38]
and mental retardation [39, 40], the CC-mediated neural mechanisms are primarily studied in
loss-of-function models, such as split-brain/callosotomy or partial callosal lesions [31, 41,
42]. To directly investigate the functional roles of callosal projections on regulating the
interhemispheric excitatory-inhibitory balance, both in vitro and in vivo studies have applied
micro-stimulation on one hemisphere or directly on the callosal fiber bundles [43-46], or
performed bilateral motor or sensory tasks in both human [47-50] and animal models [50-54].
Since the callosal fibers are reciprocally projecting to two hemispheres, distinguishing ortho-
vs. antidromically evoked neural activity remains challenging. With optogenetic tools, the
callosal projection neurons can be specifically (primarily) labeled with ChR2 from one
hemisphere, enabling unidirectional modulation of the callosal activity [55, 56]. The
optogenetically driven callosal activity, has been particularly helpful to disentangle
interhemispheric inhibitory effects, e.g., in the auditory cortex [57], prefrontal cortex [58] or
hindlimb somatosensory cortex [59]. Beyond studying the target-specific excitatory-
inhibitory regulation, we expand the view to investigate the CC-mediated inhibition by using
the multi-modal fMRI platform to additionally characterize the global neural network activity

upon optogenetic callosal activation.
Single-vessel fMRI in hippocampus with multi-modal fMRI

As described above, the multi modal fMRI platform provides the whole brain mapping
scheme. Moreover, with the development of high-resolution fMRI methods, it is possible to
map the BOLD and cerebral blood volume (CBV) fMRI signals from individual arteriole and
venule voxels from deep cortical layers, e.g., hippocampus. Previous in vivo hippocampal
functional imaging studies removed the cortex above the hippocampus or applied micro-
lens/micro-prism through the cortical tissue [60-63]. Not only has the 3D location of the
hippocampus in the brain restricted its accessibility to the conventional optical imaging
methods, but also the mesoscale hippocampal vasculature has been seldom specified for



hemodynamic mapping with fMRI. The balanced Steady-State-Free-Procession (bSSFP)
method permits the acquisition of the fMRI signal from individual cortical penetrating
arterioles and venules [29], thereby expands the line-scanning based method for real-time
single-vessel fMRI mapping [22, 64, 65]. This high temporospatial resolution vessel-specific
fMRI mapping method allowed to directly measure the mesoscale hemodynamic responses to
specify the properties of neurovascular coupling (NVC) across hippocampal vasculature
beyond the penetration depth of conventional optical imaging methods. By implementing the
simultaneous single-vessel fMRI and optical fiber Ca?* recordings with optogenetic
activation, distinct hemodynamic spatiotemporal patterns across the sub-centimeter
hippocampal vasculature could be directly characterized based on the concurrent neuronal

Ca?* signals.
Development of an MRI-guided robotic arm

Although the increased cellular specificity of genetic labeling reassures the advantageous
usage of optical fiber stimulation/recording to manipulate/track neural activity, it remains
challenging to precisely target the regions in animal brains, e.g., CC, whose thickness is only
several hundreds micrometers [66, 67]. The procedure of fiber optic implantation in rodent
studies has been commonly performed with conventional stereotaxic devices [22-24, 27, 68-
70], while the brain atlas [66, 71] is used to calculate the coordinates of nuclei. The main
challenge when targeting deep brain structures is the potential error that appears between the
actual and the calculated coordinates due to the variability in bregma location, skull
thickness/angles, and potential shift of brain structures within the cranium after dura removal
[72-74]. This potential error is particularly problematic when targeting some functional nuclei
or neuronal fiber tracts of the rat brain that are less than 2-300 um in one of their dimensions,
such as the central thalamic nuclei [24] or corpus callosal fibers [66, 67]. This problem can
introduce a high variability when trying to target deeper brain nuclei, e.g. the lateral
hypothalamus, since longer trajectories are subjected to larger errors [70]. The multi-modal
fMRI platform, therefore, provides the advantage of taking the high spatial resolution
anatomical images as feedback to evaluate the exact location of the optical fiber tip, making it
possible to use MRI-guided robotic arm (MgRA) to real-time assist optical fiber intervention

and even monitor the collateral tissue damage during fiber insertion.

Another drawback of the conventional stereotaxic device-based insertion strategy is the little
flexibility after the fiber tips are fixed in the brain for fMRI mapping before the animals are
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transferred into the scanner [23, 27-29]. The precise coordinates of a certain functional brain
nucleus can vary between different animals, and incorrect positioning may result in largely
altered functional activation and behavioral outcomes. This systematic error, which is
intrinsic to the blind optical fiber placement with a stereotaxic device, can potentially conceal
important discoveries and lead to inappropriate conclusions in causality analysis, especially
for “hypothesis free” brain studies. Using MgRA assisted fiber-optic insertion in combination
with real-time fMRI, more precise fiber optic placement can be achieved and a step-wise
optogenetic activation scheme is enabled that allows multi-site targeting along a fiber
insertion trajectory during the fMRI study. This strategy can not only improve the precision,
but also provide a thorough view to examine the subtle differences in the whole brain

activation patterns when targeting the sub-regions of the functional nuclei of interest.

To the best of our knowledge, there is currently no MRI-compatible robotic control system to
assist fiber optic insertion in small bore high field MRI scanners (>9.4 T) for optogenetic
fMRI studies. There is clearly a scientific need to develop a MRI-compatible, automatically
controlled, real-time guided system to provide feasible targeting accuracy, high temporal and
spatial resolution to guide the fiber intervention and monitor the collateral tissue damage
during fiber insertion in order to investigate the effectiveness, safety and feasibility of deep
brain nuclei targeting for translational applications, e.g. DBS or an implantable pump/needle

for direct drug delivery.
Scope of this thesis

The work described in this thesis aims at creating new approaches for widespread optogenetic
fMRI studies with/without simultaneous cell-specific calcium recordings e.g., for CC and
hippocampus, which address important shortcomings of the current state of the art, i.e., fiber
optic off-target effect and antidromic activity effects. The overarching goal is to present the
powerful multi-modal fMRI platform to map, analyze and characterize the dynamic brain
function across multiple scales and underscore the caution to interpret circuit-specific

regulatory mechanisms underlying behavioral or functional outcomes with optogenetic tools.

Specifically, two methodological advances are introduced in this thesis. First, an MRI-guided
robotic arm is presented, which provides high precision to maneuver the real-time optical
fiber implantation into the brain. This tool improves the multi-modal platform merging

concurrent fMRI with optogenetics, fiber optic-mediated optical imaging and microinjection,
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showing a clear advantage over the standard stereotaxic-based fiber implantation. Second, in
contrast to the conventional general linear model (GLM) for fMRI analysis, by extracting the
event-dependent calcium peak amplitudes at varied conditions as a regressor, a calcium
amplitude-based correlation analysis is presented, for the first time, not only reveals the
brain-wide inhibitory effects from the CC-specific optogenetic stimulation, but also
demonstrate varying NVC efficiency across the hippocampal vasculature at single-vessel
level for optogenetically evoked neuronal Ca?* and the spreading depression-like Ca?* (SDL-

Ca?") events.

This thesis comprises one European patent, two 1%-author and one coauthor manuscripts. A

workflow leading to this thesis is shown in Fig. 1. The first patent (P1) describes the system

1. P1. 2. M1.
Approved 2018. NC, 2019
B Eﬁ MgRA

Applications

Lateral Hypothalamus
14.1T MRI Scanner Thalamus
Microinjection

MRI guided
T Robotic Arm

mCherry/DAPI

fiber trace
L —
Corpus Single vessel
callosum Hippocampus
3. M2. 4. M3.

Under review. NC, In press.

Fig.1. PhD projects work flow and composition of the thesis. The calcium recording lightpath was used in M1, M2 and M3.

units, drive mechanism, mechanical design and components details of the MRI-guided
robotic arm positioning system working in the small bore high field MRI scanner (14.1 T) for
positioning an inserting elements in the rat brain. The first manuscript (M1) not only presents
ex vivo precision evaluation of MgRA, but also a series of in vivo high precision brain
interventional applications for optogenetics and microinjection in the context of multi-modal
neuroimaging using MgRA. The second manuscript (M2) benefits from the MgRA to target
the CC and, by integrating calcium amplitude-based correlation analysis, it demonstrates the
combined application of both methodological advances to study the information integration in
the thalamocortical system and between both brain hemispheres through the callosal fibers in
rats. The third manuscript (M3) further shows the powerfulness of the multi-modal fMRI

11



platform with high temporospatial resolution to specify the multi-scale neurovascular
coupling in the hippocampus by correlating simultaneous single-vessel hippocampal fMRI

with Ca?* signals with optogenetic stimulation at various hippocampal states.
Summary of publications

Patent 1: Positioning system for an imaging device.

Brain intervention, e.g., deep brain stimulation, could be directly used as a therapeutic
strategy to treat patients with severe brain diseases, e.g. epilepsy, Parkinson disease,
depression or brain tumors. Animal brain studies aim to better understand the complexity of
the brain. However, how to precisely target the specific functional nuclei and reduce the
collateral tissue damage remains challenging. Brain MRI is widely used to help localize
targets or investigate the outcomes of a surgical procedure. Therefore, in this study, an MRI-
compatible positioning system, i.e., MRI-guided robotic arm, was developed to provide
feasible targeting accuracy, high temporal and spatial resolution by using MRI anatomical
images as feedback to guide the brain implantation of electrodes/optical fibers/injection

needles.

This European patent describes the system units, drive mechanism, mechanical design and
components details for the MgRA system in the 14 T MRI scanner. As shown in the Fig.1
and 5, this system consists of a positioning module (the back part of the MgRA), the head of
the MgRA and a custom-designed user interface. The positioning module accommodates 4
stepper motors to fulfill 4-degree of freedom movement of the insertion element mounted on
the driving pieces in the head of the MgRA, which includes the driving pieces, cameras and a
customized rat holder (Fig. 4 and 7). The movements include three dimensions like
conventional stereotactic devices, as well as pitch and yaw (manually). The mobility range of
the MgRA (10 mm in the ventral-dorsal, rostral-caudal and medial-lateral directions) is
sufficient to reach any brain structure in small animal brains. The step-size, i.e. spatial
resolution, for ventral-dorsal movement achieved by an Archimedean spiral mechanism is 50
um, which is sufficient to target nearly all the functional nuclei in the rat brain (Fig. 3). The
coupling of the actuators from the positioning module to the matching toothed pulley in the
head of the MgRA was achieved by a synchronous belt drive in a form-fit manner (Fig. 6).
With MRI-compatible cameras, the user can watch the element insertion in real time outside

of the brain parenchyma, while the robot is executing a maneuver. If any movement needs to
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be modified, the user can start, stop, change, or resume the fiber movement at any time from
the user-interface. The MRI-compatible arm, including the head part and aluminum holder,
were placed inside the MRI scanner room, while digital components including stepper
motors, the motor controller and motor power supply, were placed outside the scanner room
(Fig. 8). Most of the components inside the MRI scanner room are constructed from fully
MRI-compatible materials like plastic, carbon fiber, and a minimal amount of nonferrous
metals like brass and anodized aluminum to avoid eddy currents and deterioration of
magnetic field homogeneity.

Overall, this positioning system provides feasible targeting accuracy and high temporal and
spatial resolution to guide the element insertion, e.g., electrodes/fiber optic/injection needle,
while reducing the position error significantly in the animal brain and monitor the collateral
tissue damage, with direct image feedback from the build-in camera and radio frequency
surface coil, for outside and inside the brain parenchyma, respectively. The compatibility
with the 14.1 T high magnetic field and compact head part design make this positioning
system applicable to 8 cm bores for future animal brain intervention studies, while ascribing
it a potential to be translated to the clinical practice, e.g. deep brain stimulation, an

implantable pump/needle for direct drug delivery, in multiple brain targeting tasks.

Manuscript 1: MRI-guided robotic arm drives optogenetic fMRI with concurrent

Ca?* recording.

The cell-type specific genetic labeling ensures the optogenetic activation on neuronal
ensembles of interest assuming that the optical fiber is precisely located at the functional
nuclei. However, the conventional stereotaxic device-driven fiber optic implantation scheme
shows insufficient accuracy and little flexibility after the fiber tips are fixed in the brain for
fMRI mapping. The MgRA could not only fulfill the role of accurately placing the fiber tip at
the desired coordinates to identify the ideal targets for light delivery (Fig. 1), but it can also
move the stimulating fiber and run opto-fMRI at different locations in one single study (Fig.

2), especially useful for “hypothesis-free” brain activity mapping studies.

This work demonstrates a series of high precision brain interventional applications in the
context of multi-modal neuroimaging using the MgRA system in ultra high-field MRI (14.1 T
scanner). First, optogenetic activation of the lateral hypothalamus can be directly driven by
the MgRA system to produce highly reliable activation patterns not only at the LH region

13



close to the tip of the optical fiber, but also in the lateral preoptic area (LPO), medial preoptic
area (MPA), medial preoptic nucleus, lateral part (MPOL) and strial part of the preoptic area
(StA). These widespread changes in BOLD activity were reliably detected in 5 different rats
with similar spatial patterns, which was analyzed by co-registering the brain atlas to
individual rat functional maps (Fig. 3). Second, the MgRA guided the fiber tip to deliver the
optogenetic activation at multiple sites along the insertion trajectory to target the ventral
posteromedial nucleus (VPM) with a step-size of 700 um (Fig. 4). Evoked calcium and
BOLD signals from the somatosensory cortex ipsilateral to the targeted thalamic nucleus
increased in a stepwise manner as the optical fiber was moved closer to the VPM region,
while, after the fiber bypassed the VPM region, BOLD and calcium signal decreased
accordingly. Last, the MgRA was applied for real-time microinjection to specific deep brain
nuclei, as demonstrated with a Mn-enhanced MRI method, demonstrating its microinjection
capabilities for contrast agent or drug delivery with high precision inside the MRI scanner.
Besides the multiple stops along a single injection trajectory (corpus callosum and central
lateral thalamic nucleus), the MgRA can be used to drive multi-trial microinjection to target
different nuclei, e.g. to the lateral hypothalamic nucleus, CC and CL in the same rat (Fig. 5).

In summary, the real-time MRI-guided robotic arm positioning system is verified and
practiced for the optical fiber brain intervention in animals using the high field MRI scanner
(>14 T). The MgRA represents a clear advantage over the conventional stereotaxic device-
based fiber implantation and opens a broad avenue to investigate the circuit-specific
functional brain mapping with the multi-modal fMRI platform merging fMRI with concurrent

optogenetics, optical fiber-mediated calcium signal recording and microinjection.

Manuscript 2: Mapping the brain-wide network effects by optogenetic activation of

the corpus callosum

Recently, the optogenetically driven manipulation of corpus callosum-specific activity
enabled to directly investigate the functional roles of callosal projections on regulating the
interhemispheric excitatory-inhibitory balance in animals. However, its global effect on the
brain is rarely reported. With precise optical fiber targeting guided by MgRA, the multi-
modal fMRI platform provides a cross-scale brain dynamic mapping scheme to elucidate

global neuronal network upon corpus callosum activation.
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This study investigated the CC-mediated interhemispheric inhibition on the brain-wide
network dynamics in three consecutive steps. First, we identified the antidromic vs.
orthodromic effect of CC-specific optogenetic stimulation. Unilateral optogenetic stimulation
of the callosal fibers connecting the barrel cortex (BC) to the contralateral hemisphere
revealed robust antidromic activation in the ipsilateral BC (Fig. 1). In the orthodromic
direction (i.e. projection to the contralateral BC), both fMRI and neuronal calcium signals
indicated strong depression of calcium signals upon stimulation with 40 Hz light pulses (Fig.
2). Second, we specified the temporal characteristics of this presumptive CC-mediated
inhibition of the thalamocortical activation to the BC (Fig. 3). The optogenetic CC light
pulses were paired with electrical pulses delivered to the whisker pad (contralateral to the
stimulated callosal area) at varying intervals from 0 ms to 200 ms in a randomized
stimulation scheme. Significant inhibitory effects at 50 ms and 100 ms interval were detected
by both fMRI and neural calcium recordings, but little difference was observed in the
antidromically evoked fMRI signal in the ipsilateral BC. Thirdly, to further examine the
brain-wide activity modulation upon paired optogenetic and whisker stimulation, the
concurrent evoked-calcium signals in the contralateral BC, detected in real time at varied
conditions, were used to correlate with the whole-brain fMRI signal using a calcium
amplitude modulation-based correlation analysis method (Fig. 4). Besides the contralateral
BC, the homologous ventral part of the ipsilateral BC, the motor cortex and posterior
thalamus from the same side of the contralateral BC were highlighted in the correlation maps,

showing amplitudes modulated by CC-mediated inhibition at varied time intervals.

Overall, this study not only specifies the optogenetically driven CC-mediated regulation of
the local excitation/inhibition balance in the local barrel cortex but also depicts the power of
the multi-modal fMRI to characterize the brain-wide network activity associated with circuit-
specific optogenetic activations in vivo. It highlights a vital aspect of the brain-wide activity

for circuit-specific causality studies with optogenetic tools.

Manuscript 3: Mapping optogenetically-driven single-vessel fMRI with concurrent

neuronal calcium recordings in the rat hippocampus

The hemodynamic responses linked to specific neural activity remains to be elucidated at the
single-vessel level across hippocampal vasculature at the sub-centimeter spatial scale, which
hindered to better decipher the hippocampal malfunction in diseased animal models. Here, we

used the multi-modal fMRI platform to investigate the detailed, spatiotemporally resolved
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NVC events in rat hippocampus at two different states, which are based on the concurrent

neuronal Ca?* signals, e.g., the optogenetically evoked or the SDL-Ca?* events.

First, by co-expressing ChR2 and the genetically encoded Ca?* sensor, GCaMP6f, in the rat
hippocampus using AAV vectors, BOLD fMRI signals could be detected from the activated
hippocampus voxels, and the concurrent Ca?* signals from nearby neurons upon optogenetic
stimulation (Fig. 1). The in-plane resolution was increased to 100 pum and 130 pum for the
BOLD and CBV-weighted fMRI, respectively, by performing the bSSFP-based single-vessel
fMRI on the slice chosen to be 500 um away from the optical fiber along the caudal-ventral
axis (Fig. 2). Second, in contrast to the normal trains of Ca?* transients evoked by the light
pulses (Fig. 3C), we also observed the large-scale hippocampal Ca?* transient, i.e., the
spreading depression-like (SDL) Ca?" transient, at inter-stimulus intervals following the
optogenetic stimulation with 3 or 5 Hz light pulses at 8s stimulation-on duration, which
coincided with spreading positive BOLD and negative CBV-weighted signals during inter-
stimulus intervals in the hippocampus (Fig. 3D). In addition, the simultaneous LFP and fiber
optic Ca?" recordings also detected epileptic events as a train of strong LFP deflections and
concurrent Ca®* transients. These epileptic events were often accompanied by the large
amplitude SDL-Ca?* event in the hippocampus. Third, in contrast to the conventional general
linear model that fits the fMRI signal with the ideal time course, we applied a Ca?* amplitude
modulated model to calculate the GLM beta coefficients, as the efficiency estimates of the
NVC (eNVC) to the optogenetically evoked and SDL-Ca®* events. Mean vessel-specific
eNVC beta values of optogenetically evoked Ca?* events were significantly higher than those
of SDL-Ca?* events (Fig. 4G). Despite the fact that SDL-Ca?* + events were elicited in the
hippocampal structure close to the optogenetic stimulation site, their eNVC beta values were
found to be similar and evenly distributed across the hippocampal vasculature, whereas the
eNVC beta values of optogenetically evoked Ca?* events showed a distance-dependent
distribution (Fig. 4).

In summary, by implementing the simultaneous optogenetic single-vessel fMRI and optical
fiber Ca?* recordings, distinct hemodynamic spatiotemporal patterns across the sub-
centimeter hippocampal vasculature could be directly characterized based on the concurrent
neuronal Ca?* signals. The multi modal fMRI platform not only provides a unique cross-scale

mapping scheme to study the neurovascular activity in the hippocampus in both normal and
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pathological conditions, but also sheds light on the future pathological hippocampal NVC

studies in disease animal models with stroke, epilepsy, and Alzheimer’s disease.

Discussion

This thesis provided two methodological innovations, whose novelty will be described first
and followed by highlighting the conceptual impact of their application for the multi modal
fMRI platform, which has been used broadly as neuroscientific tools for the neuroimaging
and has become an especially fruitful road to understand the network-scale functional

organization of the animal brain.
MRI-guided robotic arm to improve targeting precision for multi modal fMRI platform

First, an MRI-guided robotic arm which is implemented compatibly on the multi-modal fMRI
platform is presented (P1/M1). Compared to the conventional stereotaxic device-based
implantation strategy, the major advance of MgRA is that it allows high precision and
flexibility for optical fiber insertion along one or multiple trajectories in the same rats, as well
as monitoring the collateral tissue damage during optical fiber insertion. Besides fulfilling the
role of accurately placing the fiber tip at the desired coordinates, the MgRA provides a
flexible platform to identify, de novo, the ideal targets for deep brain stimulation in pre-
clinical studies. This could be easily investigated with the MgRA by moving the stimulating
fiber and running opto-fMRI at different locations in one single study, particularly for
“hypothesis-free” brain activity mapping studies. This application will be critical to optimize
and specify the ideal subcortical targets aiming at controlling pathological tremor or
searching for more reliable treatment for depression in animal models [75-77]. Importantly,
potential collateral damage to the choroid plexus or other blood vessels, which are certain
effects inherent in the insertion of an optical fiber into the brain, could be well monitored by
real-time imaging and avoided by changing the trajectory of the fiber. This is a particularly
relevant feature of the MgRA, as it contributes to the maintenance of the integrity of the
surrounding tissue to a certain level, which is beyond the capabilities of the standard

implantation techniques with stereotactic devices.

Numerous efforts have been made to develop robotic positioning systems inside the MRI
scanner for translational application from animals to the clinical practice, e.g. deep brain

stimulation (DBS) or brain tumor ablation [69-75]. In contrast to the growing access to
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robotic manipulation strategies inside large-bore MRI scanners (e.g. 1.5 T or 3 T human
scanner), there are only a handful of works that have implemented remote controlling systems
inside high field MRI scanners with smaller bore (>7 T, <12 cm gradient bore size).
Examples include an MR image-guided mini-DBS system for BOLD activation during
subthalamic nucleus DBS in nonhuman primates in a 3 T scanner [75], an angle positioning
system to increase the image signal intensity of fibrous microstructure in a 9.4 T 12 cm-bore
scanner [76], an integrated system, driven by piezoelectric actuators, for auto-tuning of a
multichannel transceiver array at 7 T [77] or MRI-compatible systems for focused ultrasound

experiments in rodents in 3 T scanners [78, 79].

To the best of our knowledge, the MgRA described in this study is the first automatic
prototype to assist fiber optic insertion in small bore high field MRI scanners for optogenetic
studies. Besides the mechanical design of MgRA (P1), a series of in vivo applications in M1
including deep brain targeting, multi-site targeting and microinjection compatibility
demonstrates the power of this novel approach. In another step, this approach was applied to
guide the optical fiber to activate the corpus callosum, whose thickness is only ~200 pum
(M2), which further confirms the role of it as the key component for a multi-modal fMRI

platform.
Whole brain mapping and Ca?* amplitude-based correlation mediated by CC inhibition

Second, a generic approach by correlating calcium amplitude from designed experiment
conditions with whole brain BOLD signal for identifying brain-wide network effects of CC-
mediated inhibition was presented. The core advance of this methodology combining multi-
modal platform is that it allows to reveal the functional connectivity which results from
activating optogenetically (and unidirectionally) callosal fibers without being confounded by
the antidromic activity. The observation of strong antidromic propagation by callosal
optogenetic stimulation and related synaptic spread of activity presents a caveat for circuit
specific in vivo optogenetic studies. In particular, when projection terminals from neurons
labelled with ChR-2 that are located at specific functional nuclei are targeted, possible
spreading network activity from the antidromically activated brain sites needs to be
considered. In our experiments BOLD signals were detected upon stimulation with 5 Hz light
pulses in both the motor cortex and the posterior thalamus projected from the antidromically
activated BC, indicating a wide-spread optogenetic activation pattern in the brain-wide
network (which was unintended for the experimental purpose). Therefore, it is mandatory to
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consider brain-wide activation patterns, even in case of application of highly circuit-specific

optogenetic activation schemes.

Besides the antidromically evoked network activation pattern, the orthodromic CC-mediated
inhibition generates a brain-wide activity pattern of its own. The whole brain fMRI with
concurrent calcium recording, allows to access brain-wide network effects of CC-mediated
inhibition. The correlation map highlighted three brain regions: First, the ventral part of
ipsilateral BC, second, the contralateral MC and third, the contralateral PO. These findings
point at a potential participation of the callosal inputs in the regulation of a wider network of
reciprocal thalamo-cortical network, which mediates BC signals from the other hemisphere
for whisking related processing [78-83]. Indeed, when studying circuit specific optogenetics
induced behavior, global regime is of special importance because the animal behavior
originates from neuronal activity often distributed and coordinated across multiple brain
areas, i.e., associated with brain-wide networks. Common approaches like
electrophysiological approaches [21, 84] and the multi-fiber photometry [85] so far offer
either preselect limited brain sites or primarily investigate the surface of the brain, e. g. wide-
field camera imaging [16, 17] and multi-photo mesoscopes [18, 19]. Therefore, new
methodologies like the multi-modal platform could be used to comprehensively explore large
scale brain dynamics, which are crucial to avoid leading to incomplete causal conclusions and
concealing important discoveries of parallel pathways, as well as feed-forward/feed-back
loops. The procedures described in this manuscript provide the possibility to identify the
global functional connectivity by correlating cell-specific calcium signals in local areas
(mediated by designed stimulation conditions) with the BOLD signal from each voxel within

the brain.

Overall, the results obtained with the calcium amplitude-based method for global connectivity
graph from calcium and fMRI, underline the importance of comprehensively understanding
potential pathways while making inferences about the association of optogenetic stimulation

and behavior.
Single vessel mapping and Ca?* amplitude-based correlation in hippocampus

In addition, this thesis also demonstrating the hippocampal vascular hemodynamic mapping
using the single-vessel fMRI with simultaneous cell-specific calcium signals in the

hippocampus to specify the hippocampal neurovascular coupling NVC events driven by
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optogenetic stimulation. Despite extensive imaging studies on hippocampal neural activity,
the actual information flow from neuronal activity to the hippocampal neurovascular system,
the modulation of which provides the vast majority of fMRI signals, has seldom been taken
into account in investigations attempting to relate behavior to the function or dysfunction of
this structure [60, 86-88]. One major barrier is the ability to access large-scale hippocampal
vascular dynamics in vivo with minimally invasive procedures, preserving the NVC function.
This work is trying to solve three critical features for the existing neuroimaging methods:
large FOV, high resolution to detect the vessel-specific hemodynamic signal with sufficient
SNR, and accessibility to deep brain nuclei. By improving the spatial resolution of fMRI
image, the fMRI signals from individual penetrating vessels through the hippocampus were

detected beyond the penetration depth of the conventional optical methods.

In addition, using GCaMP6f, the optogenetically evoked hippocampal neuronal calcium with
similar temporal dynamics to cortical calcium transients were detected, as well the robust
SDL-Ca?* events during the inter-stimulus intervals in the hippocampus (Fig. 3). These SDL-
Ca?* events were recently reported to follow the trains of interictal spikes during the
optogenetically-induced seizure [89] in the mouse cortex. The epileptic events observed in
the cortex are usually accompanied by the cortical spreading depression [89-91], which is
typically studied with fMRI by direct KCI topical treatment or focal ischemia in animal brains
[92, 93]. In the hippocampus, we detected the robust SDL-Ca®* events independent of the
epileptic activity in the inter-stimulus intervals when 3-5 Hz optogenetic light pulses were
used (Fig. 3D), which have dominated the random incidence of the epileptic events using
similar stimulation paradigm in the hippocampus. Combining with the fMRI platform,
coupled to the SDL-Ca?* events, we detected the correlated BOLD signal increase and CBV-
weighted signal decrease (due to vasodilation), but no clear sign of vasoconstriction-based
fMRI signal change was detected. Interestingly, although no clear vasoconstriction-based
fMRI signal was detected following the SDL-Ca?" event, significantly reduced NVC
efficiency was detected when comparing to the optogenetically evoked Ca?* transients (Fig.
5). Consistent with the impaired NVC during cortical SD [90, 94], we provide a multi-modal
fMRI platform to directly measure the altered NVC efficiency directly linked to the

concurrent SDL- Ca?* + events in the hippocampus.

Overall, the multi-modal fMRI platform used to acquire the concurrent neuronal Ca2+ and
single-vessel fMRI signal in the hippocampus allows for detecting the hemodynamic fMRI
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responses from individual vessels through the sub-centimeter hippocampal vasculature. In
particular, the large-scale vascular hemodynamic responses can be represented based on the

estimated NVC efficiency at different hippocampal states.

Conclusion

In sum, this thesis presents two new approaches for studying animal brain activity based on
the multi-modal fMRI platform. The methodological developments and results provided in
this thesis overcome some of the methodological and conceptual gaps in the current state of
the art and constitute significant steps for unfolding the potential of the multi-modal fMRI
platform to decipher brain network function/dysfunction and bridge the scales at cellular,
neural circuit, and eventually the whole brain network level. The multi-modal fMRI platform
thus opens a new avenue to investigate animal brain function in health as well as diseases by

providing additional and complementary information across the whole brain.
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Positioning system for an imaging device

Description

The invention relates to a positioning system for an imaging device, in particular a MR imag-
ing device, to position an insertion element on or in the body of a subject, in particular an
animal, wherein the imaging device comprises a bore, in which the subject is received,
wherein the positioning system comprises a robot, which can be at least partially arranged in
the bore of the imaging device and comprises a holding element to hold the insertion ele-

ment.

Brain intervention techniques are primarily used to treat patients with severe brain diseases,
e.g. epilepsy, Parkinson disease, clinical depression or brain tumors. Deep brain stimulation
is a key model to show how brain intervention could be directly used as a therapeutic strate-
gy to treat patients. How to precisely target the specific functional nuclei of the diseased hu-
man brain and reduce the collateral tissue damage is a key challenge of the brain interven-
tional clinical practice. The human brain MRI is usually used to help localize the target, as

well as monitor the surgical procedure.

Magnetic resonance imaging (MRI), or Nuclear magnetic resonance imaging (NMRI), is an
imaging technique to visualize the structure and function of tissue. This imaging technique
provides detailed images of the tissue in any plane and a greater contrast between the dif-
ferent soft tissues compared to computer tomography (CT). Thus, it is especially favorable in
neurological (brain), musculoskeletal, cardiovascular, and oncological (cancer) imaging. MRI
utilizes a powerful magnetic field to align the nuclear magnetization of hydrogen atoms in the
tissue. This alignment is then systematically altered by radiofrequency fields (RF). The hy-
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drogen nuclei produce a rotating magnetic field detectable by the scanner. Such a signal can
be manipulated by additional magnetic fields to build up information to construct an image of
the body. By now Functional Magnetic Resonance Imaging (fMRI) has come to dominate the
field of brain mapping. fMRI directly detects the hemodynamic signal from vessels, such as
the blood-oxygen-level dependent (BOLD) contrast. Hereby the neural activity in the brain is
mapped by imaging the change in blood flow/volume (hemodynamic response) related to

energy consumption by brain cells.

The use of the high magnetic fields in the MRI-system makes the design of MRI-compatible
robots difficult, since most of the components commonly used in robotics are unsuitable in
close proximity of the MRI-device. In such a range ferromagnetic materials are exposed to
very high magnetic interaction. Thus, strong forces may act on individual parts. Further, heat-
ing may occur in conductive materials by electromagnetic induction. Additionally, the use of
electricity may cause interference-effects in the RF coils of the imager which can create im-

age artifacts.

There are a few existing MRI-compatible or based devices that help better perform the pro-
cedure. However, the MRI-guided strategy is usually used as an assisting or verification pro-
cedure. The main surgical procedure remains to be done by neurosurgeons. There is long
way to evolve from manual procedure to full automation. Besides technical limits, the safety

and human brain complexity are the main limiting factors.

In contrast to the human brain/body intervention, there is less safety concern for animal brain
surgeries. Moreover, animal brain studies are aimed to better understand the complexity of
the brain. Recently, genetically encoded proteins make it possible to mediate and monitor the
brain function from the molecular level to networks with cell specificity under multi-modal
neuroimaging platform. Specific brain cells can be activated and the activity signal can be
monitored inside the MRI-scanner with fiber optic-mediated signal detection strategies. How-
ever, it remains challenging to precisely target the brain cells in specific brain nuclei of animal
brains (only a few hundred micron size). The common way is to use the animal brain atlas
(e.g. Paxinos rat brain atlas) to find the 3D coordinates based on a control point (zero point),
which is defined by the bregma (the anatomical point on the skull at which the coronal suture
is intersected perpendicularly by the sagittal suture). The physical positon of the bregma
point on the skull varies largely across animals with over a few hundred micron, which con-

tributes to the key variation for most of the animal brain nuclei surgical procedures.
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The above mentioned animal brain studies are conducted on small animals like rodents e.g.

rats. Typical MR scanners used for human subjects (with bore size >60cm) are however un-

suitable for imaging small animal models, since it has been found to be difficult to achieve a

reasonable spatial resolution at an acceptable signal-to-noise ratio with such scanners. Thus,

special “small-bore” animal high magnetic field MRI-scanners are typically used.

So far, no MRI-compatible, automatic robotic control, real-time guiding system exists, which
further may be applied in special “small-bore” animal-MRI-scanners. However, there are
clearly scientific needs for such a device. Especially during the new era of Human Brain Pro-
ject and BRAIN INITIATIVE from the European Union and the USA, there will be tremendous
opportunities to carry on animal experiments under the precise brain targeting scheme to

study brain function from molecules to networks.

Object of the invention is therefore to provide a positioning system for an imaging device that

overcomes the above-mentioned disadvantages.

The problem is addressed by a positioning system for an imaging device, in particular a MR
imaging device to position an insertion element on or in the body of a subject, in particular an
animal, wherein the imaging device comprises a bore, in which the subject is received,
wherein the positioning system comprises a robot, which can be at least partially arranged in
the bore of the imaging device and comprises a holding element to hold the insertion ele-
ment; wherein the robot further comprises at least one actuator acting on the holding element
such that an end portion of the insertion element is movable, wherein said at least one actua-
tor is arranged with a distance D from the bore to minimize magnetic and/or electromagnetic
interferences between the imaging device and the at least one actuator and said first actua-

tor is coupled to the holding element in a form-fit- and/or a force-fit-manner.

Due to the arrangement of the at least one actuator at a distance D from the imaging device
or the bore respectively magnetic and/or electromagnetic interferences are minimized. Such
interferences or influences may be the magnetic field or the stray magnetic field of an MRI-
device influencing the at least one actuator. Such an influence may be a force on ferromag-
netic components of the actuator. Typically, the magnetic fields used in such imaging devices
are in the range of several Tesla. Magnetic fields of such a strength impede the functionality
or would even destroy conventional actuators. Further, due to the acting forces in the mag-
netic field the ferromagnetic parts may be accelerated towards the imaging device, which
leads to a potential risk of injuries for the subject and or personal operating the device. Fur-
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ther, such interferences could also be influences on the imaging device, in particular the RF
coils of the imager. Electromagnetic interferences originating from the actuators could for
example create image artifacts. Due to the positioning of the actuators at a distance D, it is
possible to use conventional actuators. There is no need for costly special (MRI-) compatible
actuators. Due to the form-fit- and/or a force-fit-coupling between the holding element and
the actuator, a straightforward and inexpensive solution for the transmission of the force be-
tween actuator and holding element is presented. The subjects are preferably small animals
like rodents, e.g. rats. However it is also possible to apply the positioning system on other

animals like monkeys or even on humans.

Advantageously the imaging device is a fMRI-device comprising an MRI-scanner, using a
magnetic field preferably in the range of 3 T to 21 T, more preferably in the range of 7 T to
14 T, and a bore diameter of preferably in the range of 50 cm to 6 cm, more preferably
12cm.Preferably the insertion element can be a fiber-optic for optogenetic stimulation and
fluorescent recording from endogenous/exogenous biosensors of metabolites of the subject
brain, an electrode for recording electrophysiological or electrochemical signal, and an im-

plantable pump/needle for direct drug delivery to treat tumor or other diseases.

Obviously the distance D depends on the magnetic field the imaging device uses. In the case
of small animals, typically a magnetic field in the range of 7 T to 14 T is preferred. For a
magnetic field of 14 T (without active shielding) the distance D is 4.7 meters. For convention-
al MRI-scanners, e.g. 9.4 T or 11.7 T, the distance D is shortened to less than 1.5 meters

since the active shielding. Generally, the distance D is measured from the center of the bore.

Preferably the at least one actuator is a step motor such as a brushless DC electric motor. A
full rotation of such an electric motor is divided into a number of equal steps, wherein the
motor-positon may be controlled and held. Such stepper motors may be permanent magnet
step-, hybrid synchronous step- or variable reluctance step-motors. However, the use of any
other type of actuator is equally conceivable. In particular the use of a piezo driven motor
may be conceivable. By the use of a piezo-motor the distance D may be further decreased,

since a piezo-motor is less susceptible to magnetic interferences.

Advantageously the bore has a longitudinal expansion along an X-axis and further expands
along a Z-axis and a Y-axis, wherein said X-axis, Y-axis and Z-axis are orthogonal to each
other. Preferably at least the end portion of the insertion element has a longitudinal extension
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along an A-axis, wherein the axis A and the Z-axis form an angle a, which is in the range

between 0° and 90°, preferably in the range between 0° and +45°.

According to a preferred embodiment the robot comprises a head part, a first and a second
drive mechanism. Preferably a first actuator acts on the holding element via the first drive
mechanism such that the end portion of the insertion element is linearly movable along the
A-axis. It is further preferred that a second actuator acts on the holding element via the sec-
ond drive mechanism such that the end portion of the insertion element can be pivoted about
a pivot axis B, wherein by said pivoting-motion the angle a, is adjusted. By said linear motion
the end portion of the insertion element, for example the tip of a fiber, may therefore be in-
serted into the brain tissue through a hole in the skull of the subject. The pivoting-motion of-
fers a convenient tool to insert the insertion element at a specific angle, whereby a specific
adjustment to the target element is possible. Further a particular trajectory of the insertion

path is executable.

According to a preferred embodiment, the first drive mechanism comprises a first pulley,
which is connected to the first actuator by a first belt. Preferably the first drive mechanism
further comprises a shaft, which is received in a central hub portion of the first pulley and
connects the first pulley and a converting element, on which the holding element is mounted.
Preferably the converting element converts a rotational motion of the first pulley into a linear
motion of the holding element along the A-axis. Preferably the holding element, the first pul-

ley, the shaft and the converting element are components of the head part.

Thus, according to this preferred embodiment the coupling of the first actuator to the holding
element in a form-fit- and/or a force-fit-manner is achieved by a belt drive. Advantageously
the first belt is looped over the first pulley and a pulley connected to the first actuator. Here-
by, different embodiments known in the state of the art are conceivable for example a normal
belt drive or a crossed belt. Conceivable belts are flat belts. V-belts, multi groove belts or the
like. Further, the first belt may be connected to the first pulley in a force-fit-manner. Prefera-
bly the connection between the first belt and the first pulley is in a form-fit-manner. Such belts
are called trimming-, toothed-, notch-, cog-, synchronous- or positive-transfer-belts. These
belts have teeth that fit into a matching toothed pulley. When correctly tensioned, they have
no slippage, and run at constant speed. By using the first drive mechanism according to this
embodiment, a high precision and accuracy can be achieved at very low costs. The step size
of the first actuator can be transferred to the converting element through the belt in an effi-
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cient manner. Further the drive mechanism can be easily adjusted to the space available in

the scanner room, by altering the belt length.

According to a further embodiment, the converting element comprises a disc-like element
with a first surface on which a first guiding element is arranged. Preferably the holding ele-
ment comprises at least one, preferably at least three second guiding element(s), which en-

gage(s) the first guiding element.

Advantageously the first guiding element has a continuous course, which originates in, or in
the proximity of a center of the disc-like element, wherein the continuous course evolves in
form of a spiral to an edge of the disc-like element. Preferably the spiral is described by a
polar equation of r= a*8, wherein r is the radial distance, 8 is the polar angle and a is a con-
stant >0. Such a spiral is called an Archimedean spiral. The Archimedean spiral has the
property that any ray from the origin intersects successive turnings of the spiral in points with

a constant separation distance (equal to 21ra if 8 is measured in radians).

The first and the second guiding element are preferably designed as a projection. Thus, the
first guiding element could be continuous projection on the first surface of the disc-like ele-
ment. The second guiding element(s) could be (a) projection(s) or (a) pin(s), which engage(s)
and (is) are guided by the first guiding element in form of a spiral. The projection could be
formed on the holding element. It is also conceivable that the second guiding element(s) is
(are) (a) pin(s) which (is) are arranged in (a) bore(s) of the holding element. The projection
fits preferably in the space between two points of the projecting spiral without play. Hereby
an accurate guiding is ensured. It is also conceivable that the first guiding element is a slit, a
groove or the like, arranged on the first surface of the disc-like element. The second guiding

element in form of a projection may then engage in such a structure preferably without play.

A rotation of the disc-like element and the Archimedean spiral respectively drives the holding
element due to the engagement of the second guiding element(s) along the A-axis. Due to
different parameters, e.g. said separation distance, of the Archimedean spiral and precision
of the step motors, different precision can be achieved. Preferably one round of the actuator
(step-motor) causes one rotation round of the Archimedean spiral. In a preferred embodi-
ment one round of the Archimedean spiral displaces the holding element by 2mm and the
smallest step-size of the holding element along the A-axis is 10 um. Thus, it is possible to
accurately and precisely target the deep brain nuclei with a simple and inexpensive mecha-

nism.
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According to a further preferred embodiment the second drive mechanism comprises a sec-
ond pulley, which is connected to the second actuator by a second belt. The second drive
mechanism preferably comprises further a cup-like element, which is rigidly connected to the
second pulley. Advantageously the cup-like element comprises a receiving element, which
extends along the A-axis and receives the holding element. Preferably the cup-like element
engages the holding element such that a rotational motion of the cup-like element causes a
pivoting-motion of the holding element around the B-axis. Preferably the second pulley and

the cup-like element are a component of the head part of the robot.

It is further advantageous that the receiving element allows the motion of the holding element
along the A-axis. The receiving element is preferably designed as a slit or a groove in which
the holding element is received and guided. It is also conceivable that the receiving element
is designed as a projection on the cup-like element which extends along the A-axis. Accord-
ingly the holding element would comprise a structure like a groove in which the projection
engages. Thus, according to this preferred embodiment the coupling of the second actuator
to the holding element in a form-fit- and/or a force-fit-manner is achieved by a belt drive. Ad-
vantageously the second belt is looped over the second pulley and a pulley connected to the
second actuator. Hereby, different embodiments known in the art are conceivable, for exam-
ple a normal belt drive or a crossed belt. Conceivable belts are flat belts. V-belts, multi
groove belts or the like. Further, the second belt may be connected to the first pulley in a
force-fit-manner. Preferably the connection between the second belt and the second pulley is
in a form-fit-manner. Such belts are called trimming-, toothed-, notch-, cog-, synchronous- or
positive-transfer-belts. These belts have teeth that fit into a matching toothed pulley. When
correctly tensioned, they have no slippage, and run at constant speed. By using the second
drive mechanism according to this embodiment, a high precision and accuracy can be
achieved at very low costs. The step size of the second actuator can be transferred to the
converting element through the belt in an efficient manner. Further, the drive mechanism can

be easily adjusted to the space available in the scanner room by altering the belt length.

Preferably the shaft projects through the center of the second pulley. However, there is no
connection between the shaft and the second pulley, which would transmit rotational motion
between the second pulley and the shaft or vice versa. The minimal friction forces between
the shaft and the second pulley are negligible. Thus, the rotational motions of the first pulley
and the second pulley are effectively decoupled from each other. It is further favorable that
the pivoting-motion of second pulley and the cup like element is blocked by the second actu-
ator when the first actuator drives the holding element via the first drive mechanism. In this
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way the angle a is unchanged and the motion of the holding element is guided by the receiv-

ing element.

By using belt drives in the first and second drive mechanisms, not only the problem of the
undesired interferences is addressed, also the physical limitation of in-bore access and the
limited workspace in the bore (12cm for small animal MRI’'s) can be advantageously ad-

dressed, since the head part of the robot can be designed relatively small.

In a further preferred embodiment, the head part of the robot is connected to a holding rod
via a connection element. Preferably the robot further comprises a third actuator which acts
on the holding rod via a third drive mechanism, such that the head part of the robot can be
moved along the Y-axis. It is further preferred that the robot comprises a fourth actuator,
which acts on the holding rod via a fourth drive mechanism, such that the head part of the
robot can be moved along the X-axis. The displacement of the head part of the robot along
the X- and Y-axis allows a positioning of the insertion element over the inserting point, e.g. a

hole in the skull of the subject.

According to a preferred embodiment the third drive mechanism comprises a third pulley,
which is connected to the third actuator by a third belt. Preferably the third pulley is rigidly
connected to a threaded spindle on which a nut is arranged. Advantageously, the nut is con-
nected to the holding rod of the robot. It is preferred that the threaded spindle is arranged
perpendicularly to the holding rod. Preferably a rotation of the third pulley causes a rotation
of the threaded spindle and a movement of the nut and the holding rod along the Y-axis. It is
further conceivable that the third drive mechanism comprises further threaded spindles with
accompanied nuts. These spindles may advantageously be arranged along the length of the
holding rod at equal distances. Each spindle is driven by a belt which is connected to a pulley

arranged on a spindle closer to the third actuator. In this way a chain-like drive is obtained.

Thus, according to this preferred embodiment the coupling of the third actuator to the holding
element, a form-fit- and/or a force-fit-manner is achieved by a belt drive. Advantageously the
third belt is looped over the third pulley and a pulley connected to the third actuator. Hereby,
different embodiments known in the art are conceivable for example a normal belt drive or a
crossed belt. Conceivable belts are flat belts. V-belts, multi groove belts or the like. Further,
the third belt may be connected to the third pulley in a force-fit-manner. Preferably the con-
nection between the third belt and the third pulley is in a form-fit-manner. Such belts are
called trimming-, toothed-, notch-, cog-, synchronous- or positive-transfer-belts. These belts
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have teeth that fit into a matching toothed pulley. When correctly tensioned, they have no
slippage, and run at constant speed. By using the third drive mechanism according to this
embodiment, a high precision and accuracy can be achieved at very low costs. The step size
of the third actuator can be transferred to the converting element through the belt in an effi-
cient manner. Further, the drive mechanism can be easily adjusted to the space available in

the scanner room by altering the belt length.

According to a preferred embodiment, the third drive mechanism acts additionally on a first
translation stage. Advantageously, the first actuator, the pulley connected to the first actua-
tor, the second actuator, the pulley connected to the second actuator and the holding are
mounted on the first translation stage. Preferably said translation along the Y-axis, driven by
the third pulley and the third belt, of the one or more nuts, connected to the holding rod, is
accompanied by a translation of the first translation stage along the Y-axis. It is preferred that
the translation distance of the first translation stage and the one or more nuts, connected to
the holding rod are the same, to ensure an accurate displacement without bending the hold-
ing rod or causing tension in the holding rod. The third drive mechanism advantageously
further comprises a gear, a threaded spindle or the like, which is driven by the third actuator,

and is also arranged at a distance D from the bore.

According to a further preferred embodiment, the fourth drive mechanism acts on a second
translation stage. Advantageously, on second translation stage the first translation stage and
the third actuator are arranged. Preferably, a translation of the second translation stage
along the X-axis results in a translation of the first translation stage, its elements mounted on
it and the third actuator as a whole along the X-axis. The fourth drive mechanism advanta-
geously further comprises a gear, a threaded spindle or the like, which is driven by the fourth

actuator and which is also arranged at a distance D from the bore.

In addition, it is advantageous that the positioning system comprises a platform, on which the
robot (5) is arranged. Preferably the subject is suspended and/or held at a head part of the
platform, which can be arranged in the bore of the imaging device. Preferably the first, sec-
ond, third and fourth actuators are arranged at the foot part of the platform (40). Preferably

the threaded spindle(s) is (are) arranged on (a) holder(s) connected to the platform.

Advantageously, the robot and the platform mainly consist of MRI-compatible materials.
Preferably such materials are nonmagnetic, dielectric materials, plastics, rubbers, or ceram-
ics. It is also preferable that the components of the robot may consist of minimal amounts of
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brass or anodized aluminum to avoid deterioration of magnetic field homogeneity. The hold-
ing rod preferably is constructed from carbon fiber. The advantage of the carbon fiber is its
very light weight, which allows the use of conventional step motors with relative small set
sizes. Although the conductivity of carbon fiber could get a certain eddy current during the
MR imaging because of the MR gradient shift, it is negligible for the animal fMRI studies. For
human safety issue, however, it may be better to replace all carbon fiber material to fiber-

glass-based material.

According to a preferred embodiment the positioning system comprises at least one, prefer-
ably at least two MRI-compatible camera(s), which is (are) mounted on the head part of the

platform.

Preferably the positioning system further comprises a navigation unit, which advantageously
comprises a control unit. Preferably the control unit controls the motion of the first, second,
third and fourth actuator. It is advantageous that the navigation unit further comprises an
image processing unit which processes real time images of the imaging device and/or the at

least one camera in the bore.

The object is also addressed by a method to position an insertion element using a positioning
system according to any one of the preceding embodiments in a MR imaging device:

a. Lowering the insertion element by the robot to a first position on the subject or
close to the subject;

b. Acquiring a 3D-MRI image and process the image via the image processing unit
to identify the location of subject, as well as the position of insertion element;

c. Calculation of the coordinates of the target point and the insertion element and
calculation of an optimized movement trajectory for the insertion element by the
control unit;

d. Monitoring movement trajectory by real-time MRI image via the image pro-

cessing unit.

Advantageously, the navigation unit allows an operator to visualize the (MRI-) image form the
imaging device. A target and an entry point for the insertion element is defined by a brain
atlas and a 3D MRI-image by a control algorithm of the control unit. Preferably, two cameras
are positioned to obtain visual guidance of the insertion, e.g. a brain intervention. Preferably
camera-based visual signals are presented by the navigation unit. Thus, the operator can
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monitor the real time situation inside the scanner. Alternatively the operator could also man-

ually adjust the target and an entry point.

The method may be particularly adjusted to automatically control a fiber/electrode (insertion
element) insertion into the brain of a small animal. Preferably the following steps may be per-
formed before step a)
- Applying a craniotomy on the animal skull;
- Fixing the animal on the head part of the platform with RF coil attached on the animal
head;
- Covering the skull with a circular transparent agarose gel with 1 cm diameter and
2mm thickness;
- Positioning the head part of the robot above the animal skull;
- Setting at least two MRI-compatible cameras (22) to directly visualize the craniotomy
and fiber/electrode tip;
- Placing the head part of the platform and the head part of the robot in the bore of the

MRI-scanner.

Step a) is adjusted such that the fiber/electrode is lowered for 1 mm to insert into the agarose

gel.

Step b) is adjusted such that a 3D MRI image is acquired to identify the location of animal

brain, as well as the position of the fiber/electrode tip in the agarose gel.

Step ¢) is adjusted such that the coordinates of the interested brain nuclei and the fi-
ber/electrode tip will be calculated from the 3D MRI images and that the optimized movement

trajectory of the fiber/electrode is calculated.

Step c¢) is adjusted such that the real-time MRI image can monitor the location of the fiber

after the insertion into the animal brain.

Further, the MRI-compatible cameras can be used to directly visualize the movement of the

fiber/electrode tips outside the animal brain.

Thus, an advantageous multiple degree-of-freedom robotic controlling system to target brain
nuclei or specific brain cells in the brain inside the high field (14.1 T) MRI-scanner is provid-
ed. A MRI-compatible positioning system provides feasible targeting accuracy, high temporal
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and spatial resolution by using MRI images as feedback to guide the brain intervention.
Meanwhile, a MRI-compatible camera-monitored insertion trajectory is optimized in order to
investigate the effectiveness, safety and feasibility of deep brain nuclei targeting for transla-
tional application. The positioning system provides:

- A fully motor-based automatic system using the MRI images to guide the brain inter-
vention;

- A special design for animal brain surgeries, which is also possible to be expanded to
the whole animal body in vivo targeting inside the MRI-scanner;

- Compeatibility with the 14 T high magnetic field of the MRI-scanners, which could also
be even pushed to 17 T;

- Accommodation of the space limit of the high field MRI-scanners, The positioning
system is even applicable to 8 cm bores;

- Providing a fully implementable system with build-in camera and RF surface coil to al-
low direct measurement of MRI images and position of electrode/fiber optic/injection
needle tips;

- Providing a 50-100 micron resolution to target the region of interests;

- Providing an individual animal specificity with more precise targeting strategy than on-

ly based on the atlas.

The multimodal neuroimaging methodologies on animal models are crucial for better under-
standing brain function. The neuron-glia-vessel (NGV) network is one of the most challenging
areas given the multifaceted requirements of signal acquisition from the brain. The combina-
tion of fMRI with optogenetic stimulation of genetically defined cells in animal models has
enabled scientists to study the causality between the activation of specific neuronal popula-
tions and the hemodynamic signal, such as the blood-oxygen-level-dependent (BOLD) fMRI
signal. Simultaneous BOLD fMRI and fiber-optic recording of fluorescent calcium signal can
help clarify the cellular contributions to neurovascular coupling in different brain regions of
healthy and diseased animal models. The hereby solved key challenge of the fiber optic-
mediated multimodal fMRI methodologies is how to locate the fiber tip accurately and to pre-
cisely target the deep brain nuclei, mostly the requirement of precision is only several hun-

dreds of microns.

Further advantages, aims and properties of the present invention will be described by way of
the appended drawings and the following description.
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In the drawings:

Fig. 1 shows the platform with the robot arranged in the imaging device according to
one embodiment;

Fig. 2 shows the head part of the robot according to one embodiment;

Fig. 2a shows the head part of the robot and its components according to one embod-
iment in an exploded view;

Fig. 3 shows the converting element and the holding element according to one em-
bodiment;

Fig. 3a shows schematically the principle of the converting element;

Fig. 4 shows the robot according to one embodiment mounted on the platform;

Fig. 5 shows the robot according to one embodiment;

Fig. 6 shows the robot according to one embodiment;

Fig. 7 shows the head part of the platform according to one embodiment;

Fig. 8 shows the principle function of the positioning system according to one em-
bodiment and an MRI-system;

Fig. 9 shows an image of a fiber position above a hole in a rat skull;

Figs. 10 show a fiber placement of perfused rat brain in vitro;

Figs. 11 show a fiber placement of perfused rat brain in vitro with different moving dis-
tances;

Figs. 12 show time-lapsed images of fiber optic targeting in the rat brain in vivo.

Without limiting the generality, in the following embodiments a MRI-(Magnetic resonance
imaging) device is assumed as imaging device. Such an imaging device (2) is a fMRI-device
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comprising an MRI-scanner, using a magnetic field preferably in the range of ca. 3 T to ca.
21 T more preferably in the range of ca. 7 T to ca. 14 T, and a bore diameter of preferably in
the range of 50 cm to 6 cm, more preferably 12 cm, wherein the insertion element can be a
fiber-optic for optogenetic stimulation and fluorescent recording from endogenous/exogenous
biosensors of metabolites of the subject brain, an electrode for recording electrophysiologi-
cal or electrochemical signal, and an implantable pump/needle for direct drug delivery to treat

tumor or other diseases.

Figures 1 to 8 display a positioning system (1) for an imaging device (2), in particular a MR
imaging device, to position an insertion element (3) on or in the body of a subject, in particu-
lar an animal, wherein the imaging device (2) comprises a bore (4), in which the subject is
received, wherein the positioning system (1) comprises a robot (5), which can be at least
partially arranged in the bore (4) of the imaging device (2) and comprises a holding element
(7) to hold the insertion element (3); wherein the robot (5) further comprises at least one ac-
tuator (8, 9, 10, 11), acting on the holding element such that an end portion (3a) of the inser-
tion element (3) is movable, wherein said at least one actuator (8, 9, 10, 11) is arranged with
a distance D from the bore to minimize magnetic and/or electromagnetic interferences be-
tween the imaging device (2) and the at least one actuator (8, 9, 10, 11) and said first actua-

tor (8, 9, 10, 11) is coupled to the holding element (3) in a form-fit- and/or a force-fit-manner.

Fig. 1 shows a MRI-scanner, typically located in a scanner room, and a platform (40), on
which the robot (5) is arranged. The bore (4) of the imaging device (2) has a longitudinal ex-
pansion along an X-axis and further expands along a Z-axis and a Y-axis, wherein said X-
axis, Y-axis and Z-axis are orthogonal to each other. The platform (40) has a longitudinal
expansion along the X-axis of at least the distance D and a width which expands along the
Y-axis. Further, the platform is mounted on a support device (48) which is equipped with

several wheels and is partially arranged in the bore (4) of the imaging device (2).

The robot (5) further comprises a first (12) and a second drive mechanism (13) and a first (8)
and a second actuator (9). These components are depicted in figures 2 to 6. The first actua-
tor (8) acts on the holding element (7) via the first drive mechanism (12) such that the end
portion (3a) of the insertion element (3) is linearly movable along the A-axis. The second
actuator (9) acts on the holding element (7) via the second drive mechanism (13) such that
the end portion (3a) of the insertion element (3) can be pivoted about a pivot axis B, wherein
by said pivoting-motion the angle q, is adjusted. The first (8) and the second actuator (9) are
mounted at a foot part (42) of the platform (40) wherein the foot part (42) is arranged with a
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distance D from the bore (4) to minimize magnetic and/or electromagnetic interferences be-

tween the imaging device (2) and the actuators (8, 9).

The holding element (7) comprises a body (7a) of an essentially rectangular shape which
extends along the A-axis. The bores for the second guiding elements (24) in form of pins are
arranged in row, placed in the center of the rectangular body (24a). On the body (7a) a grip-
ping portion (7b) is arranged, by which the insertion element (3) is fastened. Further, the

body (24a) comprises two lateral grooves (54a, 54b).

The figures 2 and 2a display a head part (6) of the robot (5), wherein the individual compo-
nents of the head part (6) are shown in fig. 2a in an exploded view. The components of the
head part (6) are the holding element (7), a first pulley (14), a second pulley (26), a shaft (16)
which is rigidly connected to a converting element (18), a cup-like element (28), a connection
element (33), which connects the head part (6) to a holding rod (32), and a fixing ele-
ment (49).

The first drive mechanism (12) comprises the first pulley (14), which is connected to the first
actuator (8) by a first belt (15), the shaft (16), which is received in a central hub portion (17)
of the first pulley (14) and connects the first pulley (14), and the converting element (18), on
which the holding element (7) is mounted. The converting element (18) converts a rotational
motion (19) of the first pulley (14) into a linear motion (20) of the holding element (7) along
the A-axis. Thus, the coupling of the first actuator (8) to the holding element (7) in a form-fit-
and/or a force-fit-manner is achieved by such a belt drive. The first belt (15) is looped over
the first pulley (14) and a pulley (50) connected to the first actuator (8). Fig. 5 displays this
connection between the first pulley (14) and the pulley (50) connected to the first actuator (8)
by the first belt (15). The first belt (15) is a toothed belt having teeth (15a) that fit into match-
ing teeth (14a) of the first pulley (14) and teeth of the pulley (50) connected to the first actua-
tor (8). By such a design, slippage of the belt is avoided.

The shaft (16) is rigidly connected to the central hub portion (17) of the first pulley (14) and
the converting element (18). The rotational motion of the first pulley (14) is therefore transmit-
ted by the shaft (16) to the converting element (18).

The converting element (18) comprises a disc-like element (21) with a first surface (22) on
which a first guiding element (23) is arranged. The disc-like element has a circular form with
a center (21a) and an edge (21b). The shaft is rigidly connected to a second surface (51)
opposite to the first surface (22).
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The first guiding element (23) has a continuous course, which originates in, or in the proximi-
ty of the center (21a) of the disc-like element (21), wherein the continuous course evolves in
form of a spiral (25) to the edge (21b) of the disc-like element (21). The spiral (25) is de-
scribed by a polar equation of r= a*8, wherein r is the radial distance, 6 is the polar angle and
a is a constant >0. Such a spiral (25) is called an Archimedean spiral. The Archimedean spi-
ral has the property that any ray from the center (21a) intersects successive turnings of the
spiral (25) in points with a constant separation distance (equal to 21m*a, 8 is measured in ra-
dians). The first guiding element (23) in the form of a spiral (25) is designed as a projection

projecting from the first surface (22).

The holding element (7) comprises a plurality of second guiding elements (24), which engage
the first guiding element (23). The second guiding elements (24) are in form of a projection or
a pin which is either formed directly on the holding element (7) or rigidly arranged in bores of
the holding element (7). The second guiding elements (24) in form of pins fit in the space
(25a) between two opposing points of the projecting spiral (25), preferably without play.
Fig. 3a displays the principle of the drive using an Archimedean spiral. The spiral (25) and
the holding element (7) with three exemplary second guiding elements (24): second guiding
element one (24a), second guiding element two (24b) and second guiding element three
(24c¢) are shown in this fig. 3a. The distance between second guiding element one (24a) and
second guiding element two (24b) is the same as the distance between second guiding ele-
ment two (24b) and second guiding element three (24c). A rotation of the Archimedean spiral

(25) will drive the holding element (7) up or down along the direction of arrow (53).

In this embodiment one round of the Archimedean spiral (25) displaces the holding element
(7) by 2 mm and the smallest step-size of the holding element (7) along the A-axis is10 ym.
Thus, it is possible to accurately and precisely target the deep brain nuclei with a simple and

inexpensive mechanism.

The holding element (7) is further secured by the cup-like element (28). The cup-like element
(28) is rigidly connected to the second pulley (26), encloses the disc-like element (21) and
comprises a receiving element (29), which extends along the A-axis and receives the holding
element (7). The disc-like element (21) is received in the inner space (28a) of the cup-like
element (28) such that it may rotate freely. The holding element (7) is received in the receiv-
ing element (29) such that only the linear motion (20) along the A-axis is allowed. In this way
a rotation of the holding element due to a force transmission, for example due to the friction
between the disc-like element (21) and the holding element, is prevented.
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The receiving element (29) is designed as a slit in the frontal part (28b) of the cup-like ele-

ment (28). The slit comprises two opposing guiding projections (52a, 52b) on its edges,

which project radially inwards and extend along the A-axis. Each of the guiding projections

(52a, 52b) engages in a groove (54a, 54b) of the holding element (7), which also extends

along the A-axis.

The second drive mechanism (13) comprises a second pulley (26), which is connected to the
second actuator (9) by a second belt (27), and a cup-like element (28), which is rigidly con-
nected to the second pulley (26). The cup-like element (28) comprises the receiving ele-
ment (29), which extends along the A-axis and receives the holding element (7). The cup-like
element (28) engages the holding element (7) such that a rotational motion (30) of the cup-
like element (28) causes a pivoting-motion (31) of the holding element (7) around the B-axis.
In particular the rotational motion of the second pulley (26) is transferred to the holding ele-
ment (7) via the engagement of the guiding projections (52a, 52b) in the lateral grooves (54a,
54b) of the holding element (7). Thus, the coupling of the second actuator (9) to the holding
element (7) in a form-fit- and/or a force-fit-manner is achieved by such a belt drive. The sec-
ond belt (27) is looped over the second pulley (26) and a pulley (55) connected to the second
actuator (9). Fig. 5 displays this connection between the second pulley (26) and the pulley
(55) connected to the second actuator (9) by the second belt (27). The second belt (27) is a
toothed belt having teeth (27a) that fit into matching teeth (26a) of the second pulley (26) and
teeth of the pulley (55) connected to the second actuator (9). By such a design, slippage of

the belt is avoided.

Once the angle a is adjusted by the pivoting-motion (31) of the holding element (7) around
the B-axis, the actuator blocks any further motion. In this way an effective guidance of the
linear motion (20) of the holding element (7) along the adjusted A-axis by the engagement of
the guiding projections (52a, 52b) in the lateral grooves (54a, 54b) is ensured.

The shaft (16) projects through the center of the second pulley (26). However, there is no
connection between the shaft (16) and the second pulley (26), which would transmit rotation-
al motion between the second pulley (26) and the shaft (16) or vice versa. The minimal fric-
tion forces between the shaft (16) and the second pulley (26) are negligible (which is highly
dependent on the material used, e.g. fiber glass or titanium with high rigidity is preferred).
Thus, the rotational motions of the first pulley (14) and the second pulley (26) are effectively
decoupled from each other. Additionally the shaft is fixed by a fixing element (49).
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Between the first (14) and the second pulley (26) the connection element (33), which con-
nects the head part (6) of the robot (5) to the holding rod (32), is arranged. The connection
element (33) comprises a loop portion (33a) and an insertion portion (33b). The shaft (16)
projects through the loop portion (33a). However, there is no connection between the
shaft (16) and the loop portion (33a), which would transmit rotational motion between the
second pulley (26) and the shaft (16) or vice versa. The minimal friction forces between the
shaft (16) and the loop portion (33a) are negligible. The arrangement of the loop portion
(33a) of the connection element (33) between the first (14) and second pulley (26) is further
advantageous, since a direct contact between the pulleys (14, 26) and a transmission of rota-

tional movement between the pulleys are avoided.

The insertion portion (33b) of the connection element (33) has a cross-like shape and is in-
serted in a tube-like end portion (32a) of the holding rod (32). It is also conceivable that the
holding rod (32) is tubular over its full length.

The holding rod (32) extends over the distance D along the platform (40) and is supported by
at least one holder (43) which is connected to the platform 40. Eventually the holding rod (32)
is mounted on a first translation stage (56) at the foot part (42) of the platform (40).

The robot (5) further comprises a third actuator (10) which acts on the holding rod (32) via a
third drive mechanism (34), such that the head part (6) of the robot (5) can be moved along
the Y-axis. Additionally, the robot (5) comprises a fourth actuator (11) which acts on a hold-
ing rod (32) via a fourth drive mechanism (35), such that the head part (6) of the robot (5)
can be moved along the X-axis. The third actuator (10) and the fourth actuator (11) are par-
tially arranged underneath the first translation stage (56). The drive mechanisms (12, 13, 34,

35) are depicted in figures 4 to 6.

The third drive mechanism (34) comprises a third pulley (36), which is connected to the third
actuator (10) by a third belt (37).The third pulley (36) is rigidly connected to a threaded spin-
dle (38) on which a nut (39) is arranged. The nut (39) is connected to the holding rod (32) of
the robot (5). Further, the threaded spindle (38) is arranged perpendicularly to the holding
rod (32). Thus, a rotation of the third pulley (36) causes a rotation of the threaded spindle
(38) and a movement of the nut (39) and with it the holding rod (32) along the Y-axis. Thus,
the coupling of the third actuator (10) to the holding element (7) in a form-fit- and/or a force-
fit-manner is achieved by such a belt drive. The third belt (37) is looped over the third pulley
(36) and a pulley (not shown in the figures) connected to the third actuator (10). The third belt
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(37) is a toothed belt having teeth (37a) that fit into matching teeth (36a) of the third pulley

(36) and teeth of the pulley connected to the third actuator (10). By such a design, slippage

of the belt is avoided. The threaded spindle (38) is mounted on the holder (43) by bearings

(58).

It is further conceivable that the third drive mechanism (34) comprises further threaded spin-
dles with accompanied nuts. These spindles may be arranged along the length of the holding
rod (32) at equal distances. Each spindle is driven by a belt which is connected to a pulley

arranged on spindle closer to the third actuator (10). In this way a chain-like drive is obtained.

Additionally, the third drive mechanism (34) acts on the first translation stage (56) at the foot
part (42) of the platform (40). On the first translation stage (56) the holding rod (32) is mount-
ed at the mounting element (57). Further, the first actuator (8), the pulley (50) connected to
the first actuator (8), the second actuator (9) and the pulley (55) connected to the second
actuator (9) are mounted on the first translation stage. A translation of the first translation
stage (566) along the Y-axis results therefore in a translation of said elements as a whole
mounted on it along the Y-axis. A translation along the Y-axis, driven by the third pulley (36)
and the third belt (37), of the one or more nuts (39), connected to the holding rod (32), is,
therefore, accompanied by a translation of the first translation stage (56) along the Y-axis.
Obviously, the translation distance of the first translation stage (56) and the one or more
nuts (39), connected to the holding rod (32) needs to be the same. Such a translation along
the Y-direction allows an accurate displacement without bending the holding rod (32) or
causing tension in the holding rod (32). Thus, the third drive mechanism (34) further com-
prise a gear, a threaded spindle or the like, which is driven by the third actuator (10), and is

also arranged at the foot part of the platform (40) at a distance D from the bore (4).

The fourth drive mechanism (35) acts on a second translation stage (62) at the foot part (42)
of the platform (40). On second translation stage (62) the first translation stage (56) and the
third actuator (10) are arranged. A translation of the second translation stage (62) along the
X-axis results therefore in a translation of the first translation stage (56), its elements mount-
ed on it and the third actuator (10) as a whole along the X-axis. Thus, the fourth drive mech-
anism (35) can be a gear, a threaded spindle or the like, which is driven by the fourth actua-
tor (11) and which is also arranged at the foot part of the platform (40) at a distance D from
the bore (4). In figures 4-6 the third (10) and fourth actuators (11) and the first (566) and sec-
ond translation stage (62) are shown.
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Hence, upon a command, the holding rod (32) with the whole first translation stage (56) is

movable back-to-forth (along the X-axis) driven by actuator (11), and for the left-to-right mo-

tion (along the Y-axis) driven by actuator (10), the holding rod moves with the first translation

stage (59) only. Such a translation along the X- and Y-axis allows an accurate displacement

without bending the holding rod (32).or causing tension in the holding rod (32).

The positioning system (1) comprises at least one, preferably at least two MRI-compatible
camera(s) (44), which is (are) mounted on a head part (41) of the platform (44). As already
mentioned, the positioning system (1) comprises a platform (40), on which the robot (5) is
arranged. The platform (40) comprises a head part (41), which can be arranged in the bore
(4) of the imaging device (2), wherein the subject is suspended and/or held at this head part
of the platform (40). The platform (40) with the head part (41) and the robot (5) are displayed
in fig. 4. The head part (41) is shown in detail in fig. 7. The head part (41) comprises a holder
for the subject (59) and four mounts (60), each designed to mount MRI-compatible camera
(44).

The positioning system further comprises a navigation unit (45), comprising a control unit
(46), which controls the motion of the first (8), second (9), third (10) and fourth (11) actuator,
an image processing unit (47), which processes real time images of the imaging device (2)
and/or the at least one camera (44) in the bore (4). Fig. 8 shows the principle function of the

positioning system and an MRI-system.

The MRI-system comprises a Host Workstation and MRI-Hardware which communicate with
the MRI-scanner. In which the multi DOF (degrees of freedom) robot of the positioning sys-
tem (1) is arranged. The Host Workstation communicates via a 1000 Base — T Ethernet with
the image processing unit (47) of the navigation unit (45). In particular the MRI-images are
sent in real time to the image processing unit (47). Further, the at least one camera (44)
sends images to the image processing unit (47). The navigation unit (45) further comprises a
brain atlas and a control unit (46). The control unit (46) communicates with the actuators (8,
9, 10, 11) via USB Serial bus. This communication comprises control commands from the
control unit (46) to the actuators (8, 9, 10, 11) and a position feedback from the actuators (8,
9, 10, 11) to the control unit (46). Eventually a power supply is provided for the power supply
of the actuators (8, 9, 10, 11). The power supply, the actuators (8, 9, 10, 11) and the MRI-
scanner are placed in the scanner room. The Host Workstation, MRI-Hardware and the navi-
gation unit (45) are placed in a control room.
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These components may be applied for a method to position an insertion element (3) using a
positioning system (1) according to any one of the preceding embodiments in a MR imaging
device (2):
a. Lowering the insertion element (3) by the robot (5) to a first position on the subject or
close to the subject;
b. Acquiring a 3D-MRI image and process the image via the image processing unit (47) to
identify the location of subject, as well as the position of insertion element;
c. Calculation of the coordinates of the target point and the insertion element (3) and cal-
culation of an optimized movement trajectory for the insertion element (3) by the control
unit (46);
d. Monitoring movement trajectory by real-time MRI image via the image processing unit
47).

In the following, working results are presented on tests of said positioning system and meth-
od.

Fig. 9 shows an image by MRI-compatible cameras (44) of a fiber position above a hole in a
rat skull. Two cameras (44) are positioned to obtain visual guidance of the brain intervention.
Camera-based visual signals are presented in the navigation unit (45). Thus, an operator can
monitor the real time situation inside the MRI-scanner (2). After the operator can clearly see
the fiber (3) above the rat brain, and the hole in the skull (61), a laser is switched on. The
light from the tip (3a) can be used as a marker of fiber tip (3a) for further 3D registration with
MRI images (visual cue-based 3D registration will be solved by script with self-design algo-
rithm). The operator could also manually adjust the probe position to target the craniotomy

window above the animal skull.

Firstly, the fiber (3) will be moved to be above the hole (61) on the rat skull using the third
(10) and fourth actuators (11). Secondly, the operator sets the steps and distance for the
final movement, down to the brain using the first actuator (8) and the second actuator for

holding the angle position (9). In parallel, the real time camera signals are displayed.

Figs.10(A-D) present a fiber (3) placement of perfused rat brain in vitro. The capability to
place the fiber (3) with different depth is particularly useful to target multiple sites along the
insertion path. Fig.10 A shows the targeting position in the rat brain atlas with the bregma
and Interaural position: -3.48 mm and 5.52 mm, respectively. Fig.10 B shows the fiber loca-
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tion in the targeted brain region, centrolateral thalamic nucleus (CL), which is illustrated in

Fig.10 D.

Fig.11 shows three images with two actuator (8) steps (with a step distance of 100 ym) to
clarify the precision of the robot (5). Three continuous MRI images with step distance
100 ym. Because the MRI resolution is 100 um, it can be seen that every step of the fiber (3)
moving distance is approximately 100 um. At each step, the fiber (3) was one line of voxel
deeper. Meanwhile, this distance difference was maintained through the whole fiber insertion

procedure.

Fig. 12 shows time-lapsed images of fiber optic targeting in the rat brain in vivo. In this appli-
cation, the damage of the brain is visible during the insertion, as illustrated in Fig. 12. When
the fiber tip (3a) touched the ventricle, the pushing force caused deformation of the paren-
chyma tissue of the ventricle border, but lead tissue bleeding. After penetrating the ventricle,

the fiber (3) was further deepened to target the subcortical regions in the rat brain.

All the features disclosed in the application documents are claimed as being essential to the

invention if, individually or in combination, they are novel over the prior art.

List of reference numerals

1 positioning system
imaging device
insertion element
3a end portion of the insertion element
bore of the imaging device
robot
head part of the robot

holding element

7a body of the holding element

b gripping portion holding element
8 first actuator

9 second actuator

10 third actuator

11 fourth actuator

12 first drive mechanism
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14a
15
15a
16
17
18
19
20
21
21a
21b
22
23
24
24a
24b
24¢
25
25a
26
26a
27
27a
28
28a
28b
29
30
31
32
32a
33
33a
33b
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second drive mechanism

first pulley

teeth of first pulley

first belt

teeth of first belt

shaft

central hub portion of the first pulley
converting element

rotational motion of the first pulley
linear motion of the holding element along the A-axis
disc-like element

center of the disc-like element
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MRI-guided robotic arm drives optogenetic {MRI
with concurrent Ca2t recording

Yi Chen'?, Patricia Pais-Roldan'?, Xuming Chen'3, Michael H. Frosz® % & Xin Yu® '°

Optical fiber-mediated optogenetic activation and neuronal Ca2* recording in combination
with fMRI provide a multi-modal fMRI platform. Here, we developed an MRI-guided robotic
arm (MgRA) as a flexible positioning system with high precision to real-time assist optical
fiber brain intervention for multi-modal animal fMRI. Besides the ex vivo precision evaluation,
we present the highly reliable brain activity patterns in the projected basal forebrain regions
upon MgRA-driven optogenetic stimulation in the lateral hypothalamus. Also, we show the
step-wise optical fiber targeting thalamic nuclei and map the region-specific functional
connectivity with whole-brain fMRI accompanied by simultaneous calcium recordings to
specify its circuit-specificity. The MgRA also guides the real-time microinjection to specific
deep brain nuclei, which is demonstrated by an Mn-enhanced MRI method. The MgRA
represents a clear advantage over the standard stereotaxic-based fiber implantation and
opens a broad avenue to investigate the circuit-specific functional brain mapping with the
multi-modal fMRI platform.
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multi-modal brain mapping platform for animals has
Abeen established by merging the fiber optic-mediated
optogenetic activation and neuronal Ca?* recording with
functional magnetic resonance imaging (fMRI)!=>. Given its non-
magnetic properties, the optical fiber can be used in combination
with fMRI brain mapping without electromagnetic interference
with the radio frequency (RF) transmission and magnetic gra-
dient switching of the MR scanner®3%7. The increased cellular
specificity of genetic labeling reassures the advantageous usage of
optical fiber recording/imaging to track neural spiking activity in
the deep brain regions®-13. However, one emerged challenge is
how to precisely target specific functional nuclei in the animal
brain®14, The procedure of fiber optic implantation in rodent
studies has been commonly performed with conventional ste-
reotaxic devices?37-11L1415 but the success rate to precisely target
the deep brain nuclei remains low, especially for the functional
nuclei that cover only a few hundred microns space in the animal
brain, e.g., the central thalamic nulcei®. A solution to precisely
target the genetically labeled neuronal tracts or subdivisions of
functional nuclei could significantly improve the reproducibility
of basic scientific discoveries. Here, we report an MRI-guided
robotic arm (MgRA) positioning device to maneuver the real-
time fiber optic implantation into the animal brain inside a high-
field MR scanner (14.1 T), intended for parallel optogenetics and/
or calcium imaging and fMRI studies.

The genetic expression of channelrhodopsins (ChR2) has been
extensively applied to target-specific cell types in the deep brain
nuclei, such as the dopaminergic neurons in the midbrain®, the
orexin in the lateral hypothalamus (LH)!®!7 or noradrenergic
neurons in the locus coeruleus!8. The cell-type specific genetic
labeling ensures the optogenetic activation on neuronal ensem-
bles of interest assuming that the optical fiber is precisely located
at the functional nuclei. However, the stereotaxic device-driven
fiber optic implantation scheme shows little flexibility after the
fiber tips are fixed in the brain for either fMRI mapping, elec-
trophysiological recordings, or behavioral studies®1°. The precise
coordinates of a certain functional brain nucleus can vary
between different animals, and incorrect positioning may result in
largely altered functional activation and behavioral outcomes.
This systematic error, which is intrinsic to the blind optical fiber

a

14.1 T Scanner

Rat holder and head part of MgRA

Back part of MgRA

d

placement, can potentially conceal important discoveries and lead
to inappropriate conclusions in causality analysis. Using MgRA
assisted fiber-optic insertion in combination with real-time fMRI,
we can provide a step-wise optogenetic activation scheme to allow
multi-site targeting through a fiber insertion trajectory during the
fMRI study. This strategy can not only improve the precision, but
also provide a thorough view to examine the subtle differences in
the whole brain activation patterns when targeting the sub-
regions of the functional nuclei of interest.

Numerous efforts have been made to develop robotic posi-
tioning systems inside the MRI scanner for translational appli-
cation from animals to the clinical practice, e.g., deep brain
stimulation or brain tumor ablation?9-26. In contrast to the
growing access to robotic manipulation strategies inside large-
bore MRI scanners (e.g., 1.5 or 3T human scanner), there are
only a handful of works that have implemented remote control-
ling systems inside high field MRI scanners with smaller bore (>7
T, <12 cm gradient bore size), which have been applied to adjust
sample orientation within the B, field?” or to tune RF coil
arrays?8. To the best of our knowledge, there is currently no MRI-
compatible robotic control system to assist fiber optic insertion in
small bore high field MRI scanners (>9.4 T) for optogenetic fMRI
studies. Hence, as a proof-of-concept, we developed an MgRA to
provide a flexible positioning system inside a 14.1 T MRI scanner
which assists fiber optical brain intervention in animals. Besides
an ex vivo precision evaluation, we present a series of in vivo
studies showing the whole brain activity patterns upon optoge-
netic stimulation of MgRA-targeted nuclei in the LH or thalamus
in a step-wise manner and with simultaneous fiber-optic calcium
recordings to specify the region-specific optogenetic activation
patterns. In addition, the MgRA system can be applied for region-
specific deep brain microinjection. Here, we demonstrate a series
of high precision brain interventional applications in the context
of multi-modal neuroimaging using the MgRA system.

Results

Mechanical design of the MgRA with ex vivo operation. A
stepper motor-driven MgRA was designed for real-time control
of the insertion of an optical fiber into animal brains inside a 14.1

Fig. 1 3D view of the MgRA and its application in ex vivo studies. a Overview of the MgRA inside the 14.1 T MR scanner. b Schematic of the customized
animal holder and head part of the MgRA. Both MR compatible camera and surface transceiver coil are included for monitoring the fiber optic insertion
inside the MR scanner. ¢ Stepper motors implemented at the back part of the MgRA to control up to four degrees-of-freedom movement. The long arm
reaching 4.7 m away from the magnetic center point excludes the influence by the ultra-high magnetic field. d Schematic drawing of the Archimedean
spiral design to transmit the dorsal-ventral movement. e Snapshot of the mechanically controlled fiber optic movement videotaped by the built-in camera.
f Time-lapsed images showing the optical fiber targeting the hippocampus, thalamus, and internal capsule along the insertion trajectory. Scale bar, 2 mm.
g Three continuous MRI anatomical images with step distance 50 um (the MRI in-plane resolution is 50 x 50 um?, thus it can be seen that the distance

moved in each step is approximately 50 um). Scale bar, 50 um
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T scanner (Fig. 1a, 3D schematic view in Supplementary Movie 1,
Supplementary Fig. 1). The MgRA contains two key parts: the
front part (head of the MgRA) includes the driving pieces and a
customized rat holder (Fig. 1b), and the back part accommodates
the stepper motors to fulfill the optical fiber movement with
multi-degree of freedom (Fig. 1c). The coupling of the actuator
(back part) to the matching toothed pulley in the head was
achieved by a synchronous belt drive (Fig. 1c) in a form-fit
manner, without slippage and run at constant speed. Insertion of
the optical fiber in the dorsal-ventral direction into the rat brain is
executed using an Archimedean spiral mechanism to achieve high
precision and accuracy (Fig. 1d). With a built-in MRI compatible
camera, the insertion of the optical fiber could be monitored
outside of the scanner to verify the effectiveness, safety, and
feasibility of the MgRA (Fig. le and Supplementary Movie 2),
simultaneously tracked with anatomical MRI. The assembly of all
components provides the MgRA unique features in a portable
frame that can be easily located inside the MRI room substituting
the conventional subject table. A more detailed description of
MgRA can be found in Methods and Supplementary Figs. 11-13.

The MgRA was first evaluated in perfused brains embedded in
agarose (Fig. 1f), in order to simulate the procedure of
intracerebral fiber insertion in the living animal. The optical
fiber was first inserted into the agarose-embedded brain
preparation in a 100 um step-wise manner, and real-time MRI
images were acquired to monitor the movement trajectory and to
identify the location of the fiber tip (Supplementary Movie 3).
Precision of the MgRA was determined as the smallest step in the
dorsal-ventral direction that could be maneuvered based on the
remote stepper motor controlling. Figure 1g shows the step-wise
movement of the fiber inside the rat brain at 50 pm per step with
high-resolution MRI time-lapsed 2D images (Supplementary
Movie 4). It is worth noting that fiber insertion trajectories can be
optimized with special angles to target specific deep brain nuclei
or fiber bundles while avoiding disturbance of neural circuits,
projection pathways of interest or certain brain vessels. For
instance, an angled fiber optic insertion can be implemented to
target the internal capsule to preserve the ascending pathway of
the thalamocortical circuits (Fig. 1f and Supplementary Fig. 2). In
summary, MgRA-based fiber optic insertion in the ex vivo brain
verifies its functionality and demonstrates the stability in terms of
remote motor control.

In vivo MgRA-driven fiber insertion with optogenetic fMRI.
MgRA allows the insertion of optical fibers in vivo inside the 14 T
MRI scanner, which induces great advantages for optogenetic
fMRI studies>2%30. To locate the fiber tip prior to intracerebral
insertion inside the MRI scanner, two procedures were followed.
First, we implemented two MRI-compatible cameras to visually
locate the fiber tip, as well as the craniotomy on the animal skull
(Fig. 2a and Supplementary Movie 5). Second, a prior application
of a manganese-treated agarose gel was applied over the skull and
the sequential lowering of the fiber was monitored with real-time
anatomical MRI to locate the fiber tip as well as the craniotomy
hole on the skull to guide the fiber targeting inside the brain
(Supplementary Fig. 3). A more detailed description can be found
in Methods, Supplementary Fig. 3. Figure 2b shows snapshots of
the fiber tip outside the brain during the MgRA-driven fiber
insertion. Figure 2c demonstrates an example of the in vivo fiber
targeting of subcortical thalamic regions. Also noteworthy is the
bleeding-induced T2-weighted signal drop when the fiber was
inserted through the lateral ventricle (Fig. 2c). When a fiber tip
first reaches a ventricle, its pushing force causes deformation of
the surrounding ependyma, which can induce minor bleeding
from the choroid plexus. This observation should raise a note of

caution to target deep brain regions. The damage could be
reduced by decreasing the insertion speed, which can be
accomplished at approximately 20 um/s with the MgRA (Sup-
plementary Movie 5 and Supplementary Fig. 4).

Fiber optic insertions with customized angles can also be
applied with MgRA for the in vivo animal fMRI environment.
Figure 2d shows the step-wise fiber tip targeting to the
hippocampus and ventral posteromedial nucleus (VPM) of the
thalamus by inserting the optical fiber with a 40° angle from
the midline. Figure 2e demonstrates the whole brain BOLD fMRI
map upon optogenetic activation of either the hippocampus or
the VPM, based on the MgRA-driven step-wise fiber tip
localization. Thus, the implementation of MgRA in standard
opto-fMRI workflows provides flexibility to guide an optical fiber
along a certain insertion trajectory, allowing to target different
nuclei in a single fMRI experiment, and hence, to study whole
brain responses upon deliberate region-specific stimulation.

Whole brain fMRI with LH optogenetic activation. The MgRA
can be used to target the deep brain nuclei with much higher
precision for fiber optic-mediated optogenetic activation than the
conventional stereotaxic-based fiber implantation on bench. For
example, the LH is a heterogeneous nucleus with highly varied
cell types across a few millimeter space in the ventral brain3!. The
MgRA-driven fiber optic positioning provides a reliable and
precise targeting scheme for the LH optogenetic activation during
fMRI. Figure 3a shows ChR2 expression with the AAV viral
vector AVV9.CaMKIL.ChR2.eYFP into the LH and the fiber optic
trace to target the LH in the histological slice, as well as the MR
image showing how the fiber tip coincides with the traced site of
viral injection. The whole brain activation pattern upon the LH
optogenetic activation is presented in Fig. 3b, showing the blood
oxygen level dependent (BOLD) signal along the ascending pro-
jection to the basal forebrain from the LH. Figure 3c shows the
temporal evolution of the optogenetically evoked BOLD signals in
both LH and its projected basal forebrain regions with the mean
time courses acquired at different stimulation durations. Fig-
ure 3d shows the mean BOLD signal time courses from both
nuclei with varied optical light pulse frequencies and pulse widths
(whole brain functional patterns at varied pulse width are shown
in Supplementary Fig. 5). The BOLD amplitude dependency on
the light pulse parameters provides strong evidence for reliable
detection of the functional projections from the LH with opto-
genetic fMRI. It is also noteworthy that MgRA-driven fiber optic
implantation ensures highly comparable activation patterns in the
LH across different animals (results from 5 individual rats,
Fig. 3b), as well as the activation of areas in the basal forebrain
including the lateral preoptic area (LPO), medial preoptic area
(MPA), and the strial part of the preoptic area (StA) (the co-
registered brain atlas to the individual rat functional map,
Fig. 3b). Additionally, the evoked calcium and BOLD signals in
the barrel cortex (BC) were observed in these animals upon
somatosensory whisker stimulation (Supplementary Fig. 6),
which indicates a stable physiological state of the animal and
therefore validates the biological data acquired from these
experiments. These results indicate that MgRA provides high
targeting accuracy and effectiveness to target deep brain circuits
and produce optogenetically-driven brain activation in a highly
reliable manner.

Step-wise optogenetically driven fMRI and calcium recording.
The flexibility and high precision of MgRA-driven fiber optic
targeting was further verified in a series of experiments that
combined optogenetic activation with concurrent fMRI and cal-
cium fiber optic recording (Fig. 4a). This multi-modal fMRI
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DAPI/mCherry |8
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Fig. 2 Evaluation of MgRA for in vivo studies and brain-wide opto-fMRI patterns in multiple targets. a Snapshot of the optical fiber (tip with 589 nm
wavelength laser light, yellow arrow) positioned above the burr hole (green arrow) on the skull of an anesthetized rat with the driving piece of the head
part. b Camera-based fiber optic movement for three steps outside the rat brain. The fiber tip delivers blue laser light (473 nm wavelength). The bright
ring-structure above the rat skull is the RF surface coil. Scale bar, 2 mm. ¢ Potential collateral damage from the choroid plexus when the fiber was lowered
to pass through the lateral ventricles, shown as a dark signal below the hippocampus. The step size was 300 um. Scale bar, 1 mm. d Left, histological image
demonstrates ChR2-mCherry expression in most of the thalamus and part of hippocampus. Red, ChR2-mCherry; blue, 4’,6-Diamidino-2-phenylindole
(DAPI). Right, the fiber tip targets the hippocampal area and the BOLD fMRI map shows the activated area primarily located in the ipsilateral hippocampal
structure. Scale bar, 2 mm. e The fiber tip targets the ventral postero-medial (VPM) thalamus and map of BOLD activity was detected in bilateral vibrissal
S1 cortex in response to blue light stimulation. (For both (d) and (e), 3D whole brain EPI: 400 pm isotropic resolution, 1.5 s repetition time; stimulation
block design: 8s on 37 s off; laser pulse: 10 ms, 5Hz, 3.7 mW,/200 um core diameter of fiber tip)

scheme with MgRA enables real-time feedback at the level of the
whole brain (via fMRI) and specifically from the fiber tip (via
optical fiber) regarding the activation of the projection structures
upon region-specific stimulation. Here, calcium imaging was
acquired from the neurons in the BC that received afferents from
the subcortical thalamic region by using the calcium reporter
GCaMP64>12; optogenetic stimulation was performed on the
VPM thalamic nuclei, after expression of the light-sensitive
protein ChR2 (Fig. 4b-d)?>%32. The recording fiber was directly
implanted to record the GCaMP6f-mediated calcium signal in the
BC, while the optogenetic activation fiber was controlled by the
MgRA inside the scanner with real-time anatomical and func-
tional MRI to track the insertion trajectory. The MgRA guided
the fiber tip to deliver the optogenetic activation at multiple sites
along the insertion trajectory (Fig. 4e and Supplementary
Movie 6). Evoked calcium and BOLD signals from the somato-
sensory cortex ipsilateral to the targeted thalamic nucleus
increased in a stepwise manner as the optical fiber was moved
closer to the VPM region, while, after the fiber bypassed the VPM
region, BOLD and calcium signal decreased accordingly
(Fig. 4f-i). There was a slightly different stepwise fMRI response
from the contralateral somatosensory cortex as well (Fig. 4h, i),
which has been previously reported with electrical
stimulation3334. To further demonstrate the reliability of MgRA,
five power levels of light pulses were used to trigger increased
BOLD and simultaneous calcium signals (Supplementary Fig. 7).
Moreover, by altering the frequency of the light from 0.5 to 5 Hz,
we could observe a fully recovered evoked calcium baseline signal
at 0.5 Hz and elevated calcium signals from 1 to 3 Hz, while at 5
Hz, the overall plateau amplitude was not further increased
(Supplementary Fig. 8). The BOLD signal increased with higher
frequency, but not at 5 Hz, which was consistent with the calcium
signal dynamics (Supplementary Fig. 8). Results from two addi-
tional rats with different or similar insertion trajectories

confirmed the reliability of the stepwise optogenetic activated
fMRI and calcium signals acquired using the MgRA (Supple-
mentary Figs. 9 and 10). These experiments further demonstrate
the unique capability of the MgRA to specifically target sub-
cortical nuclei, which, combined with cortical recordings in the
projection area, allow unequivocal stimulation of the target sites.

MgRA-driven Mn-injection into CL and LH. The MgRA can also
be used to guide the real-time microinjection with high precision
inside the MRI scanner. MnCl, solution was used as the MR contrast
agent and a modified MPRAGE sequence®® (Mdeft, ~4 min) was
implemented to detect the manganese-enhanced T1-weighted MRI
signal!>36-38  Ag shown in Fig. 5a, a hollow core optical fiber3-41
was used to target the central lateral thalamic nucleus (CL) and Mn
solution was delivered in two consecutive steps. The initial stop was
introduced to target the corpus callosum with a small dosage of Mn
delivery (Fig. 5b), illustrating the real-time guided injection to target
the callosal fibers with a few hundred micron thickness. When the
fiber tip as located at the CL (position was verified with a T2-
weighted MR image (RARE) overlapped with the brain atlas), Mn
solution was injected for three times to show dose-dependent signal
changes in the T1-weighted Mdeft images acquired before and after
Mn injection (Fig. 5b). This result demonstrates the real-time injec-
tion capabilities of the MgRA.

Besides the multiple stops along the single trail of injection
trajectory, the MgRA can be used to drive multi-trial microinjec-
tion, e.g., to the lateral hypothalamic nucleus from the same rat,
inside the MRI scanner. As shown in Fig. 5¢, the fiber tip was
guided to target the LH. The Mdeft images were acquired before
and after the injection (3 times, Fig. 5d, e), showing clear effective
Mn delivery to the LH. In addition, we continuously acquired
the Mdeft images within the first ~1 h following the injection,
showing highly robust and confined Mn-enhanced signal of the
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Fig. 3 MgRA-driven fiber optic targeting of the lateral hypothalamic nuclei with optogenetic fMRI. a Top: representative RARE anatomical image used to
clarify the optical fiber location driven by MgRA for optical stimulation in LH. Middle: representative wide-field fluorescence image illustrating robust ChR2-
eYFP expression focused on LH. Fiber optic insertion trace marked with white arrow. Scale bar, 200 um. Bottom: sagittal RARE anatomical image showing
the fiber optic trace (blue arrow) and virus injection trace (red arrow). b Top: average fMRI map of brain-wide activity during optogenetic stimulation of LH
neurons at 5 Hz, 20 ms pulse width, 15 s duration. Middle: averaged evoked BOLD map (left) and the same map from 5 individual rats (right) zoomed in on
the basal forebrain (BF) showing activation of the lateral preoptic nucleus (LPO) and medial preoptic area (MPA), overlaid with the brain atlas. Bottom:
average evoked BOLD map (left) and 5 individual rats (right) in lateral hypothalamic region, overlaid with the brain atlas. GLM-based t-statistics in AFNI is
used. Scale bar, 2 mm. ¢ Average time courses of significantly modulated voxels showing fMRI signal changes within the ipsilateral LH and BF (n=5
animals) upon optogenetic stimulation of block design: 15 s on/45 s off, 12 epoch, 20 ms light pulse, 5 Hz, 18.9 mW. The individual hemodynamic response
shows the average BOLD signal upon different stimulation durations (8 s in blue, 15 s in red). Error bars represent mean + SD across 5 animals. d Average
stimulation duration-locked time evolution for both LH and BF depicting the frequency-dependent hemodynamic responses at 3, 5, and 10 Hz with 8s
stimulus duration, as well as pulse-width-dependent hemodynamic responses at 5, 10, 15, and 20 ms with 15's stimulus duration, from one
representative rat

targeted regions with limited diffusion (Fig. 5f and Supplemen- microinjection can be used to improve the tract-tracing studies
tary Movie 7). The MgRA-driven microinjection was reproduced ~ with MEMRI!>36-38 a5 well as to optimize the real-time in vivo
in multiple animals, suggesting a highly robust performance of neuromodulation or molecular MRI by direct intracranial
the MgRA to target deep brain nuclei for injection purposes, as injection of drugs**~*4 and MRI contrast sensors for neuro-
quantified in Fig. 5g. The high spatial specificity of MgRA-driven  transmitters*>—4°.
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Fig. 4 MgRA-driven stepwise optogenetic activation of the thalamic nuclei with simultaneous fMRI and neuronal Ca2™ recordings. a Schematic drawing of
the experimental setup to conduct optogenetic fMRI with simultaneous fiber optic calcium recording. The optical setup was placed outside the 14.1T

scanner. Opto Laser: laser for optogenetics. b Schematic of the fiber optic insertion inside the rat brain (3D view) with MgRA-controlled optical fiber for
optogenetic activation (red) and a second optical fiber for calcium recording (green) in the barrel cortex. € The anatomical MRI images confirm the location
of the recording fiber and the stimulation fiber targeting the VPM thalamic region. The brain atlas is superimposed on the anatomical image (green). d The
immunostaining images show the ChR2 expression in the thalamic region (ChR2-mCherry marked in red), as well as the GCaMP6f expression (green) in
the vibrissal S1 cortical neurons (BC) with the fiber trace. Scale bar, 200 um. e Anatomical RARE MR images illustrate the fiber tip location at 6 steps, at a
step-size of 700 pm. f Percentage changes of the evoked calcium signal for 3 epochs upon light stimulation (3 Hz, 10 ms pulse width, 3.7 mW laser power,
85 on 37 s off block design). g Simultaneous BOLD signals for 3 epochs within the ipsilateral somatosensory cortex (see (h)). h Evoked BOLD fMRI map
when the fiber tip was positioned at 0 mm along the insertion trajectory (zero considered as the position that leads to the peak fMRI and calcium signals).
i Average amplitudes of the ipsilateral evoked calcium and BOLD signals of both hemispheres as a function of the fiber tip locations. Error bars represent

mean £ SD

Discussion

This work presents an MRI compatible robotic arm as the navi-
gation technique for accurate placement of optical fibers in multi-
modal fMRI studies in animals using ultra high-field MRI (14.1 T
scanner). The MgRA was first developed and improved with a
series of phantom tests and was posteriorly evaluated in vivo for
deep brain optical fiber placement. MgRA-driven optogenetic
activation at subcortical nuclei, e.g., LH and VPM, in a stepwise
manner not only demonstrates the high precision of MgRA to
target subcortical brain nuclei as deep as 8-9 mm from the skull
surface, but also increases the reproducibility of the region-
specific optogenetic activation for the whole-brain fMRI mapping
in combination with the concurrent fiber optic calcium record-
ings. Also noted is that the mobility range of the MgRA (10 mm

in the rostral-caudal and medial-lateral directions) is sufficient to
reach any brain structure in small animals for optogenetic f{MRI
and intracellular calcium recording. In addition, the MgRA was
applied for real-time microinjection to specific deep brain nuclei,
as demonstrated with an Mn-enhanced MRI method, demon-
strating its microinjection capabilities for contrast agent or drug
delivery with high precision inside the MRI scanner.

The main challenge when targeting deep brain structures is the
potential error that appears between the actual and the calculated
coordinates due to the variability in bregma location, skull
thickness/angles, and potential shift of brain structures within the
cranium after dura removal®®->2, This potential error is particu-
larly problematic when targeting some functional nuclei or neu-
ronal fiber tracts of the rat brain that are less than 2-300 um in
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Fig. 5 MgRA-driven Mn-injection into CL and LH. a Top: the representative RARE anatomical image used to clarify the optical fiber location driven by
MgRA for Mn injection in CC. Middle: the atlas overlapped RARE images to illustrate the fiber tip location at the CL. Eye cream is covering the craniotomy
(magenta arrow). Bottom: enlarged image of fiber location. b T1-weighted MPRAGE image (Mdeft) showing enhanced signal from Mn injection site in the
CC and CL with dose-dependency. ¢ Top: the atlas overlapped RARE images to illustrate the fiber tip location at the LH, Bottom: enlarged image of fiber
location. d T1-weighted MPRAGE image showing enhanced signal from Mn injection site in the LH with dose-dependency. e Sagittal view of RARE
anatomical image and MPRAGE image after MnCl, solution injection. f T1-weighted MPRAGE image at 1h and 1h 40 min after the injection. g The analysis
of MEMRI signal at no injection, 1injection, 2 injection, and 3 injection times, as shown in (b, d) (n = 5 injection points from 3 animals). Error bars represent

mean + SD

one of their dimensions, such as the central thalamic nuclei or
corpus callosal fibers®®>3. This problem can produce high
variability when we try to target the deeper brain nuclei, e.g., LH,
since longer trajectories are subjected to larger errors®14. In order
to optimize the positioning of the optical fiber into precise
coordinates of the rat brain, we propose to avoid the atlas-base
blind implantation by using a real-time feedback strategy that
allows visualization of the whole brain with MRI during fiber
insertion. We designed an MRI-compatible robotic arm which
allows lowering the optical fiber inside the rat brain with real-
time MRI scanning. By combining MRI guidance with the precise
control of four stereotactic parameters (radial angle,
rostral-caudal, dorsal-ventral, medial-lateral), the MgRA can
fine-tune the fiber positioning to conduct highly reproducible and
stepwise optogenetic fMRI studies.

The number of applications for robotic arms in animal
research is considerably increased as a result of their potential
combination with MRI. Examples include an MR image-guided
mini-DBS system for BOLD activation during subthalamic
nucleus DBS in nonhuman primates in a 3 T scanner?%, an angle
positioning system to increase the image signal intensity of
fibrous microstructure in a 9.4 T 12 cm-bore scanner?’, an inte-
grated system, driven by piezoelectric actuators, for auto-tuning
of a multichannel transceiver array at 7 T? or MRI-compatible
systems for focused ultrasound experiments in rodents in 3T
scanners°®>>, Here, we developed a stepper motor-controlled
compacted MgRA system in a 14.1 T horizontal MRI scanner
with built-in MRI compatible cameras and RF surface coils to
drive fiber optic insertion for optogenetic fMRI studies with
concurrent intracellular calcium recordings. To our knowledge,
this is the first time to combine the multi-modal fMRI neuroi-
maging platform with the MRI-guided robotic controlling system
for in vivo rodent brain functional mapping.

There are two key advantages that need to be highlighted from
the mechanical design of the MgRA system. In high-field MRI
scanners, the open space inside the magnetic bore above the
animal brain is usually less than 3-4 cm, which significantly limits
the kinematic design options for mechanical movement. Also, the

ultra-high field (>11.7 T) also limits the commercially available
motor supplies that avoid the electromagnetic interference with
the MR scanning. We designed the MgRA head-probe based on
an Archimedean spiral mechanism to achieve high precision and
accuracy to maneuver the optical fiber insertion at less than 50
pm step-size along the dorsal-ventral axis (Fig. 1g, Supplemen-
tary Fig. 11, and Supplementary Movie 4). This head-probe is
controlled by a synchronous belt drive, which can carry up to 4
degree-of-freedom movements inside the horizontal bore of the
14.1 T MRI scanner (Supplementary Fig. 12), and only occupies
1.5-2 cm space.

To deal with the MRI compatibility, in addition to
hydraulic>®>7 or pneumatic?”->8-60 actuators, other types such as
ultrasonic or piezoelectric motors, which have been the favorite
so far due to their non-magnetic core, short response time and
small size®1:02, could have been utilized. However, no commer-
cially available piezo motors are available for the 14.1 T MRI
scanner and it has been recently shown that piezo motors could
induce geometric distortions in MR images even at a lower
magnetic field strength®3%4. Also, different MRI sequences could
have effects on the behavior of ultrasonic motors®. To address
the compatibility issue, remotely actuated MR-compatible
manipulators were implemented using drive shafts, belts, chain
drive, and linkages to transfer the motion to the distant actuated
points®0-68, We have applied the long robotic arm to allow us to
apply the regular stepper motor to control the optical fiber
insertion. As shown in the Supplementary Movies 2-5, the
mechanical control of the optical fiber insertion remains highly
precise and reliable in both ex vivo and in vivo tests. Our MgRA
design not only provides a highly robust mechanical controlling
system, but also solves the MRI compatibility issue with a reliable
and economically affordable solution. We will further optimize
our MgRA system by shortening the robotic arm and imple-
menting the piezo motors with a safe distance to avoid electro-
magnetic interference.

Besides fulfilling the role of accurately placing the fiber tip at
the desired coordinates, the MgRA provides a flexible platform
(Fig. 1g) to identify, de novo, the ideal targets for deep brain
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stimulation in pre-clinical studies. This could be easily investi-
gated with the MgRA by moving the stimulating fiber and run-
ning opto-fMRI at different locations in one single study,
particularly for “hypothesis-free” brain activity mapping studies.
This application will be critical to optimize and specify the ideal
subcortical targets aiming at controlling pathological tremor or
searching for more reliable treatment for depression in animal
models®®-71. Importantly, certain effects inherent in the insertion
of electrodes or optical fiber into the brain can be visualized and
avoided using the MgRA strategy. One example is the case of the
potential collateral damage to the choroid plexus (Fig. 2¢) or
other blood vessels, which could be well monitored by real-time
imaging and avoided by changing the trajectory of the fiber. This
is a particularly relevant feature of the MgRA, as it contributes to
the maintenance of certain integrity of the surrounding tissue,
which is beyond the capabilities of the standard implantation
techniques with stereotactic devices and is crucial for potentially
translational studies, as raised in a report showing MRI-guided
cell transplantation into the brain’2.

Several limitations pertaining to the first version of the MgRA
should be considered when interpreting the results of this study
and for future optimization of the MgRA in high field MRI
scanner for animal imaging. Firstly, the angle/direction of the
optical fiber cannot be changed once that it has been placed
inside the brain parenchyma, as this would lead to excessive
tissue damage and/or bleeding. Instead, in case needed, the
optical fiber should be withdrawn and reinserted; thus it is
crucial to improve the algorithm to calculate the trajectory based
on the location of the optical fiber tip in the agarose covering the
craniotomy outside of the brain parenchyma. Secondly, it is
noteworthy that, because of the long arm to keep the stepper
motors work properly outside of the MRI scanner, the most
precise movement occurs along the ventral-dorsal direction
(Fig. 1g and Supplementary Movie 4). It will be an important
step forward to implement the piezo motors with a safe distance
to avoid electromagnetic interference, which would allow to
dramatically shorten the robotic arm and, consequently, to
optimize of the precision in all the axis. Thirdly, although we
acquired the 3D anatomical images of the rat brain, the major
registration procedure between atlas and MRI images is still
based on a 2D registration algorithm, which is applied to control
the fiber tip movement along the dorsal-ventral direction. In the
future development, we will provide a real-time 3D registration
system to take advantage of the full motor control movement
capability of the MgRA system to achieve a fully automatic
performance. Lastly, the precision measurement of the MgRA
can be directly evaluated based on the real-time anatomical MRI
images. However, the best resolution acquired so far in our MRI
scanner is 50 x 50 pm in-plane. The MRI spatial resolution is
much lower than the mechanistic movement precision provided
by the MgRA system. For future piezo-based micron-resolution
motor control system, the implementation of an optical encoder
inside the ultra-high magnetic field will be needed for the close-
loop feedback.

In summary, the real-time MRI-guidance in a robotic con-
trolling system is verified and practiced for the optical fiber brain
intervention in animals using the high field MRI scanner (>14 T).
This MgRA positioning system serves as a key component for the
future multi-modal fMRI platform merging concurrent fMRI
with optogenetics, fiber optic-mediated optical imaging, micro-
injection, and even electrophysiological recordings. The high
flexibility and precision of MgRA to target the deep brain nuclei
with neural circuit-specificity expands the brain functional
mapping studies from the cellular levels, to the neural circuit
levels, and eventually to the systems' levels in combination with
behavioral tests in animals.

Methods

MgRA system. The MgRA was manufactured by the Fine Mechanical and Elec-
trical Workshop in the Max Planck Institute for Biological Cybernetics, Tuebingen,
Germany. This system consists of a positioning module, the head of the MgRA, and
a custom-designed user interface. The positioning module (back part) accom-
modates the stepper motors (ST4118D1804-B, Nanotec, Germany) to fulfill the
optical fiber movement with multi-degree of freedom, and the head of the MgRA
(front part) includes the driving pieces, cameras, and a customized rat holder
(Fig. 1b). The coupling of the actuators (back part) to the matching toothed pulley
in the head was achieved by a synchronous belt (Optibelt OMEGA 3M, OPTI-
BELT, Germany) drive in a form-fit manner. The driving pieces with Archimedean
spiral mechanism were manufactured manually or with a 3D printer (Form 2,
Formlabs, Germany). The detailed design and components are shown in Fig. la—c,
Supplementary Figs. 11-13, with a table of all components and the European
patent as the following link: https://patentscope.wipo.int/search/en/detail.jsf?
docId=EP215319263&tab=PCTDESCRIPTION&maxRec=1000. The movements
include three dimensions like conventional stereotactic devices, as well as pitch and
yaw (manually). With MRI-compatible cameras (RS-OV7949-1818, Conrad Elec-
tronic, Germany), the user can watch the fiber insertion in real time, while the
robot is executing a maneuver. If any movement needs to be modified, the user can
start, stop, change, or resume the fiber movement at any time from the user-
interface. Most of the other components are constructed from fully MRI-
compatible materials like plastic, carbon fiber, and a minimal amount of non-
ferrous metals like brass and anodized aluminum to avoid eddy currents and
deterioration of magnetic field homogeneity. The MRI-compatible arm including
the head part and aluminum holder were placed inside the MRI scanner room.
Digital components including stepper motors (ST4118D1804-B, Nanotec, Ger-
many), the motor controller (SMCI33-1, Nanotec, Germany) and motor power
supply (NTS-24V-40A, Nanotec, Germany), were placed outside the scanner room
(Supplementary Fig. 1).

Viral injection. The study was performed in accordance with the German Animal
Welfare Act (TierSchG) and Animal Welfare Laboratory Animal Ordinance
(TierSchVersV). This is in full compliance with the guidelines of the EU Directive
on the protection of animals used for scientific purposes (2010/63/EU). The study
was reviewed by the ethics commission (§15 TierSchG) and approved by the state
authority (Regierungsprisidium, Tiibingen, Baden-Wiirttemberg, Germany). A
total of 21 male Sprague-Dawley rats were used in this study.

Intracerebral viral injection was performed in 3-4-week-old male
Sprague-Dawley to express the viral vectors containing the calcium-sensitive
protein (GCaMP for calcium recording) or the light-sensitive protein
channelrhodopsin-2 (ChR2 for optogenetics) in neurons. The construct AAV5.Syn.
GCaMP6f.WPRE.SV40 (2.818e13 genome copies per milliliter) was used to express
GCaMP in the BC and the constructs AAV9.CAG.hChR2(H134R)-mCherry.
WPRE.SV40 (2.918e13 genome copies per milliliter) and AAV9.CaMKIL.hChR2
(E123A)-eYFP.WPRE.hGH (1.19¢13 genome copies per milliliter) were used to
express ChR2 in the thalamus and LH, respectively. Rats were anesthetized with
1.5-2% isoflurane via nose cone and placed on a stereotaxic frame, an incision was
made on the scalp and the skull was exposed. Craniotomies were performed with a
pneumatic drill so as to cause minimal damage to cortical tissue. For optogenetics,
a volume of 0.6-1 pL was injected using a 10 uL syringe and 33-gauge needle. The
injection rate was controlled by an infusion pump (Pump 11 Elite, Harvard
Apparatus, USA). The stereotaxic coordinates of the injections were 2.5 mm
posterior to Bregma, 5.0 mm lateral to the midline, 0.8-1.4 mm below the cortical
surface to target the BC; 2.6-2.7 mm posterior to Bregma, 2.8 mm lateral to the
midline, 5.5-6.0 mm below the cortical surface for the ventral posterior medial
nucleus of thalamus (VPM); and 2.75-2.85 mm posterior to Bregma, 1.1 mm lateral
to the midline, 7.5-7.9 mm below the cortical surface for LH. After injection, the
needle was left in place for approximately 5 min before being slowly withdrawn.
The craniotomies were sealed with the bone wax and the skin around the wound
was sutured. Rats were subcutaneously injected with antibiotic and painkiller for 3
consecutive days to prevent bacterial infections and relieve postoperative pain.

Animal preparation for fMRI. Anesthesia was first induced in the animal with 5%
isoflurane in chamber. The anesthetized rat was intubated using a tracheal tube and
a mechanical ventilator (SAR-830, CWE, USA) was used to ventilate animals
throughout the whole experiment. Femoral arterial and venous catheterization was
performed with polyethylene tubing for blood sampling, drug administration, and
constant blood pressure measurements. After the surgery, isoflurane was switched
off and a bolus of the anesthetic alpha-chloralose (80 mg/kg) was infused intra-
venously. A mixture of Alpha-Chloralose (26.5 mg/kg/h) and pancuronium

(2 mg/kg/h) was constantly infused to maintain the anesthesia/keep the animal
anesthetized and reduce motion artifacts.

Fiber optic implantation and optogenetic stimulation. Before transferring the
animal to the MRI scanner, 2 craniotomies were performed. Briefly, the animal was
placed on a stereotaxic frame, the scalp was opened and two ~1.5 mm diameter
burr holes were drilled on the skull. The dura was carefully removed and an optical
fiber with 200 um core diameter (FT200EMT, Thorlabs, Germany) was inserted
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into the BC, at coordinates: 2.75-3.3 mm posterior to Bregma, 5.0 mm lateral to the
midline, 1.2-1.4 mm below the cortical surface. An adhesive gel was used to secure
the calcium recording fiber to the skull. The craniotomy for optogenetics (in VPM
or LH) was covered by agarose gel for robotic arm-driven fiber insertion inside the
MRI scanner. Toothpaste was applied within the ears to minimize MR suscept-
ibility artifacts for the whole brain fMRI mapping. The eyes of the rats were
covered to prevent stimulation of the visual system during the light-driven fMRI.

For optogenetic stimulation, square pulses of blue light (473 nm) were delivered
using a laser (MBL-III, CNI, China) connected to the 200 um core optical fiber
(FT200EMT, Thorlabs, Germany) and controlled by Master 9 (Master-9, A.M.P.I,
Israel). The light intensity was tested before each experiment, and was calibrated
with a power meter (PM20A, Thorlabs, Germany) to emit 0.6-40 mW from the tip
of the optical fiber for LH and thalamus. The power levels used for light-driven
fMRI studies did not induce pseudo-BOLD signal due to heating effects, by testing
in regions of interest both with and without ChR2 expression.

Immunohistochemistry. To verify the phenotype of the transfected cells, opsin
localization, and optical fiber placement, perfused rat brains were fixed overnight in
4% paraformaldehyde and then equilibrated in 15 and 30% sucrose in 0.1 M PBS at
4°C. 30 um-thick coronal sections were cut on a cryotome (CM3050S, Leica,
Germany). Free-floating sections were washed in PBS, mounted on microscope
slides, and incubated with DAPI (VectaShield, Vector Laboratories, USA) for 30
min at room temperature. Wide-field fluorescent images were acquired using a
microscope (Zeiss, Germany) for assessment of GCaMP expression in BC, ChR2 in
LH and VPM. Digital images were minimally processed using ImageJ to enhance
brightness and contrast for visualization purposes.

Optical setup. An OBIS laser was used as excitation light source (OBIS 488LS,
Coherent, Germany) with a heat sink to enable laser operation throughout the
entire specified temperature range from 10 to 40 °C. The light passed through a
continuously variable neutral density filter (NDC-50C-2M-B, Thorlabs, Germany)
and was reflected on a dichroic beam splitter (F48-487, AHF analysentechnik AG,
Germany). The beam was collected into an AR coated achromatic lens (AC254-
030-A, Thorlabs, Germany) fixed on a threaded flexure stage (HCS013, Thorlabs,
Germany) mounted on an extension platform (AMA009/M, Thorlabs, Germany)
of a fiber launch system (MAX350D/M, Thorlabs, Germany). The laser beam was
injected into the fiber and propagated to the tip. The emitted fluorescence was
collected through the fiber tip, propagated back and collimated by the achromatic
lens, passed through the dichroic beam splitter and filtered by a band-pass filter
(ET525/50M, Chroma, USA) and focused by an AR coated achromatic lens
(AC254-030-A, Thorlabs, Germany). A silicon photomultiplier module (MiniSM
10035, SensL, Germany) was applied to detect the emitted fluorescence. The entire
optical system was enclosed in a light isolator box. The photomultiplier output was
amplified (gain = 100) by a voltage amplifier (DLPVA-100-BLN-S, Femto, Ger-
many), digitized and detected by Biopac system (MP150 System, BIOPAC
Systems, USA).

MRI image acquisition. All images were acquired with a 14.1 T/26 cm horizontal
bore magnet interfaced to an Avance III console and equipped with a 12 cm
gradient set capable of providing 100 G/cm over a time of 150 us. A transceiver
single-loop surface coil with an inner diameter of 22 mm was placed directly over
the rat head to acquire anatomical and fMRI images. Magnetic field homogeneity
was optimized first by global shimming for anatomical images and followed by
FASTMAP shimming protocol for EPI sequence.

Anatomical images were acquired for approximate fiber location using 3D
FLASH MRA sequence with the following parameters: repetition time, 20 ms; echo
time, 2.82 ms; FOV: 2.28 cm X 2.28 cm X 2.28 cm, matrix = 114 x 114 x 114, spatial
resolution = 0.2 mm x 0.2 mm x 0.2 mm. A high-resolution RARE sequence was
used accurately identify the optical fiber in the coronal plane, with the following
parameters: repetition time, 1200 ms; echo time, 7 ms; FOV: 1.92 cm x 1.68 cm,
matrix = 128 x 112, resolution = 0.15 mm x 0.15 mm, slice thickness = 0.5 mm,
RARE factor = 8, averages = 16.

Higher resolution (50 um) RARE sequence, specifically for Fig. 1f, g, to
accurately identify the optical fiber in the coronal plane, with the following
parameters: repetition time, 1500 ms; echo time, 11.0428 ms; FOV: 1.92 cm x 1.56
cm, matrix = 384 x 312, resolution = 50 um x 50 um, slice thickness = 0.75 mm,
RARE factor = 6, averages = 6.

For Mn injections and Mn tracing studies, rats received 150 nL of 5 mM MnCl,
(MnCl,, Sigma-Aldrich, Germany) solution for three times delivered by a hollow
core photonic crystal fiber (diameter: ~240 pm)39-4!, manufactured by the Division
of Photonic Crystal Fibre Science at Max-Planck Institute for the Science of Light,
Erlangen, Germany. A magnetization prepared rapid gradient echo (MP-RAGE)
sequence3’ was used. Eight coronal slices with FOV = 1.92 x 1.92 cm, matrix 128 x
128, thickness = 0.7 mm, (TR = 4000 ms, echo TR/TE = 15/1.7 ms, TI = 1000 ms,
number of segments = 4, averages = 2), were used to cover the area of interest at
150 um in-plane resolution with total imaging time 4 min 16 s. A same field of view
T2-weighted RARE sequence was used with the following parameters: repetition
time, 3000 ms; echo time, 8.3333 ms; FOV: 1.92 cm x 1.92 cm, matrix = 128 x 128,

resolution = 150 pm x 150 pum, slice thickness = 0.7 mm, RARE factor =6,
averages = 4.

Functional MRI acquisition. Adjustments to echo spacing and symmetry, and B,
compensation were set up first. Functional images were acquired with a 3D
gradient-echo EPI sequence with the following parameters: echo time 12.5 ms,
repetition time 1.5s, FOV 1.92 cm x 1.92 cm x 1.92 cm, 48 x 48 x 48 matrix size,
spatial resolution = 0.4 mm x 0.4 mm x 0.4 mm. To reach steady state 10 dummy
scans were used. For anatomical reference, the RARE sequence was applied to
acquire 48 coronal slices with the same geometry of the fMRI images.

For fMRI studies, needle electrodes were placed on the forepaw or whisker
pads of the rats, and electric pulses (333 ps duration at 1.5 mA repeated at 3 Hz
for 4 s) were first used as stimulation to serve as positive control for the evoked
BOLD signal. Once that reliable fMRI signals were observed in response to
electrical stimulation, optical stimulation was performed. An optical fiber of 200
pm core diameter (FT200EMT, Thorlabs, Germany) was connected to a 473 nm
laser source (MBL-III, CNI, China) using a built-in FC/PC coupler to deliver
blue light pulses at 3-10 Hz, 5-20 ms pulse width with different durations. To
reach steady state 10 dummy scans were used and followed by 10 pre-
stimulation scans, 5 scans during stimulation, and 25 inter-stimulation scans for
10 epochs and 5 scans during stimulation and 35 inter-stimulation scans for 12
epochs for thalamus and LH, respectively. The stimulation control was
established using the BIOPAC system (MP150 System, BIOPAC Systems, USA)
and Master 9 (Master-9, A.M.P.L., Israel).

Data analysis. For evoked fMRI analysis, EPI images were first aligned to ana-
tomical images acquired in the same orientation with the same geometry. The
anatomical MRI images were registered to a template across animals, as well as EPI
datasets. The baseline signal of EPI images was normalized to 100 for statistical
analysis of the multiple runs of EPI time courses. The hemodynamic response
function (HRF) used the block function of the linear program 3dDeconvolve in
AFNI. BLOCK (L, 1) is a convolution of a square wave of duration L, makes a peak
amplitude of block response = 1, with the g(t) = t*e™" /[4*e™*] (peak value = 1).
The HRF model is defined as follows:

HREF(t) = int(g(t —s),s = 0..min(t, L))

In this case, each beta weight represents the peak height of the corresponding
BLOCK curve for that class, i.e., the beta weight is the magnitude of the response to
the entire stimulus block.

The fiber optical neuronal calcium signals were low-pass filtered at 100 Hz
using zero-phase shift digital filtering. The relative percentage change of
fluorescence (AF/F) was defined as (F — Fy)/F,, where F, is the baseline, that is to
say, the average fluorescent signal in a 2 s pre-stimulation window. The amplitudes
of the neuronal fluorescent signal in response to 4 s optogenetic stimulus (Fig. 4f)
were calculated as the average of difference in AF/F in a time window 300 ms after
stimulus. Error bars in Figs. 3¢, 4i, 5g, and Supplementary Fig. 10f represent
standard deviation.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The raw data can be provided upon email request to the corresponding author. Excel files
containing raw data and each quantitative plot included in the main figures can be found
in the Source Data File. For the design of the robotic arm, detailed information can be
directly downloaded through the official link of World Intellectual Property Organization
(WTPO): https://patentscope.wipo.int/search/en/detail jsf?
docId=EP215319263&tab=NATIONALBIBLIO&maxRec=1000.

Code availability

The Analysis of Functional NeuroImages software (AFNI, NIH, USA) and Matlab
(MATLAB, MathWorks, USA) were used to process the fMRI and simultaneously
acquired calcium signals, respectively. The relevant source codes can be downloaded
through https://afni.nimh.nih.gov/afni/. The related image processing codes can be
provided upon direct email request to the corresponding author.
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Supplementary Table (1)

Supplementary Table 1. List of Components of MgRA

Name

Information

Archimedean spiral driving design

Custom-designed, MPI for BC Mechanic Workshop

Bearings for back/forward

JSM-2022-20, Igus, Germany

Bearings for left/right

BB-625-B180-10-GL, Igus, Germany

Belts Optibelt OMEGA 3M, OPTIBELT, Germany
Camera RS-0OV7949-1818, Conrad Electronic, Germany
Carbon fiber tube (1) 7420182, R&G, Germany

Carbon fiber tube (2) 7420173, R&G, Germany

Charging condenser

Z-K4700/50, Nanotec, Germany

Cross table

Custom-designed, MPI for BC Mechanic Workshop

Encoder cable

ZK-NOE1-10-20000-S, Nanotec, Germany

Encoders

NOE2-05-B14, Nanotec, Germany

Gearbox

GPLE22-25-12, Nanotec, Germany

Matching toothed pulley

Custom-designed, MPI for BC Mechanic Workshop

Motor controller

SMCI33-1, Nanotec, Germany

Platform for MgRA

Custom-designed, MPI for BC Mechanic Workshop

Power supply

NTS-24V-40A, Nanotec, Germany

Rat holder

Custom-designed, MPI for BC Mechanic Workshop

Robotic arm holder

Custom-designed, MPI for BC Mechanic Workshop

Stepper motor

ST4118D1804-B, Nanotec, Germany

USB cable for motor controller

ZK-USB, Nanotec, Germany

Cable lengthening

Custom-designed, MPI for BC Electronic Workshop

Other pieces of MgRA

Custom-designed, MPI for BC Mechanic Workshop




Supplementary Figures (13)

147 scanner

Supplementary Figure 1. MRI compatible MgRA mounted inside the 14T MRI scanner (picture taken from the control

room).



Supplementary Figure 2. Examples of optical fibers with different core diameters driven by MgRA for in vitro evaluation.
a The T2-weighted MRI images show 8 different locations of the optical fiber (400 um core diameter, black stripe) along
the insertion trajectory in a perfused rat brain embedded in the soft agarose with manganese. b Optical fiber (200 um core

diameter, black stripe) was inserted vertically into the perfused rat brain.
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Supplementary Figure 3. MRI-based relocation outside of the rat brain and the registration of coordinates. a Agarose

Caudal

with manganese was applied to cover the skull (yellow arrow). By lowering the fiber into the agarose, we could calculate
the distance between fiber tip (green arrow) and burr hole (red arrow) from the anatomical images. The burr hole is filled
with agarose as well. b Atlas coordinates (Col). c MRI/DTI Atlas of the Rat Brain (Co2, provided by Dr. G. Allen Johnson).
d 3D anatomical images of an individual rat.

For coordinates registration, agarose has been previously applied above the burr hole of the skull and the fiber tip
(previously positioned above the burr hole using the MgRA system under the guidance of the build-in camera inside the
MR scanner) can be directly imaged to determine its coordinates in the MRI images (Supplementary Figure 3a). Then, an
algorithm was designed to register a four coordinate system for the fiber tip position: atlas coordinate (Col), MRI/DTI rat
brain atlas (Co2, provided by Dr. G. Allen Johnson), MRI coordinate (Co3) and robotic arm coordinate (Co4). In short,
the Col is first transferred to the Co2 by the algorithm (Supplementary Figure 3b, ¢). By registering the 2D anatomical
images of individual rat (Co3) to the MRI/DTI brain atlas (Co2), the transformation between the Col and Co3 is settled
(Red arrow in Supplementary Figure 3c). Since the fiber tip position is directly detected in the MRI images above the
craniotomy, the related coordinate offset from the fiber tip to the targeted function nuclei can be calculated based on the
multiple transformation matrices.



Supplementary Figure 4. The time-lapsed anatomical images to illustrate the optical fiber targeting the Lateral

Hypothalamus for opto-fMRI studies.



Supplementary Figure 5. Whole brain activity maps in response to 15s LH optogenetic stimulation at different pulse
widths. a Anatomical image showing the position of the optical fiber for delivering light. b BOLD activation maps of a
representative animal exhibited a pulse width-dependent pattern in response to 20ms, 15ms, 10ms and 5ms pulse widths
(5 Hz, laser power of 12.6 mW, 15 s on 45 s off, 12 epochs). GLM-based t-statistics in AFNI is used.
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Supplementary Figure 6. Sensory-evoked neuronal Ca?* recordings with simultaneous BOLD fMRI. a Representative
color-coded BOLD-fMRI in response to a block design whisker-electrical stimulation. GLM-based t-statistics in AFNI is
used. b The time course of evoked fMRI signal from BC-S1 ROI (see a) in the left hemisphere. ¢ Average of simultaneously
optical fiber (red arrow in a) recorded Ca?* signals for one epoch (3 Hz, 4 s, 2 mA).
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Supplementary Figure 7. Laser power dependent BOLD signals in S1 with simultaneous Ca?* recordings (S1BF) upon
light exposure in VPM. a Representative percentage changes of calcium signal (top) and BOLD responses (lower) for 3
epochs detected at 5 different laser powers. At 0.6 mW, hardly any fMRI and calcium signal was detected. BOLD and
calcium signal increased proportionally with increased laser power. b Examples of whole brain activity maps at 0.6 mW,
3.7 mW and 6.8 mW.
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Supplementary Figure 8. Frequency dependent BOLD signals in S1 with simultaneous Ca?* recordings (S1BF) upon light
exposure in the Thalamus. a Examples of BOLD maps in response to 0.5 Hz, 3 Hz, 5 Hz. The strongest response was
induced by 3 Hz stimulation, instead of 5 Hz. GLM-based t-statistics in AFNI is used. b Averaged calcium signal
percentage change in one epoch. Evoked calcium spikes with almost full recovery to the baseline in 2 s per spike at 0.5 Hz.
From 1 Hz to 3 Hz, the calcium signal was elevated through the 8 s stimulation period, while at 5 Hz, some of the spikes
per pulse were even missed and the overall plateau amplitude was not further increased. ¢ BOLD signal for 3 epochs upon
stimulation (black line) was increased according to the increased frequency, but not at 5 Hz, which is consistent with the

calcium signal observation.
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Supplementary Figure 9. Optogenetic excitation of thalamic cells drives local and Somatosensory cortical positive
BOLD. a Top: Sketch showing the point of thalamic injection of AAV5.CAG.ChR2-mCherry and optical stimulation.
Lower: histological image of ChR2-mCherry expression in the thalamus (left); higher magnification (right). Red, ChR2-
mCherry; blue, 4',6-Diamidin-2-phenylindol (DAPI). b Opto-fMRI haemodynamic response (averaged across activated
voxels in Somatosensory cortical ROI, see ¢, whole brain top right) in both hemispheres during optical stimuli (5Hz, 4s on
18.5s off, 10 ms pulse width, laser power 5.5 mW). ¢ BOLD activation at 3 different locations along the vertical insertion

trajectory. GLM-based t-statistics in AFNI is used.
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Supplementary Figure 10. Region-specific optogenetic activated neuronal Ca?* recordings with simultaneous BOLD
fMRI. a T2-weighted anatomical images illustrate five fiber locations. b Different BOLD fMRI in Somatosensory cortex
evoked by optogenetic stimuli in different thalamic regions. ¢ BOLD signals for 3 epochs (3 Hz, Laser power 4.2 mW, 8 s
on 37 s off, 10 epochs) within ipsilateral Somatosensory cortex ROI (see b middle panel) corresponding to the different
locations. d Simultaneously recorded evoked calcium signal through the 8 s stimulation period. e Anatomical RARE MR
image illustrates the fiber tip location for calcium recording in Barrel cortex. f The average BOLD signals of ipsilateral

hemisphere at different fiber tip locations. Error bars represent mean+SD.
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Supplementary Figure 11. Detailed design for the head part of the MgRA.
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Supplementary Figure 12. Detailed design of the MgRA (figures from the approved European patent). a The schematic
view of the whole MgRA mechanical design including the cross table to mount the stepper motors. b The coupling of the
stepper motors (back part) to the matching toothed pulley in the head was achieved by a synchronous belt drive in a form-
fit manner. ¢ Custom-designed rat holder with a built-in MRI compatible camera, surface coil and head part of the MgRA.
d The components of the head part of the MgRA. For more details see the approved European patent as following link:
(https://patentscope.wipo.int/search/en/detail.jsf?docld=EP215319263&tab=PCTDESCRIPTION&maxRec=1000).
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Supplementary Figure 13. Detailed design of the back part of the MgRA. a The coupling of the stepper motors (back
part) to the matching toothed pulley in the head was achieved by a synchronous belt drive in a form-fit manner. b The
encoder (NOE2-05-B14, Nanotec, Germany) is used with motor controller (SMCI33-1, Nanotec, Germany) so that the
stepper motor (ST4118D1804-B, Nanotec, Germany) can be run in a close-loop mode. ¢ Multi-groove belt (optibelt
OMEGA 3M, Optibelt, Germany) used to fit into a matching toothed pulley. d Closed belts can be cascaded to transfer the

motion (red arrow). All schematic figures shown here are from the approved MgRA European patent.
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ABSTRACT (150 words)

Optogenetically-driven manipulation of circuit-specific activity enables causality studies, but its global brain-wide
effect is rarely reported. Here, we applied simultaneous fMRI and calcium recording with optogenetic activation of
the corpus callosum(CC) connecting barrel cortices(BC). Robust positive BOLD was detected in the ipsilateral BC
due to antidromic activity, spreading to the ipsilateral motor cortex(MC) and posterior thalamus(PO). In the
orthodromic target, positive BOLD was reliably evoked by 2Hz light pulses, whereas 40Hz light pulses led to
reduced Calcium-indicative of CC-mediated inhibition. This presumed optogenetic CC-mediated inhibition was
further elucidated by pairing light pulse with whisker stimulation at varied inter-stimulus intervals. Whisker-
induced positive BOLD and calcium signals were reduced at intervals of 50/100ms. The calcium-amplitude
modulation(AM)-based correlation with whole-brain fMRI signal revealed that the inhibitory effects spread to
contralateral BC, ipsilateral MC and PO. This work raises the need for fMRI to elucidate the brain-wide network

activation in response to optogenetic stimulation.



INTRODUCTION

The genetic expression of channelrhodopsin (ChR2) has been extensively applied to target specific cell types to
ensure the activation of neuronal ensembles of interest (Nagel, Ollig et al. 2002, Boyden, Zhang et al. 2005, Li,
Gutierrez et al. 2005, Zhang, Wang et al. 2006). Optogenetic tools have revolutionized the strategy to perturb or
manipulate the behavior of animals (Lima and Miesenbock 2005, Nagel, Brauner et al. 2005, Adamantidis, Zhang
et al. 2007, Tsai, Zhang et al. 2009). To interpret the linkage of the brain function to specific behavioral readout
relies on the assumed circuit-specific manipulation through in vivo optogenetic activation (Cardin, Carlen et al.
2010, Carter, Yizhar et al. 2010, Tye and Deisseroth 2012, Kim, Adhikari et al. 2017). Optogenetic activation of
numerous brain sites and defined neuronal populations in animals has been very successful to modulate behavior.
However, there is a lack of systematic mapping of the result of specific modulation on brain-wide network activity,
which may relay and affect the proposed link between function and behavior. Progress in this direction depends on
the combined application of methods to explore large scale brain dynamics as well (Inoue, Takada et al. 2015,
Bernal-Casas, Lee et al. 2017, Gao, Asano et al. 2019, Sych, Chernysheva et al. 2019). One useful method for this
purpose is functional magnetic resonance imaging (fMRI) , which has been successfully combined with
optogenetics (Lee, Durand et al. 2010, Ryali, Shih et al. 2016, Yu, He et al. 2016, Albers, Schmid et al. 2018,
Grandjean, Corcoba et al. 2019, Just and Faber 2019). We use here a method that adds GCaMP-mediated calcium
recordings through an optical fiber for concurrent fMRI and neuronal calcium signal recording (Schulz, Sydekum
et al. 2012, Schwalm, Schmid et al. 2017, Albers, Wachsmuth et al. 2018, He, Wang et al. 2018, Wang, He et al.
2018). This multi-modal cross-scale brain dynamic mapping scheme (fMRI, optogenetics and calcium recording)
allows elucidating network activity upon circuit-specific optogenetic activation on the specific target level as well
as across large brain regions (Schulz, Sydekum et al. 2012, Schmid, Wachsmuth et al. 2016, Albers, Schmid et al.
2018, Albers, Wachsmuth et al. 2018, He, Wang et al. 2018, Wang, He et al. 2018, van Alst, Wachsmuth et al.
2019).

Corpus callosum (CC), the major neural fiber bundles connecting the two hemispheres, plays a critical role to
mediate the interhemispheric cortico-cortical connections (Sperry 1961, Gazzaniga 2005, Karolis, Corbetta et al.
2019). Despite the highly-correlated structural anomalies of the CC with a wide range of disorders, e.g.,
schizophrenia (Innocenti, Ansermet et al. 2003, Pomarol-Clotet, Canales-Rodriguez et al. 2010), autism (Egaas,
Courchesne et al. 1995, Anderson, Druzgal et al. 2011), epilepsy (Spencer, Spencer et al. 1988, van Eijsden, Otte
et al. 2011) and mental retardation (Schaefer and Bodensteiner 1999, van Schooneveld, Jennekens-Schinkel et al.
2011), CC-mediated neural mechanisms are primarily studied in loss-of-function models, such as split-
brain/callosotomy or partial callosal lesion (Gazzaniga 2000, Gazzaniga 2005, Schulte, Muller et al. 2010). To
directly investigate the functional roles of callosal projections on regulating the interhemispheric excitatory-

inhibitory balance, both in vitro and in vivo studies have applied micro-stimulation on one hemisphere or the callosal
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fiber bundles (Kawaguchi 1992, Kumar and Huguenard 2001, Hoffmeyer, Enager et al. 2007, Karayannis, Huerta-
Ocampo et al. 2007), or performed bilateral motor or sensory tasks in both human (Schnitzler, Kessler et al. 1996,
Ogawa, Lee et al. 2000, Ni, Gunraj et al. 2009, Bocci, Caleo et al. 2011) and animal models (Ogawa, Lee et al.
2000, Shuler, Krupa et al. 2001, Berwick, Redgrave et al. 2004, Wiest, Bentley et al. 2005, Nemoto, Hoshi et al.
2012). Since the callosal fibers are reciprocally projecting to two hemispheres, bilateral, ortho- vs. antidromically
evoked neural activity has been difficult to disentangle. With optogenetic tools, the callosal projection neurons can
be specifically (primarily) labeled with ChR2 from one hemisphere, enabling the unidirectional modulation of
callosal activity (Petreanu, Huber et al. 2007, Palmer, Schulz et al. 2013, lordanova, Vazquez et al. 2018). The
optogenetically driven callosal activity has been particularly helpful to disentangle interhemispheric inhibitory
effects, e.g., in the auditory cortex (Rock and Apicella 2015), prefrontal cortex (Lee, Gee et al. 2014) or hindlimb
somatosensory cortex (Palmer, Schulz et al. 2012). The goal of the present studies was to widen the view beyond
of target—specific excitatory-inhibitory regulation by using multi-modal fMRI platform to characterize the global

neural network activity upon optogenetic callosal activation.

In the present study, we implemented the multi-modal fMRI platform with optogenetics to map the CC-mediated
inhibition on the brain-wide network dynamics in three consecutive steps. First, we identified the antidromic vs.
orthodromic effect of CC-specific optogenetic stimulation. Optogenetic stimulation of callosal fibers connecting
the barrel cortex (BC) to the other hemisphere, revealed robust antidromic activation in the ipsilateral BC. In the
orthodromic direction, both fMRI and neuronal calcium signals in the contralateral BC indicated strong depression
of calcium signals with 40Hz light pulses. Second, we specified the temporal characteristics of this presumptive
CC-mediated inhibition on the thalamocortical activation to the BC. The optogenetic CC light pulses were paired
with the whisker stimulation electrical pulses at varying intervals from 0 ms to 200 ms in a randomized stimulation
scheme. Significant inhibitory effects at 50 ms and 100 ms interval were detected by both fMRI and neural calcium
recordings of the right BC activated by whisker stimulation, but little difference was observed in the antidromically
evoked fMRI signal in the ipsilateral BC. Thirdly, to further examine the brain-wide activity regulation upon paired
optogenetic and whisker stimulation, the concurrent evoked-calcium signals in the contralateral BC was real-time
detected at varying conditions and correlated with whole-brain fMRI signals. Besides the contralateral BC, the
homologous ventral part of the ipsilateral BC, the motor cortex and posterior thalamus (PO) from the same side of
the contralateral BC were detected in the correlation maps, showing amplitude modulation by CC-mediated
inhibition at varied time intervals. This study not only specifies the optogenetically driven CC-mediated regulation
of the local excitation/inhibition balance but also depicts the power of multi-modal fMRI to characterize the brain-
wide network activity associated with circuit-specific optogenetic activations in vivo. It highlights a vital aspect of

the brain-wide activity for circuit-specific causality studies with optogenetic tools.

Methods



Animal procedures. The study was performed in accordance with the German Animal Welfare Act (TierSchG)
and Animal Welfare Laboratory Animal Ordinance (TierSchVersV). This is in full compliance with the guidelines
of the EU Directive on the protection of animals used for scientific purposes (2010/63/EU). The study was reviewed
by the ethics commission (815 TierSchG) and approved by the state authority (Regierungsprésidium, Tlbingen,
Baden-Wiirttemberg, Germany). A 12-12 hour on/off lighting cycle was maintained to assure undisturbed circadian
rhythm. The food and water were obtainable ad libitum. A total of 24 (17 for fMRI and 7 for electrophysiology)

male Sprague—Dawley rats were used in this study.

Viral injection. Intracerebral viral injection was performed in 4-week-old rats to express the viral vectors
containing the light-sensitive protein channelrhodopsin-2 (ChR2, for optogenetics) and/or the calcium-sensitive
protein (GCaMP, for calcium recording) in neurons. The construct AAV5.Syn.GCaMP6f. WPRE.SV40 was used to
express GCaMP in the left BC and the constructs AAV5.CaMKIIL.LhChR2(H134R)-mCherry. WPRE.hGH was used
to express ChR2 in the right BC. The stereotaxic coordinates of the injections were 2.5 mm posterior to Bregma, 5
mm bilateral to the midline, 0.8-1.4 mm below the cortical surface. Rats were anesthetized with 1.5-2% isoflurane
via nose cone and placed on a stereotaxic frame, an incision was made on the scalp and the skull was exposed.
Craniotomies were performed with a pneumatic drill so as to cause minimal damage to cortical tissue. A volume of
0.6-0.9 pL and 0.6 uL, for optogenetics and calcium signal recording, respectively, was injected using a 10 pL
syringe and 35-gauge needle. The injection rate was controlled by an infusion pump (Pump 11 Elite, Harvard
Apparatus, USA). After injection, the needle was left in place for approximately 5 min before being slowly
withdrawn. The craniotomies were sealed with bone wax and the skin around the wound was sutured. Rats were
subcutaneously injected with antibiotic and painkiller for 3 consecutive days to prevent bacterial infections and

relieve postoperative pain.

Immunohistochemistry. To verify the phenotype of the transfected cells, opsin localization and optical fiber
placement, perfused rat brains were fixed overnight in 4% paraformaldehyde and then equilibrated in 15% and 30%
sucrose in 0.1 M PBS at 4°C. 30 um-thick coronal sections were cut on a cryotome (CM3050S, Leica, Germany).
Free-floating sections were washed in PBS, mounted on microscope slides, and incubated with DAPI (VectaShield,
Vector Laboratories, USA) for 30 mins at room temperature. Wide-field fluorescent images were acquired using a
microscope (Zeiss, Germany) for assessment of GCaMP and ChR2 expression in BC. Digital images were

minimally processed using ImageJ to enhance brightness and contrast for visualization purposes.

Optical setup for calcium recordings. A laser was used as excitation light source (OBIS 488LS, Coherent,
Germany) with a heat sink to enable laser operation throughout the entire specified temperature range from 10°C
to 40°C. The light passed through a continuously variable neutral density filter (NDC-50C-2M-B, Thorlabs,
Germany) and was reflected on a dichroic beam splitter (F48-487, AHF analysentechnik AG, Germany). The beam


https://www.thorlabs.com/thorproduct.cfm?partnumber=NDC-50C-2M-B

was collected into an AR coated achromatic lens (AC254-030-A, Thorlabs, Germany) fixed on a threaded flexure
stage (HCSO013, Thorlabs, Germany) mounted on an extension platform (AMAOQ09/M, Thorlabs, Germany) of a
fiber launch system (MAX350D/M, Thorlabs, Germany). The laser beam was projected into the fiber and
propagated to its tip. The fluorescence emitted by neurons was collected through the fiber tip, propagated back and
collimated by the achromatic lens, passed through the dichroic beam splitter and filtered by a band-pass filter
(ET525/50M, Chroma, USA) and focused by an AR coated achromatic lens (AC254-030-A, Thorlabs, Germany).
A silicon photomultiplier module (MiniSM 10035, SensL., Germany) was applied to detect the emitted fluorescence.
The entire optical system was enclosed in a light isolator box. The photomultiplier output was amplified (gain =
100) by a voltage amplifier (DLPVA-100-BLN-S, Femto, Germany), digitized and detected by BIOPAC system
(MP150 System, BIOPAC Systems, USA).

Animal preparation and fiber optic implantation for fMRI. Anesthesia was first induced in the animal with 5%
isoflurane in the chamber. The anesthetized rat was intubated using a tracheal tube and a mechanical ventilator
(SAR-830, CWE, USA) was used to ventilate animals throughout the whole experiment. Femoral arterial and
venous catheterization was performed with polyethylene tubing for blood sampling, drug administration, and
constant blood pressure measurements. After the surgery, isoflurane was switched off, and a bolus of the anesthetic
alpha-chloralose (80 mg/kg) was infused intravenously. A mixture of alpha-chloralose (26.5 mg/kg/h) and
pancuronium (2 mg/kg/h) was constantly infused to maintain the anesthesia/keep the animal anesthetized and reduce

motion artifacts.

Before transferring the animal to the MRI scanner, two craniotomies were performed: one for fixed fiber
implantation to record calcium signals from BC, and the other one for dynamic insertion of the optical fiber to
stimulate the CC using optogenetics (dynamic insertion was achieved by using a remote positioning tool (Chen,
Pais-Roldan et al. 2019)). The animal was placed on a stereotaxic frame, the scalp was opened and two ~1.5 mm
diameter burr holes were drilled on the skull. The dura was carefully removed and an optical fiber with 200 um
core diameter (FT200EMT, Thorlabs, Germany) was inserted into the BC, at coordinates: 2.75-3.3 mm posterior to
Bregma, 5.0 mm lateral to the midline, 1.2-1.4 mm below the cortical surface. An adhesive gel was used to secure
the calcium recording fiber to the skull. The craniotomy for optogenetics on CC in the other hemisphere, at
coordinates: 2.75-3.3 mm posterior to Bregma, 1.8-2.4 mm lateral to the midline, was covered by agarose gel for
the robotic arm-driven fiber insertion inside the MRI scanner. The eyes of the rats were covered by black light proof
tapes to prevent stimulation of the visual system during the optogenetic fMRI, which may occur in cases with

imperfect coverage or under the strong power of light pulses through tissue.

Functional MRI acquisition. All images were acquired with a 14.1 T/26 cm horizontal bore magnet interfaced to

an Avance Il console and equipped with a 12 cm gradient set capable of providing 100 G/cm over a time of 150



ps. A transceiver single-loop surface coil with an inner diameter of 22 mm was placed directly over the rat head to
acquire anatomical and fMRI images. Magnetic field homogeneity was optimized first by global shimming for
anatomical images and followed by FASTMAP shimming protocol for the EPI sequence. Functional images were
acquired with a 3D gradient-echo EPI sequence with the following parameters: Echo Time 11.5 ms, repetition time
155, FOV 1.92 cm x 1.92 cm x 1.92 cm, matrix size 48 x 48 x 48, spatial resolution 0.4 mm x 0.4 mm x 0.4 mm.
For anatomical reference, the RARE sequence was applied to acquire 48 coronal slices with the same geometry as
that of the fMRI images. The paradigm for each trial consisted of 360 dummy scans to reach steady-state, 10 pre-
stimulation scans, 5 scans during stimulation (stimulation period 8 s), 35 post-stimulation scans with total 13 epochs

and 15 epochs for refined stimulus design (See Stimulation protocols).

For fMRI and electrophysiology studies, needle electrodes were placed on whisker pads of the rats, and electric
pulses (333 us duration at 1.5 mA repeated at 3 Hz for 4 seconds) were first used as stimulation to serve as a positive
control for the evoked BOLD signal or local field potential/calcium signal. Once that reliable fMRI signals and
calcium signals were observed in response to electrical stimulation, optical stimulation was performed. For
optogenetic stimulation, square pulses of blue light (473 nm) were delivered using a laser (MBL-I1I, CNI, China)
connected to the 200 um core optical fiber (FT200EMT, Thorlabs, Germany) and controlled by Master 9 (Master-
9, AM.P.1., Israel) to deliver blue light pulses at 1-40 Hz, 1-20 ms pulse width with 2-8 s duration. The light
intensity was tested before each experiment and was calibrated with a power meter (PM20A, Thorlabs, Germany)
to emit 0.6 mW to 40 mW from the tip of the optical fiber for CC activation.

Stimulation protocols. A 2 Hz, 8 s optogenetic stimulus train (O train; 16 pulses to the corpus callosum) was
delivered preceding a conditioning stimulus train (W train; same pulse parameters were used, 0.75-1.5 mA) while
varying the time interval between stimuli (0, 10, 25, 50, 100 and 200 ms), or without a W train, in a single trial.
These stimulation conditions were automatically executed using a laser (MBL-1I1, CNI, China) and a stimulator
(A365 Stimulus Isolator, WPI, USA) triggered by a combination program provided by pulse generator (Master-9,
AM.P.1., Israel), which were precisely synchronized with the start time of the image acquisition sequence in each
trial. Each trial consisted of the first fixed whisker stimuli block (W) and 12 blocks randomized for 6 different
conditions, W, O, WO, W500, W1000, W2000, in total 13 min and 15 s for each trial. For refined inter-stimulus
intervals design, first fixed whisker stimuli block (W) and 14 blocks randomized for 7 different conditions were
used: W, OW, O10W, 025w, O50W, O100W, and O200W, in total 15 min 15 s for each trial. The tables below

show the number of continuous trials acquired in this study, as well as light power for optogenetic stimulation.

Table 1. The number of trials acquired for 6 conditions.

Rat#1 Rat #2 Rat #3 Rat #4 Rat #5 Rat #6
Trials 6 4 4 4 6 5




Acquiring Time 79m 30s 53m 53m 53m 79m 30s  66m 15s

Table 2. The number of trials acquired with refined stimulus design.

Rat#7 Rat #8 Rat#9  Rat #10 (LFP)
Trials 9 12 5 7
Acquiring Time 137m 15s 183m 76m 15s 106m 45s

Table 3. Light power for optogenetic stimulation.

L6 L6.5 L7 L7.5 L8 L8.5 L9 L9.5 L9.9 L10
Light power (mW) 2.6 5.4 9.2 13.2 17.6 23.7 29.2 35.3 39.9 >40

Simultaneous calcium recording with electrophysiology. The anesthetic and surgical preparation procedures
were similar to the fMRI experiments. For antidromic activity recording experiments in Fig. 1 and Fig. S2-5,
tungsten microelectrode (UEWSDDSMCN1M, FHC, USA) was implanted in the right BC to record the LFP from
the callosal projection neurons. For orthodromic activity in Fig.2 and Fig. S7-10, the same kind of tungsten
microelectrode was attached to the fiber optic closely, implanted in the left BC, then secured to the skull by an
adhesive gel. To calculate the coordinates of optical fiber implantation for CC activation, a FLASH anatomical MRI
image was acquired to confirm the virus injection one day before the experiment. The LFP was recorded and
amplified through the EEG module of the BIOPAC system (gain factor, 5000, band-pass filter, 0.02-100 Hz,
sampling rate, 5,000/s). In parallel, the GCaMP6f-mediated fluorescent signal and blood pressure were digitized
and recorded with BIOPAC (MP150 System, BIOPAC Systems, USA) at a sampling rate of 5 kHz. The experiment

design and equipment used afterward were similar to the fMRI experiments.

Data analysis. Acquired data were analyzed using Functional Neurolmages software (AFNI, NIH, USA) and
custom-written Matlab (MATLAB, MathWorks, USA) programs for calcium signals. The fiber optical neuronal
calcium signals were low-pass filtered at 100 Hz using zero-phase shift digital filtering (filtfilt function in
MATLAB). The relative percentage change of fluorescence (AF/F) was defined as (F-Fo)/Fo, where Fo is the baseline,
i.e., the average fluorescent signal in a 2 s pre-stimulation window. For Fig. 2d, the spike value is defined by the
maximal value for the difference in AF/F in a time window 0.3 s after the stimulus, as shown from 40 Hz in Fig.
2c, while the baseline drift is the average calcium signal from 0.3-8 s after the spike recovered to baseline for 40
Hz stimulation. For Fig. 3e, the first epoch for each trial (fixed W condition) was excluded in the data analysis and
the calcium signal was averaged for each condition from all the acquired trials for each animal. Each condition was

then normalized by the maximum positive deflection of calcium signal alone conditions. For Fig. 3f, h, i, the



amplitude peak of the neuronal fluorescent signal in response to 8 s whisker stimulus was calculated as the maximal
difference in AF/F in a time window 300 ms after stimulus, then normalized to the whisker only (W) condition
(100%). The unnormalized amplitude for the difference in AF/F for each epoch was used to generate the calcium
signal-based regressor (Fig. S14) for fMRI correlation map in Fig. 4.

For evoked fMRI analysis, EPI images were first aligned to anatomical images acquired in the same orientation
with the same geometry. The anatomical MRI images were registered to a template across animals, as well as EPI
datasets. The baseline signal of EPI images was normalized to 100 for statistical analysis of the multiple trials of
EPI time courses. The time courses of the BOLD signal were extracted from regions of interest, e.g., barrel cortex,
motor cortex, and posterior thalamus, which were segmented on the anatomical images based on the brain atlas and
activation or correlation values. The BOLD amplitude for each condition was defined as the average value for the
volumes within the 0-10.5 s following the onset of stimulation (when stimulation duration was 8 s). The
hemodynamic response function (HRF) used was the default of the block function of the linear program
3dDeconvolve in AFNI. BLOCK (L, 1) computes a convolution of a square wave of duration L and makes a peak
amplitude of block response = 1, with g(t) = t*e~t/[4*e~*] (peak value=1). In this case, each beta weight
represents the peak height of the corresponding BLOCK curve for that class, i.e. the beta weight is the magnitude
of the response to the entire stimulus block, as shown in Fig. 1, 3 and Fig. S1. The HRF model is defined as follows:

HRF(t) = int(g(t —s),s = 0..min(t, L))

For correlation analysis, a calcium signal amplitude modulated regressor (AM2) based AFNI BLOCK (L, 1)

function was used (Fig. S14). The regressor for amplitude modulated response model is as follows:

K
Tamz(t) = 2k=1h(t —Tx) " (ag — @)

Where a;, = value of k" auxiliary behavioral information value (ABI), i.e., calcium amplitude value for the
difference in AF/F for each epoch, and a is the average calcium amplitude value for all the epochs for the individual
animal. The statistics and g for AM2 regressor make activation map of voxels whole BOLD response vary

proportionally to ABI, i.e., the changes in calcium signals for each epoch.
RESULTS
Antidromic activation by callosal optogenetic stimulation.

By injecting the AAV-ChR2 viral vectors into the barrel cortex (BC) of rats, ChR2 can be expressed in callosal

projection neurons (CPNs), in particular through their axonal fiber bundles projecting to the contralateral BC (Fig.



1a) (Petreanu, Huber et al. 2007, Xin Yu 2013). Based on our previous work (Chen, Pais-Roldan et al. 2019), an
MRI-guided robotic arm was used to provide high flexibility to insert the optical fiber and sufficient targeting
accuracy on the ~200 um callosal fiber bundle for multi-modal fMRI. The most salient BOLD fMRI signal evoked
by CC optogenetic stimulation was detected at the ipsilateral BC housing the labeled CPN (n = 8 animals, Fig. 1b,
¢, 5 Hz light pulses). The antidromically evoked hemodynamic responses to 5 Hz stimulation were significantly
stronger than the responses to 2 Hz (Fig. 1d). In addition, antidromic BOLD and local field potential (LFP) signal
were evoked by systematically varying laser power, light pulse width, frequency and duration of the optogenetic
stimulation (Fig. le, Fig. S1 and S2). The fMRI analysis revealed widespread brain activation in the ipsilateral
hemisphere, which likely originates from antidromic CPN activity spread by multi-synaptic pathways to the motor
cortex and posterior thalamus (Fig. 1f). These widespread ipsilateral effects were readily seen with 5Hz stimulation

paradigm but could not be evoked using lower stimulus frequencies.

Next, we examined the temporal characteristics of the antidromic activity. In general, CC-mediated antidromic LFP
responses in BC to different pulse widths and frequencies were similar to the responses observed when BC was
directly activated (Fig. S3 and S4). Likewise, the whole-brain BOLD signal showed time courses and distributions
as reported earlier with direct BC stimulation (Yu, Chung et al. 2012, Yu, He et al. 2016). We were concerned that
the stimulation light could have activated CPN directly in the BC. To test this concern, we recorded the LFPs evoked
by optogenetic CC and direct BC stimulation in the same rat (Fig. 1g, h), and found that the latency of the response
was systematically higher for CC as compared to BC stimulation (negative peak latency: BC: 8.13 £ 1.89 ms, CC:
11.27 = 0.78 ms; positive peak latency: BC: 17.00 = 4.65 ms, CC: 21.07 + 2.60 ms; n = 6 animals, paired t test, *p
=0.002, **p = 0.009) (Fig. 1i). Otherwise the time course of the LFP response was similar, which showed, firstly
that CC stimulation is likely stimulating the CC axons as intended, and secondly that BC is activated in a very
similar way by CPNs as with direct stimulation. In support of this conclusion, we found that optogenetically
activating callosal fibers from the other hemisphere (opposite to the virus injection site) readily showed latency
differences (Fig. S5), as expected from the axonal conduction delays of the transmission of the electrical impulses

(Simmons and Pearlman 1983, Caminiti, Carducci et al. 2013).
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Fig.1. Antidromic activation upon corpus callosum optogenetic stimulation. a, Left: Schematic of experimental design. Right: Representative
wide-field fluorescence image illustrating the robust expression of ChR2-mCherry at the injection site (right BC) and along the CC. Medial
is to the left. Red, AAV5.CaMKII.ChR2-mCherry. Scale bar, 1 mm. b, Average time courses of fMRI signal changes in right BC (n =8
animals) upon optogenetic stimulation. Error bars represent mean+SD. ¢, Averaged fMRI map showing the strong antidromic activation in
BC in the right hemisphere with fiber optic trace (blue arrow) during optogenetic stimulation of CC from 8 rats of block design: 8 s on/ 52 s
off, 11 epochs, 10 ms light pulse, 5 Hz. d, Top: Averaged BOLD signals upon different stimulation frequencies (2 Hz in blue, 5 Hz in red).
Error bars represent mean+SD. Lower: Mean amplitudes of the BOLD signals (0-10.5 s) for 2 Hz and 5 Hz (n=8, paired t test, *p=0.006).
Error bars represent mean+SD. e, Left: The representative local field potential (LFP) for antidromic activation (gray lines, light pulses). Right:
Laser power dependent LFPs (pulse width, 10 ms). f, Representative BOLD map showing the activity in the projected motor cortex (red
arrows) and posterior thalamus (magenta arrow) from the antidromic activity in the BC. Broken boxes showed the enlarged view of projected
motor cortex (GLM-based t-statistics in AFNI is used. P (corrected)=0.0319). g, Schematic of experimental design. h, The representative

LFP for direct BC light stimulation (blue) and antidromic activation (red) recorded with light pulse durations of 2, 5 and 10 ms. i, The
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different peak latency and transit time for the LFP induced by CC and BC light stimulation (n = 6 animals, paired t test, *p = 0.002, **p =
0.009, pulse width, 10 ms). Error bars represent mean£SD.

Orthodromic activation by callosal optogenetic stimulation.

Compared to antidromically evoked activity, the BOLD signal in the contralateral hemisphere evoked by
orthodromic stimulation was smaller, and the stimulus-response relationship was different. For instance, quite
different from the antidromic situation, the BOLD signal observed with 2 Hz optogenetic CC stimulation was
stronger than that with 5 Hz (Fig. S6). To investigate the CC-mediated corticocortical interaction in the contralateral
hemisphere, we injected the Syn-GCaMP6f and CaMKII-ChR2-mCherry into the left and right BC, respectively,
and recorded both calcium and LFP signal upon optogenetic CC stimulation (Fig. 2a, b). Here we focused on layer
5 (Fig. 2b), because it is the main target lamina of corpus callosum projections (Suarez, Fenlon et al. 2014, Rock
and Apicella 2015), as well as the main output layer of the barrel cortex (Fox 2008). Fig. 2c shows the frequency-
dependent orthodromic calcium signals from one representative rat. As mentioned before evoked calcium transients
appeared in strict frequency-dependent fashion. A strong transient was detected following each light pulse at 2 Hz,
while at higher frequencies, only the first pulse triggered a full-fledged calcium response (Fig. 2c). The subsequent
pulse responses were depressed or missing entirely and gave way to a slow decrement in fluorescence (Fig. 2c).
The decrement of Ca?* signal was constantly present throughout the entire stimulus interval (see gray bar 40 Hz
stimulation in Fig. 2¢), and slowly relaxed back to baseline only after the end of stimulation. Simultaneous LFP
and calcium recordings in a representative rat shared the same pattern, strengthening the notion of a strong
suppression of responses at higher stimulus frequencies (Fig. S7), and offering an explanation for the likewise
decreased orthodromic BOLD signals at 5 Hz (Fig. S6). The calcium baseline drift for 40 Hz was reproduced in
animals and was quantified in Fig. 2d, suggesting a highly robust corticocortical inhibition effect as previously
reported by electrophysiological recording (Butovas and Schwarz 2003, Butovas, Hormuzdi et al. 2006, Lee, Gee
et al. 2014). The evoked LFP and calcium signals dependencies on the laser power, light pulse width and duration
provide strong evidence for reliable detection of the orthodromic activity (Fig. S8-10). It is noteworthy that the CC-
mediated orthodromic activity shows different response patterns for both LFP/calcium and fMRI signals from the
antidromic activity, indicating a distinct impact on the local excitation-inhibition balance through the CC-mediated

inputs.
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Fig.2. Orthodromic activation upon corpus callosum optogenetic stimulation. a, Schematic of experimental design. b, Top left: Representative
RARE anatomical image used to identify the optical fiber location for calcium signal recording in the layer V of barrel cortex. Top right:
Enlarged immunostaining image illustrating the ChR2-mCherry expression in the left hemisphere (opposite to the injection site). Middle:
Representative wide-field fluorescence image illustrating robust ChR2-mCherry at the injection site (right BC) and along the axonal fibers
to the other hemisphere. Red, AAV5.CaMKII.ChR2-mCherry. Bottom: The immunostaining image illustrating robust GCaMP6f expression
(green) in the left barrel cortex. Scale bar, 1 mm. ¢, Left: Representative calcium signal changes upon 8 s of orthodromic activation responses
to 2, 5, 10, 20 and 40 Hz stimulation. Right: Enlarged calcium signal changes responses to 2, 5 and 40 Hz stimulation. d, The analysis of

calcium baseline, spike value and baseline drift from 3 animals. Error bars represent mean+SD.
The CC-mediated inhibitory effects on the sensory-evoked cortical activity

Next, we investigated the effect of CC-mediated suppression on sensory-evoked cortical activity. The optogenetic
light pulse train (‘O’, 2 Hz, 16 pulses in 8 s ) for CC optogenetic stimulation was delivered at time intervals of 0,
50, 100 and 200ms after stimulating the primary afferents in the whisker pad with a microstimulation pulse train
(‘“W’, 2 Hz, 16 pulses). In total 6 conditions (W, O, OW, O50W, O100W and O200W, OxW means optogenetic
pulse leads the whisker stimulation pulse for “x” ms) were delivered in trials of randomized order (Fig. 3a) using
the multi-model fMRI platform (Fig. 3b). Typical raw calcium signals and stimulation design are shown in Fig. 3c

with a W condition leading the other randomized 12 epochs (6 conditions repeated twice in a randomized order).
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We found a strong suppression of BOLD in the orthodromic direction with latencies of 50 and 100 ms (Fig. 3d, g).
The suppression was partially recovered at the O200W condition. This phenomenon was absent on the antidromic
side (Fig, 3g). A similar picture emerged with averaged calcium signals recorded in layer 5 of the contralateral BC
(Fig.3e). Ca?* signals and BOLD were highly correlated (Fig.3g, €), showing reduced calcium percentage changes
at O50W and O100W conditions across animals (Fig.3f). Normalizing both signals to the whisker-only (W)
condition (Fig. S11), we find the mean signal changes of BOLD from 100% (W) to 107.3%, 59.2%, 56.8% and
100.4%, while the calcium signal changed from 100% (W) to 127.8%, 45.2%, 59.5% and 107.1% at conditions of
OW, 0O50W, 0100w, and O200W, respectively (Fig.3h). To investigate the temporal features of the interaction on
a more precise scale, we refined the stimulus intervals for whisker stimulation by adding 10 and 25 ms conditions
(W, ow, 010w, 025W, O50W, O100W, and O200W) in another group of rats (Fig. 3i and Fig. S12). Again
similar patterns emerged as seen before (Fig. 3i and Fig. S12). For O10W, no significant difference was observed
in comparison to the OW condition, but the calcium responses at O25W were significantly lower than the OW
condition (Fig. S12). As reported from in vitro CC electrical stimulation studies by Kawaguchi et al. (Kawaguchi
1992), CC stimulation leads to two inhibitory postsynaptic potential (IPSP) peaks (the earlier peak at ~30 ms, and
the later peak at ~180 ms), which could underlie the inhibitory effects at O25W and the later recovery at O200W to
different extents. Furthermore, the simultaneous LFP and calcium recording confirmed the time-interval specific
inhibitory effects by direct optogenetic CC stimulation to modulate the sensory-evoked cortical activity pattern in
the BC (Fig. S13). These results are consistent with results using whisker, forepaw, and visual stimulation in rodents
and human studies (Schnitzler, Kessler et al. 1996, Ogawa, Lee et al. 2000, Shuler, Krupa et al. 2001, Berwick,
Redgrave et al. 2004, Wiest, Bentley et al. 2005, Ni, Gunraj et al. 2009, Bocci, Caleo et al. 2011, Nemoto, Hoshi et
al. 2012).
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Fig. 3. Simultaneous measurement of BOLD and calcium signals during CC optogenetic stimulation and electrical whisker stimulation with
varying time intervals. a, Stimulation scheme. There are 6 conditions, whisker stimuli only (W), CC stimuli only (O), CC stimuli and whisker
stimuli together (OW), CC stimuli and 50 ms, 100ms, 200 ms delayed whisker stimuli (O50W, 0O100W, O200W). b, Schematic drawing of
the experimental setup to conduct optogenetic fMRI with simultaneous fiber-optic calcium recording. CL: Coupling Lens, DM: Dichroic
Mirror, EF: Emission Filter, PM: Photomultiplier, IM: Intensity Modulation. c, Typical calcium signals for condition W (blue dash box) and
0O100W (red dash box) from a representative rat. d, Top: Averaged fMRI map of brain-wide activity for 6 conditions across 6 rats (GLM-
based t-statistics in AFNI is used. p (corrected) < 0.01) of block design: 8 s on/ 52 s off, 13 epochs, 20 ms light pulse, 2 Hz, 5-39 mw. Bottom:
Enlarged brain slice showing the differences of BOLD mapping in BC in both hemispheres with fiber optic trace for optogenetic stimulation
(blue arrow) and calcium recording fiber (green arrow). e, Averaged normalized calcium signal in left BC, grey lines showing the individual
normalized calcium signal from 6 rats (Trials # = 29, details see Methods, table 1). f, Normalized calcium signal for an individual rat as a
function of conditions: W, OW, O50W, 0100w, O200W. g, Left: Averaged BOLD changes in the ROI (red region on anatomical images)
in the left BC induced by whisker stimulation. Right: averaged BOLD changes in the ROI (red region on anatomical images) in the right BC
induced by CC stimulation. h, Averaged normalized calcium signal changes across 6 rats modulated by stimulus time intervals (ANOVA, p

<0.01). i, Averaged normalized calcium signal changes across 4 rats modulated by stimulus time intervals (ANOVA, p < 0.03).
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Global network mapping based on the optogenetically-driven CC-mediated inhibitory effects

The 3D fMRI data with concurrent calcium signal acquired at different conditions with CC and whisker stimulation
allowed analyzing the global effect of the optogenetically-driven CC-mediated inhibition. To this end, the calcium
signal amplitude modulation (AM) factor was applied to the ideal function produced by the general linear model
(GLM), which was correlated with the 3D fMRI time course (Fig. S14) (Cox 1996, Wang, He et al. 2018). As
shown in Fig S14, the calcium-AM regressor is derived from the stimulation-driven ideal function, of which the
GLM analysis leads to a AM-specific correlation with the whole brain fMRI signal. Thus, the calcium-based AM-
correlation with the entire brain generated a map of global brain dynamic changes related to specific CC-mediated
inhibition effect. The strongest correlation was found in the left BC (Fig 4). A positive correlation was further
observed in the ipsilateral motor cortex and posterior thalamus (PO), which are projection targets of the BC, as well
as the vental right BC (Fig. 4a, b, ¢). We next extracted the time courses from the highlighted ROIs to examine the
changes of the fMRI signals at different conditions. The averaged time courses from the right BC ROI reflected the
patterns seen in the orthodromically affected BC before. In these conditions (O50W and O100W), the BOLD signals
were reduced with respect to the other conditions (Fig. 4d). Similar patterns of BOLD responses were detected in
the MC (Fig. 4e) as well as the PO (Fig. 4f) directly connected to the left BC. It is noteworthy that the positively
correlated right BC area was not overlapping with cortical areas housing the CPNs (Fig. 3). In summary, these
results demonstrate that the global network is modulated with the CC-specific evoked activity in BC. The specificity
of CPN precludes the possibility that MC and PO might have integrated the callosal and sensory input independently
of BC.
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Fig. 4. Calcium AM-based whole brain BOLD correlation analysis. a, one representative animal map overlaid on the anatomical image with
a statistical threshold (p (corrected) < 0.05, cluster size > 15 voxels, MC, blue arrows, BC, magenta arrows, PO, yellow arros, optical fiber
trace, red arrows). b, Group-averaged correlation maps show the spatial distribution of the positive correlation located at left BC, MC, as
well as the PO by overlying with the brain atlas (red square, optical fiber traces, right panel: the enlarged images of the correlation map
overlaid on the brain atlas). ¢, Enlarged correlation map shows the positive correlation at the MC. d, Left: Averaged time courses from the
right BC at different conditions (n = 8 rats). middle: Mean amplitudes of the BOLD signals (0-10.5 s) for individual rats. Right: Averaged
amplitudes of the BOLD signals (0-10.5 s, mean+SD, ANOVA, *p = 0.027, **p = 0.004, #p = 0.030, ##p = 0.003). e, Left: averaged time
courses from the MC (n = 8 rats). Right: Averaged amplitudes of the BOLD signals (0-10.5 s, mean+SD, ANOVA, *p = 0.005, **p =0.01).
f, Left: Averaged time courses from the PO (n = 8 rats). Right: Averaged amplitudes of the BOLD signal (0-10.5 s, mean+SD, ANOVA, *p
=0.009, **p = 0.012). W: whisker stimulation only, OW: simultaneous optical and whisker stimulation, O[x]W optical stimulation followed

by [x] ms-delayed whisker stimulation.

DISCUSSION
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We have performed simultaneous BOLD-fMRI and calcium recording in combination with callosal-circuit specific
optogenetic stimulation to map the brain-wide network activation. The robust BOLD signal due to the antidromic
activity was detected in the ipsilateral BC, which also led to fMRI detection in the ipsilateral MC and PO region
with the higher frequency stimulus. In contrast, the positive BOLD signal through the CC-orthodromic activity was
only reliably observed at the lower frequency optogenetic stimulus. With the 40Hz light pulses, the calcium baseline
suppression was detected and interpreted to be due to the CC-mediated cortico-cortical inhibitory effect. To further
test this CC-mediated inhibition was further paired with the whisker stimulation paradigm at varying inter-stimulus
intervals from 0 ms to 200 ms, showing significant suppression at the O50W and O100W conditions in the left BC
by the concurrent fMRI and calcium recording. By extracting the event-dependent calcium peak amplitudes at
varied conditions as a regressor, an amplitude modulation (AM)-based correlation map revealed the brain-wide
inhibitory effects spreading through the ventral border of the right BC and the left MC and PO. Thus, the multi-
modal fMRI platform provides a thorough brain-wide network activation maps for the CC-specific optogenetic

stimulation.

The observation of strong antidromic propagation by callosal optogenetic stimulation and related synaptic spread
of activity presents a caveat for the conclusion of circuit specificity for in vivo optogenetic studies. In particular,
when neuronal projection terminals labeled with ChR-2 from neurons located at specific functional nuclei are
targeted, possible spreading network activity from the antidromically activated brain sites need to be considered. In
our experiments, BOLD signals were detected in both MC and PO projected from the antidromically activated BC
(at 5Hz light pulses), indicating a (for the experimental purpose unintended) wide-spread optogenetic activation
pattern in the brain-wide network (Fig 1e). This spread is likely due to synaptic propagation via activated local or
regional axon collaterals of CPNs (Wilson 1987, White and Czeiger 1991, Cauller, Clancy et al. 1998, Mitchell and
Macklis 2005, Fame, MacDonald et al. 2011). For the present spread into motor and sensorimotor structures, deep
layer CPN with long-range projections into sensorimotor brain areas are likely involved (Veinante and Deschenes
2003). In addition, multi-synaptic pathways, involving either cortico-cortical or cortico-thalamic projections may
have contributed to the spread brain-wide activation (Kleinfeld and Deschenes 2011, Gambino, Pages et al. 2014).
In conclusion, it is mandatory to consider brain-wide activation patterns, even in case of application of highly

circuit-specific optogenetic activation schemes.

Certainly, the optogenetic callosal fiber activation also elicits the specific unidirectional callosal orthodromic
activity as well, similar to earlier reports(Kawaguchi 1992, Hoffmeyer, Enager et al. 2007, Karayannis, Huerta-
Ocampo et al. 2007). In addition, the optogenetic activation of the callosal projection terminals from brain slices
leads to better characterization of the excitatory and inhibitory circuit regulation by callosal inputs (Petreanu, Huber
et al. 2007, Palmer, Schulz et al. 2012, Lee, Gee et al. 2014, Rock and Apicella 2015, Petrus, Saar et al. 2019). Our

observations further support the non-linear neurovascular coupling events with the optical intrinsic signal
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measurements and laser-doppler flowmetry upon the optogenetic or electrical CC stimulation (Hoffmeyer, Enager
et al. 2007, lordanova, Vazquez et al. 2018). In our study, the fact that orthodromic BOLD signals were readily
observed with low-frequency stimulation (2 Hz), but were strongly reduced at the higher frequency (5Hz), reveals
a critical non-linear manner of the hemodynamic responses driven the the CC-mediated neuronal activation(Fig.
1f, 2c, and Fig. S6). We show here that peripheral whisker stimulation is well suited to study the suppressive effects
of orthodromically conveyed activity specific to the callous, which is not possible using in vivo bilateral stimulation
paradigms in rodents (Ogawa, Lee et al. 2000, Shuler, Krupa et al. 2001, Berwick, Redgrave et al. 2004, Wiest,
Bentley et al. 2005, Nemoto, Hoshi et al. 2012) or bilateral motor or visual tasks in humans (Schnitzler, Kessler et
al. 1996, Ni, Gunraj et al. 2009, Bocci, Caleo et al. 2011) where other pathways maybe involved. In particular, CC-
induced orthodromic activity of L5 pyramidal neurons evoked a calcium transient followed by marked depression
of calcium signals responding to light pulses on CC (Fig. 2c,d) (consistent with the optogenetic results in brain
slices (Lee, Gee et al. 2014)). Electrophysiology in brain slices has elucidated that CC-mediated glutamatergic
excitatory postsynaptic potentials are followed by early GABAA- and late GABAgs-mediated inhibitory postsynaptic
potentials lasting for several hundred milliseconds (Kawaguchi 1992, Kumar and Huguenard 2001, Karayannis,
Huerta-Ocampo et al. 2007, Palmer, Schulz et al. 2012), strongly suggesting that the depression seen here is partly
due to synaptic inhibition. Also, while pairing with 2 Hz whisker stimulation, a time course of the depressive effect
around 50-100 ms interval fit the previous finding that local intracortical activation is characterized by activation
of long-lasting synaptic GABAergic inhibition (Butovas and Schwarz 2003, Butovas, Hormuzdi et al. 2006, Cardin,
Carlen et al. 2009, Logothetis, Augath et al. 2010, Moore, Carlen et al. 2010, Palmer, Schulz et al. 2013). In
particular, besides the robust inhibition detected in the paired O50W and O100W conditions, a refined temporal
scale at the O25W condition further demonstrates the CC-mediated inhibitory effect (Fig. S12), which can be
potentially caused by the GABAa-mediated early IPSP peak elicited by the direct electrical CC stimulation
(Kawaguchi 1992). The fact that antidromic activity is not susceptible for the paired optogenetic and whisker
stimulation (surely due to weaker ipsilateral whisker-evoked activity, but also likely due to the relative strength of
antidromic activation), supports the notion that the depression of whisker-evoked activity is due mainly to local
(contralateral) interaction of CC-evoked and whisker-evoked activity, rather than to possible CC activity evoked by

indirect activation of additional CPNs via antidromic activation.

The whole-brain fMRI with concurrent calcium recording allows accessing brain-wide network effects of CC-
mediated inhibition (Fig. 4a, b). In particular, the applicaton of the AM-based GLM allows separating the stimulus-
driven reponses from the AM factor, which creates specific correlation maps to the CC-mediated inhibitory effects.
The calcium amplitude-modulation (AM)-based correlation map highlighted three brain regions: the ventral part of
right BC, the left MC, and PO. The ventral right BC was likely activated by reciprocal callosal connections, the
majority of which, as argued above, may have been quenched by the strong antidromic effect via labeled CPNSs. In

the injection experiments, however, the ventral BC was regularly spared and did not receive virus, and therefore
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may have been less affected by overriding antidromic activity. Outside BC on the orthodromic side the AM-
dependent correlation was detected as well in the right MC and PO. The CC-mediated inhibitory effect on the
spatially distinct MC could be caused by the long-range S1-MC projection for sensorimotor integration (Ferezou,
Haiss et al. 2007, Matyas, Sreenivasan et al. 2010, Kleinfeld and Deschenes 2011, Chen, Carta et al. 2013,
Feldmeyer, Brecht et al. 2013). The direct BOLD activation in the MC was detected by whisker stimulation through
the sensorimotor connection (Yu, Qian et al. 2014), which was also shown in the antidromic activity-based
spreading activation patterns (Fig 1e). The CC-mediated inhibitory effect on the PO is likely via corticothalamic
projections originating from BC layer 5b neurons (Groh, Bokor et al. 2014, Mease, Sumser et al. 2016, Mease,
Sumser et al. 2016, Sumser, Mease et al. 2017). This finding points at a potential participation of the callosal inputs
in the regulation of a wider network of a reciprocal thalamocortical network which mediates BC signals from the
other hemisphere for whisking related processing (Petreanu, Mao et al. 2009, Theyel, Llano et al. 2010, Feldmeyer,
Brecht et al. 2013, Gambino, Pages et al. 2014, Manita, Suzuki et al. 2015, Mease, Metz et al. 2016, Sumser, Mease
etal. 2017). Therefore, besides the antidromically evoked network activation pattern, the orthodromic CC-mediated

inhibition generates a brain-wide activity pattern of its own.

In summary, by taking advantage of optogenetics to activate unidirectional callosal fiber, calcium indicators
(GCaMPe6f) to track specific L5 pyramidal neuronal activity, and simultaneous whole-brain fMRI mapping, this
work bridges the scales from the cellular to the whole brain network level for CC-mediated activity. We present a
multi-modal fMRI platform to map and analyze the CC-regulated excitation/inhibition balance across multiple
scales, which should be useful to decipher brain network dysfunction induced from CC abnormalities. Brain-wide
network activation from callosal-circuit optogenetic stimulation underscores the caution to interpret circuit-specific

regulatory mechanisms underlying behavioral or functional outcomes with optogenetics in animals.
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Supplementary Figure 1. Representative functional maps and time courses of the fMRI signal (average of 13 epochs, 60 s per
epoch) upon CC light activation with (a) laser power dependency (2 Hz, 8 s, 20 ms pulse width), (b) pulse width dependency
(2, 5, 10, 15 and 20 ms pulse width, 2 Hz, 8 s, L 8), (c) frequency dependency (1, 2, 5, 10 and 15 Hz, 8 s, L 8, 20 ms pulse
width) and (d) duration dependency (2, 4, 6 and 8 s, 2 Hz, 20 ms pulse width, L 8). It is noteworthy that exposure to light with
high frequency (10 and 15 Hz) at high power (35 mW) led to heating effects, inducing artifacts close to the fiber tip (c), as well

as very strong antidromic activity. GLM-based t-statistics in AFNI is used, p (corrected) < 0.005.
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Supplementary Figure 2. The light-driven antidromic LFP with frequency and pulse width dependency of a representative
rat. (@) Averaged LFP driven by light pulses at different frequencies (1, 2, 3 and 5 Hz; 10 ms pulse width, L 7.5, 4 s stimulation
26 s rest, 16 epochs). (b) Averaged LFP driven by light pulses at different pulse widths (1, 2, 3, 5 and 10 ms pulse width; 2 Hz,
L 7.5, 4 s stimulation 26 s rest, 16 epochs). (c) The raw LFP trace by optogenetic stimulation (left, 4 epochs), the enlarged
representative LFP for one epoch (middle) and the averaged LFP from one trial (red line).The grey lines show all the LFP from
this trial (right) upon different stimulation frequencies. (d) The raw LFP trace during optogenetic stimulation (left, 4 epochs),
the enlarged representative LFP for one epoch (middle) and the averaged LFP from one trial (red line). The grey lines show all

the LFP from this trial (right) upon different stimulation light pulse widths. Grey lines beneath the LFP indicate the stimulation.
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Supplementary Figure 3. Light-driven LFP for antidromic activity from CC (a) stimulation and BC (b) direct stimulation
showing similiar pattern with pulse width dependency of a representative rat. Every panel in a and b shows the raw LFP trace
observed upon optogenetic stimulation (left, 4 epochs), the enlarged representative LFP for one epoch (middle) from the dashed

blue box and the averaged LFP from one trial (red line). The grey lines show all the LFP from this trial (right). Grey lines

beneath the LFP indicate the stimulation.
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Supplementary Figure 4. Light-driven LFP for antidromic activity from CC stimulation (a) and BC direct stimulation (b)
showing similar pattern with frequency dependency of a representative rat. Every panel in a and b shows the raw LFP trace by
optogenetic stimulation (left, 4 epochs), the enlarged representative LFP for one epoch (right) from the dashed blue box. Grey

lines beneath the LFP indicate the stimulation.
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Supplementary Figure 5. Light-driven LFP for antidromic activity from CC stimulation in both hemispheres and BC direct
stimulation. (a) The schematic plan for the experiment design. (b) Averaged LFP from the CC2 stimulation in the hemisphere
opposite to the virus injection site (blue line), CC1 stimulation in the same hemisphere (red line) and BC direct stimulation
(black line) shown different temporal features. (c) The raw LFP trace by optogenetic stimulation (left, 4 epochs), the enlarged
representative LFP for one epoch (middle) from the dashed blue box and the averaged LFP from one trial (red line). The grey
lines show all the LFP from this trial (right). (d) Averaged LFP upon optogenetic stimulation of CC2 with frequency (upper

panel), laser power (middle panel) and pulse width (lower panel) dependency showing reliably detected antidromic activity.
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Supplementary Figure 6. Light-driven functional maps demonstrating opposite relationships for antidromic and orthodromic
activities in the BC to 5 Hz (a) and 2 Hz (b). The antidromic activity in the right hemisphere and the orthodromic activity in

the left hemisphere responses to 5 Hz was stronger and weaker, respectively, compared to 2 Hz. GLM-based t-statistics in

AFNI is used. p (corrected) < 0.01.

31



Frequency dependency

: P Re
: LoE 4
| IR
! ! £= T
1 1 — | "
2 Hz i : ’(“cé OMAM'”“WY\‘W‘} r\;»‘,‘vV\V;WWM\V’\"YW'W'
| [ R P EE T i O, ‘
0 20 40 60 80 100120140160180 0 4 8 12 16 o 4 8 12 16
Time (s) Time (s) Time (s)
1 1 —_
i i X6
£ 0.2 Loy i w
E o | N
o Lo | =
0.2 o .
5Hz g P L 2l o y
04 ! ! ] © 1T fm\n"\“w\‘v;'n'&\‘ﬁt‘“,‘w“ ‘J*”N'w"d
com oL s, | By
0 20 40 60 80 100120140160180 0 4 8 12 16 0 4 8 12 16
Time (s) Time (s) Time (s)
i i Re
! L K4
; v <
10 Hz | E:
i S0 P A o
=) Y — * I__—__l :_____..____“:':':‘:'::'____‘__: 8-2
0 20 40 60 80 100120140160180 0 4 8 12 16 0 4 8 12 16
Time (s) Time (s) Time (s)
! P e
! LK
20 Hz | 9,
! ) =] | |
E P Soofwy WA A e
m. - wm. . om L eeesss . Ol e .
0 20 40 60 80 100120140160180 0 4 8 12 16 0 4 8 12 16
Time (s) Time (s) Time (s)
L g
-
] | e
40 Hz S
1 E 2
! 5 0 Wi Wiy WW-“A,“‘*,,WMW),‘WW‘M'J'l‘,n'm‘,‘.phl\:'m
L3,
0 20 40 60 80 100120140160180 0 4 8 12 16 0 4 8 12 16
Time (s) Time (s) Time (s)

Supplementary Figure 7. The frequency dependency of simultaneous LFP (red) and calcium response signals (green). Every
panel shows the raw LFP trace elicited by optogenetic stimulation (left, 4 epochs), the enlarged representative LFP for one
epoch from the dashed blue box (middle) and averaged calcium signal (8 s stimulation 52 s rest, 15 epochs, L9, pulse width 10

ms). Grey lines beneath the LFP and calcium signals indicate the stimulation.
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Supplementary Figure 8. The laser power dependency of simultaneous LFP (red) and calcium signals (green) showing that

both amplitudes increased as a function of the laser power. Every panel shows the raw LFP trace elicited by optogenetic

stimulation (left, 4 epochs), the enlarged representative LFP for one epoch from the dashed blue box (middle), the averaged

LFP from one trial (red line). Grey lines showing all the LFP from this trial (right) and the averaged calcium signal (4 s

stimulation 26 s rest, 11 epochs, L9, pulse width 10 ms). Grey lines beneath the LFP and calcium signals indicate the stimulation.
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Laser pulse width dependency
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Supplementary Figure 9. The laser pulse width dependency of simultaneous LFP (red) and calcium signals (green). Calcium

signals increased and the LFP pattern demonstrated stronger depolarization according to the increased pulse width at 2 ms, 5

ms and 10 ms. In contrast, for the 20 ms pulse width stimulation, there was decreased calcium signal and weaker depolarization

of LFP. Every panel shows the raw LFP trace elicited by optogenetic stimulation (left, 4 epochs), the enlarged representative

LFP for one epoch from the dashed blue box (middle), the averaged LFP from one trial (red line, with the grey lines showing

all the LFP from this trial) (right) and the averaged calcium signal (2 Hz, 4 s stimulation 26 s rest, 11 epochs, L9). Grey lines

beneath the LFP and calcium signals indicate the stimulation.
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Supplementary Figure 10. The duration dependency of simultaneous LFP (red) and calcium signals (green). Every panel
shows the raw LFP trace elicited by optogenetic stimulation (left, 4 epochs), the enlarged representative LFP for one epoch
from the dashed blue box (middle), the averaged LFP from one trial (red line, with the grey lines showing all the LFP from this
trial) (right) and the averaged calcium signal (2 Hz, 11 epochs, L9, pulse width 10 ms). Grey lines beneath the LFP and calcium

signals indicate the stimulation.
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Supplementary Figure 11. The scatter plots of the evoked BOLD and calcium signals for 5 stimulation conditions (W, OW,
O50W, 0100W and O200W) in 9 animals. (a) 3D plot of the BOLD changes (Z axis), calcium changes (Y axis) and stimulation
conditions (X axis). Both BOLD and calcium signals are normalized to condition W. (b) View from the correlation of BOLD
changes with calcium signals. The central red diamond is the baseline to which the data were normalized. Blue diamonds
represent the condition OW, most of them distributed in the dashed blue box, showing increased neuronal activities. Light grey
diamonds and dark grey diamonds represent the condition O50W and O100W, respectively, most of them located in the dashed
red box, showing suppressed neuronal activities. (¢) Normalized calcium signals as a function of condition. (d) Normalized
BOLD changes as a function of condition. W: whisker stimulation only, OW: simultaneous optical and whisker stimulation,

O[X]W optical stimulation followed by [x] ms-delayed whisker stimulation.

36



g 200 1 — +Rat#2
5 @
535 | . +Rat#3
m
% = + Rat#4
* *
ﬁ 2100 - * '\_—0\\./’}
gfﬁ 50 * * ’
3= .-
0 T T T T T T 1
N U N
o & & F

b .

aw mow 010W 025w 050w = 0100W m 0200W

e
N
o
o

L

=

(7]

o
1

Normalized Calcium
Peak amplitud

_
[ B =]
o O o
'.
]
|
I
m
[ F
I
]
m
[
| i
I
m
.

Rat#l Rat#2 Rat#3 Rat#4 Ave

Supplementary Figure 12. The effect of conditioning stimuli in the sensory evoked calcium signals in the left hemisphere for
7 refined conditions (W, OW, O10W, O25W, O50W, O100W and O200W). (a) The scatter plot of the calcium signals
normalized to condition W from 4 rats. (b) The individual pattern changes of calcium signals from 4 animals, as well as the

averaged calcium signal change pattern for all the 7 conditions.
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Supplementary Figure 13. Typical LFP (red) and calcium signals (green) of one trial from a representative rat. (a) Different

amplitudes of LFP and (b) calcium signal changes showing the different neuronal activity upon seven randomized stimulation

conditions. (c). Simplified diagram representing the typical calcium signals and LFP for condition W (blue dash boxes in a and

b, upper graph in ¢) and O100W (red dash boxes in a and b, lower graph in c) in one epoch. (d) Schematic of the experimental

design. (e) Averaged calcium signals and LFP in left barrel cortex, further confirming the spatial and temporal features of

sensory-evoked cortical activity pattern shaped by callosal inputs. W: whisker stimulation only, OW: simultaneous optical and

whisker stimulation, O[x]W optical stimulation followed by [x] ms-delayed whisker stimulation.
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Data analyzing flow diagram for a representative rat:
48 epochs (12 epoch each trail x 4 trials)
1920 TR (40 TR each epoch x 48 epochs).

a Amplitude: 1
1
L L L LU LLLLfLL  BLocK regressor
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Supplementary Figure 14. The flow diagram to generate the calcium signal-based regressor for the fMRI correlation map. (a)
version 1 of the regressor, generated with the parameter BLOCK (L, 1), which generates a convolution of a square wave of
duration L with the stimulation train and makes a peak amplitude of block response = 1. (b) the variable calcium amplitude of
each epoch from a representative rat is used to generate the AM1 (amplitude modulated 1) regressor in 3dDeconvolve command
in AFNI. (c) the averaged calcium amplitude of all the epochs is used to generate the regressor of no interest. (d) by computing
‘b — ¢, the differences from the mean calcium amplitude can be detected. This new vector constitutes the final regressorAM2.
'AM2' allows to detect voxels that activate but do not change proportionally to the amplitude factor, as well as provides a direct
measure of the proportionality of the activation in response to changes in the input amplitude factors (from the description of
3dDeconvolve program in AFNI).
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ARTICLE

Mapping optogenetically-driven single-vessel
fMRI with concurrent neuronal calcium
recordings in the rat hippocampus

Xuming Chen"23, Filip Sobcazk'?, Yi Chen"?, Chungi Qian>®, Zuneng Lu3, Cenk Ayata’8, Nikos Logothetis"® &
Xin Yu@® 110

Extensive in vivo imaging studies investigate the hippocampal neural network function,
mainly focusing on the dorsal CA1 region given its optical accessibility. Multi-modality fMRI
with simultaneous hippocampal electrophysiological recording reveal broad cortical correla-
tion patterns, but the detailed spatial hippocampal functional map remains lacking given the
limited fMRI resolution. In particular, hemodynamic responses linked to specific neural
activity are unclear at the single-vessel level across hippocampal vasculature, which hinders
the deciphering of the hippocampal malfunction in animal models and the translation to
critical neurovascular coupling(NVC) patterns for human fMRI. We simultaneously acquired
optogenetically-driven neuronal Ca2*t signals with single-vessel blood-oxygen-level-depen-
dent(BOLD) and cerebral-blood-volume(CBV)-fMRI from individual venules and arterioles.
Distinct spatiotemporal patterns of hippocampal hemodynamic responses were correlated to
optogenetically evoked and spreading depression-like calcium events. The calcium event-
related single-vessel hemodynamic modeling revealed significantly reduced NVC efficiency
upon spreading depression-like(SDL) events, providing a direct measure of the NVC function
at various hippocampal states.
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ARTICLE

ver the past few decades the combination of behavioral

and psychophysical studies with anatomical, pharmaco-

logical, and functional magnetic resonance imaging
(fMRI), permitting whole-brain mapping of brain networks, has
expanded our understanding of brain function and occasionally
dysfunction. The blood oxygen level-dependent (BOLD) fMRI!-4,
in particular, is now used as a standard tool for demarcating brain
states, and potentially, dynamic transitions from one state to
another®~. Nonetheless, fathoming into the true and eventually
detailed neural mechanisms underlying the BOLD positive and
negative responses, more so at the level of cortical microcircuits
and deep brain nuclei, is currently still extremely difficult if not
impossible. Conventional fMRI yields surrogate signals such as
continuous blood flow, volume, and oxygenation changes!~410:11,
These indirect functional mapping schemes cannot differentiate
between function-specific processing and neuromodulation,
between bottom-up and top-down signals, occasionally confusing
even excitation and inhibition, depending on the circuit-
dependent direct or indirect nature of local neural
activity>12-1>, The origin of such problems is not only due to the
weak spatial specificity of the fMRI signal to its neural source but
also to the very fact that the exact relationship between the
metabolic/hemodynamic responses and the underlying neural
activity patterns remains mostly elusive. Using high-resolution
fMRI methods to map the animal brain, BOLD and cerebral
blood volume (CBV) fMRI signals can be detected from indivi-
dual arteriole and venule voxels from deep cortical layers!6-18,
Beyond the in vivo penetrating depth of conventional optical
imaging, single-vessel fMRI methods have enabled direct mea-
surement of vessel-specific hemodynamic responses with fMRI in
a large spatial scale to interpret better the neurovascular coupling
(NVC) contribution to the fMRI signal acquired in deep brain
regions.

Simultaneous fMRI and electrophysiological recordings offered
the first insights into the NVC underlying the cortical f{MRI signal
in both task-related and resting-state conditions'®20. Lately,
genetically encoded Ca?*t indicators, for example, GCaMP,
mediating Ca?t imaging from neurons or astrocytes have also
been combined with optical hemodynamic imaging or fMRI,
demonstrating various NVC patterns across multiple scales at
different cortical states?!~28. Besides the multi-modal correlation
analysis of cortical dynamic signals, the highly varied global
correlation of the fMRI signal to the concurrent hippocampal
ripple activity has also demonstrated region-specific cortical NVC
patterns?®. In contrast to extensive cortical NVC studies to
interpret the fMRI signal acquired in the cortex, the linkage
between subcortical NVC events to the fMRI signal, for example,
in the hippocampus, has not been well elucidated. Not only has
the 3D location of the hippocampus in the brain restricted its
accessibility to conventional optical imaging methods but also the
mesoscale hippocampal vasculature has been seldom specified for
hemodynamic mapping with fMRI. Previous in vivo hippocampal
functional imaging studies applied micro-lens/micro-prism
through the cortical tissue or removed the cortex above the
hippocampus39-33, The optical fiber has been used to target the
hippocampus for the measurement of Ca?* from individual cell
types or for fast dynamic recordings®4-38. Using long-wavelength
light pulses for deeper tissue penetration, three-photon micro-
scopy has further expanded the optical penetration depth for
NVC imaging of dorsal hippocampal CA1 regions in mice with a
much less invasive surgical procedure in the mouse brain3-41.
Nevertheless, it remains challenging to detect subcortical NVC
events in animals with larger brains, such as rats and non-human
primates, using multi-photon microscopic imaging methods.
Although rodent hippocampal vasculature has been well descri-
bed in histological studies by Coyle*>*3 in the mid 1970s, no
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multi-modality neuroimaging studies have been performed to
decipher the detailed vessel-specific hemodynamic responses
throughout the hippocampal vasculature with fMRI and con-
current neuronal activity measurement in the hippocampus.

Here, we developed a multi-modal fMRI platform, aiming to
specify the properties of NVC across the rat hippocampus. The
experiments were performed in a high magnetic field scanner
(14.1T), with customized radiofrequency (RF) coils, and the
balanced steady-state free procession (bSSFP) method that per-
mits the acquisition of the fMRI signal from individual cortical
penetrating arterioles and venules??, thereby expanding the line-
scanning-based method for real-time single-vessel fMRI map-
ping!®444> This high spatial resolution vessel-specific fMRI
mapping method allowed to directly measure mesoscale hemo-
dynamic responses of the hippocampal vasculature. In particular,
we applied the single-vessel fMRI to map the BOLD and CBV-
weighted fMRI signal from interleaved arterioles and venules in
the rat hippocampus, of which detailed vascular hemodynamic
responses were imaged with a high spatiotemporal resolution.
This has not been accomplished by other existing non-invasive
global functional neuroimaging methods. This work provides
direct evidence to show the deep brain large-scale hemodynamic
vascular mapping with single-vessel fMRI beyond the penetration
depth of conventional optical imaging methods. Using implanted
optical fibers, optogenetically evoked neuronal Ca?* and the
spreading depression-like Ca?t (SDL-Ca2") events were detected
with simultaneous single-vessel BOLD fMRI, demonstrating
distinct spatiotemporal features of vascular hemodynamic
responses. The varying NVC efficiency (NVCe) can be estimated
by directly modeling single-vessel fMRI responses to concurrent
Ca2T events across the hippocampal vasculature. The simulta-
neous single-vessel hippocampal fMRI and Ca?* recording not
only provides a multi-modal platform for specifying the multi-
scale NVC in the hippocampus but also sheds light on future
pathological hippocampal NVC studies in disease animal models
with stroke, epilepsy, and Alzheimer’s disease.

Results

Multi-modal hippocampal fMRI and local field potential.
To study the hippocampal NVC with the multi-modal fMRI plat-
form (Fig.1a), we co-expressed channelrhodopsin-2 (ChR2) and the
genetically encoded Ca** sensor, GCaMP6f, in the rat hippocampus
using adeno-associated viral (AAV) vectors (AAV5.Syn.GCaMPéf.
WPRE.SV40; AAV5.CAG.hChR2-mCherry.WPRE.SV40). Figure 1b
shows neurons labeled with either ChR2-mcherry or GCaMP6f in
both barrel cortex (BC) and hippocampus for optogenetic fMRI
with concurrent Ca* signal recording. First, optogenetically evoked
local field potential (LFP) and GCaMP-mediated Ca?* signals were
simultaneously detected in the hippocampus of rats at varied light
pulse widths, power levels, and frequencies (Fig. 1lc, d, Supple-
mentary Fig. 1). It is noteworthy that the optical light pulse intro-
duced large artifacts for the GCaMP-mediated Ca2* fluorescent
signal detection. Given the specific temporal feature of optogeneti-
cally evoked Ca2* transients, artifacts detected by the fast-sampling
silicon photomultiplier (SiPM) can be distinguished easily from
Ca?* transients given its short light pulse duration. Figure 1d, e
shows the peak fluorescent Ca2t signal at ~50-60 ms after the onset
of the optogenetic light pulses with various widths from 1 to 20 ms,
which is consistent with previous observations in the cortex?!. This
result demonstrates the feasibility of hippocampal optical fiber Ca?+
recordings with optogenetic stimulation.

Next, we aimed to verify the multi-modal fMRI platform in
combination with both optogenetic stimulation and simultaneous
Ca’t recordings. Figure 1f demonstrates the optogenetically
activated BOLD fMRI signals at the BC and the hippocampus
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Fig. 1 Optogenetically evoked Ca2* recording with LFP or fMRI. a Schematic drawing for the light path of optogenetic activation and calcium recordings in
the multi-modal fMRI platform (PM, photomultiplier; EF, emission filter; DM, dichroic mirror; CL, coupling lens). b Schematic drawing of optical fibers

implantation to target the rat hippocampus in a 3D view (left). Channelrhodopsin (ChR2, red) and GcaMPé6f (green) were co-expressed in the barrel cortex
(BC, upper, white arrows) and hippocampus (lower, red arrows) with enlarged images (dashed box, right). ¢ Simultaneous LFP (blue) and neuronal Ca2+
(green) traces in the hippocampus following optical stimulation (10 ms light pulse, 1Hz, 7's, 4 mW; upper: GCaMP6f expression; lower: control, right panel,
enlarged view). d Averaged traces of optogenetically evoked Ca2* spikes in the hippocampus (green: GCaMP6f expression; black: control). e Averaged
traces of optogenetically evoked Ca2t spikes with different widths of the light pulse (1, 5, 10, and 20 ms). f A representative color-coded BOLD fMRI map
from the BC (left) and hippocampus (optical fiber insertion trace: red arrow), together with associated fMRI time courses (lower, top) and concurrent

neuronal Ca2t signals (lower, middle) in the block-design paradigm (illumination: 10 ms light pulse, 3 Hz, 4 s, 5mW, zoomed views are averaged evoked

Ca2* signals from one epoch)

with the 3D echo planar imaging fMRI (EPI-fMRI) method*%47.
Both evoked BOLD fMRI signals from activated brain voxels and
concurrent Ca2t transients from nearby neurons can be detected
using the block-design optogenetic stimulation paradigm. These
multi-modal NVC events were acquired across spatial scales from
the sub-millimeter scale neuronal ensembles surrounding the
fiber tip to the macroscopic vascular hemodynamic response
detected by fMRI. It is important to note that direct light
pulse exposure on the naive rat hippocampus did not cause
detectable positive BOLD fMRI signal through hippocampal
vasculature due to the local blood flow regulation, that is, cerebral
blood flow changes, as previously reported by ultrasound Doppler
signal measurement#$. The high power light pulse (>25 mW from
200 um fiber tip) caused the focal negative fMRI signal near the
fiber tip due to heating-induced susceptibility changes (frequency
offset) (Supplementary Fig. 2)%°. In contrast, the optogenetic
stimulation of rats with ChR2 expression in the hippocampus
evoked the strongest signals at the choroid plexus located at the
dorsal wall of the lateral ventricle across multiple slices,
containing draining veins from the hippocampus in a sub-
centimeter scale away from the optical fiber tip (Fig. 1f). Although
these results indicate that the direct effect of light exposure on the
flow regulation contributes less to the measurable BOLD signal,
the widely spread hemodynamic responses in hippocampal
vasculature upon optogenetic stimulation remain poorly char-
acterized with EPI-fMRI given the limited spatial resolution.
These results also led to implementing the high-resolution single-
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vessel fMRI method into the multi-modal fMRI platform for
hippocampal NVC mapping.

Optogenetic hippocampal fMRI with ChR2 variant (C1V1). It
should be noted that in order to reduce the spectral wavelength
overlap of GCaMP-based fluorescent signal excitation and opto-
genetic light pulse stimulation at 473 nm, we additionally applied
the ChR2 variant (C1V1) to switch the optogenetic light pulse to
590 nm. Supplementary Figure 3 demonstrates similar dynamic
patterns of the concurrent LFP or fMRI signal and fiber optic
Ca®* signal upon C1V1-mediated optogenetic activation in the
rat hippocampus. These results further verify the feasibility of
detecting optogenetically driven BOLD and intracellular neuronal
Ca?™ signals in the hippocampus with the multi-modal fMRI
platform.

Optogenetic single-vessel hippocampal BOLD and CBV fMRIL
As shown with the magnetic resonance angiography (MRA)
imaging in Fig. 2a, the hippocampal vasculature is aligned in
parallel branches supplying blood to the saddle-shaped structure
of the hippocampus®® (Fig. 2a, Supplementary Movie 1). To
visualize individual vessels, we applied a 2D multiple gradient
echo (MGE) slice transecting the parallel hippocampal vascular
branches with 40° angle to the midline (Fig. 2a). Similar to pre-
vious single-vessel MRI studies in the cortex!822, the 2D MGE
images were acquired at different time of echo (TE) to distinguish
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Fig. 2 Single-vessel hippocampal BOLD and CBV-w fMRI. a The magnetic resonance angiography (MRA) image shows major vascular branches
penetrating the rat hippocampus (middle image is the schematic drawing of the hippocampal transverse plane of vessels aligned in parallel [modified from
Peter Coyle (1976)1). The 3D view of the 2D slice alignment to cover the transverse hippocampal structure (lower image is the horizontal view to show the
2D slice with 40° to the midline to cross the penetrating vessels, dark hole: the fiber optic tip). b Representative images of 2D MGE slices from the
hippocampus at different TEs. ¢ A-V map derived from images in b. Arterioles and venules appear as bright and dark dots, respectively (zoomed view of
hippocampal arterioles (bright dots, red arrows) and venules (dark dots, blue arrows). d A histological section shows ChR2 expressed in the hippocampus
(upper). The T2*-weighted (T2*-W) image shows the optical fiber inserted into the hippocampus (lower, blue arrow). e Venule (blue)/arteriole (red) ROIs
on A-V maps (left). Evoked BOLD (upper) and CBV-weighted (lower) fMRI maps on the same 2D slice (center) and overlap (active voxels are in purple in
overlap images). Time courses of the evoked BOLD and CBV-weighted fMRI with the block-design paradigm from a representative venule (upper) and
arteriole (lower) ROI (illumination: 10 ms light pulse, 3 Hz, 4 s, 5 mW). f Averaged BOLD (upper) and CBV-weighted (lower) fMRI responses from different
stimulation durations (1, 2, 4, and 8s) and frequencies (1, 2, 3, and 5 Hz) (n =4, mean £ SEM)

individual arteriole and venule voxels from the surrounding
parenchyma voxels enriched with capillaries. At shorter TE, due
to in-flow effects from vessels at the short time of repetition (TR),
all vessel voxels appear brighter than the surrounding voxels
based on the T1-weighted MR contrast; however, at the longer
TE, the fast T2* decay of the deoxygenated blood leads to darker
signal intensity in venule voxels only (Fig. 2b, Supplementary
Movie 2)!8. Thus, by integrating the MGE images acquired at
different TEs, we could distinguish individual hippocampal
arterioles (bright dots) and venules (dark dots) from the anato-
mical single-vessel 2D map (arteriole-venule (A-V) map),
showing the interleaved arterioles and venules in the hippo-
campus (Fig. 2¢).

One essential improvement of this work is to apply the single-
vessel bSSFP-fMRI to detect the optogenetically evoked fMRI
signal in the rat hippocampus, demonstrating the deep brain
single-vessel hemodynamic mapping with fMRI beyond the
penetration depth of conventional optical imaging methods.
Following the BOLD fMRI experiment, the CBV-weighted single-
vessel fMRI was performed after the intravenous MION (iron
oxide particle) injection. Figure 2d shows the optical fiber
targeting the hippocampal CA1 region expressing ChR2. Upon
optogenetic activation, peak BOLD signals were primarily
overlapping with venule voxels, showing positive BOLD signals
from individual venules. Peak CBV-weighted signals were located

at arteriole voxels, showing negative CBV-weighted signals from
individual arterioles in the hippocampus (Fig. 2e, Supplementary
Movie 3). Besides the CBV-weighted single-vessel fMRI maps, we
also calculated the CBV percentage change (%) map based on
BOLD fMRI time courses acquired before the injection of MION
particles®!, showing positive %CBV changes from individual
arterioles (Supplementary Fig. 4). Figure 2f shows vessel-specific
mean hemodynamic BOLD and CBV-weighted responses upon
the optogenetic stimulation at varying durations and frequencies
of light pulses, demonstrating highly robust optogenetically
driven single-vessel fMRI signals in the hippocampus. It is also
noteworthy that the strong BOLD signal from the draining veins
through the lateral ventricle can be distinguished from the
hippocampal vasculature, showing a spatially more refined
hemodynamic mapping than the EPI-fMRI mapping in Fig. 1f.

Optogenetic single-vessel fMRI with concurrent Ca2* record-
ing. We performed a simultaneous bSSFP-based single-vessel
optogenetic fMRI and optical fiber Ca?* recording. Both optical
fibers were inserted to target the CA1 region, and the 2D bSSFP
slice was chosen to be 500 um away from the optical fiber along
the caudal-ventral axis (Fig. 3a), which avoided the potential
focal vascular blood flow regulation by direct light exposures,
Upon optogenetic activation, both BOLD and CBV-weighted
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Fig. 3 Concurrent fMRI and Ca2+ recording in the hippocampus. a Schematic drawing of the hippocampal single-vessel fMRI with two optical fibers (blue
arrow) for optogenetic stimulation and Ca2* recordings. A representative A-V map shows individual arterioles (bright dots, red markers) and venules

(dark dots, purple markers) on the same 2D slice. b Evoked BOLD (upper) and CBV-weighted (lower) fMRI maps and overlapping maps on the A-V map.
¢ Time courses of evoked BOLD and CBV-weighted fMRI signal from a single venule (upper) or arteriole (lower) ROl with the concurrent neuronal Ca2+
signal (illumination: 10 ms light pulse, 3 Hz, 8's, 5mW). Averaged time course of the fMRI signal and the evoked Ca2+ spike train. d A representative time
course of single-vessel BOLD and CBV-weighted fMRI signal changes with concurrent hippocampus SDL-Ca2+ responses (illumination: 10 ms light pulse,

3 Hz, 8s, 5mW (left); 10 ms light pulse, 3Hz, 8's, 5mW)

fMRI signals were detected from individual hippocampal venules
and arterioles with concurrent Ca?* transients following each
light pulse (Fig. 3a-c), showing highly correlated NVC events in
the hippocampus. Similar to the previous experiment, averaged
time courses of evoked BOLD and CBV-weighted signals showed
robust responses with altered amplitudes and durations from
individual venules and arterioles at varying durations (1, 2, 4, and
8s) and light pulse frequencies (1, 2, 3, and 5 Hz), which were
detected simultaneously with evoked neuronal Ca%* transients in
the hippocampus (Supplementary Fig. 5). These results demon-
strate the feasibility of multi-modal imaging of NVC events in the
hippocampus, linking the evoked Ca’*t transients from CAl
neuronal ensembles to the widely spread vessel-specific hemo-
dynamic responses in the sub-centimeter scale hippocampal
vasculature.

In contrast to the trains of Ca?* transients evoked by low-
frequency light pulses, the evoked Ca?™ signal did not return to
baseline between light pulses at a higher frequency, showing an
accumulative Ca?* plateau response corresponding to the high-
amplitude fMRI signal detected in hippocampal vessels (Fig. 3c,
Supplementary Fig. 5). Interestingly, we also observed a large-
scale hippocampal Ca?* transient, that is, the SDL-Ca?t
transient, at inter-stimulus intervals following optogenetic
stimulation with 3 or 5Hz light pulses at 8s stimulation-on
duration (Fig. 3d). The SDL-Ca?" transients coincided with the
spreading positive BOLD and negative CBV-weighted signals
during inter-stimulus intervals in the hippocampus (Fig. 3d).

As previously reported®2°3, the high-frequency optogenetic
activation (>10Hz) in the hippocampus leads to seizure-like
events in animals. The simultaneous LFP and fiber optic Ca2*
recordings also detected epileptic events as a train of strong LFP

deflections and concurrent Ca®* transients. These epileptic events
were often accompanied by a large amplitude SDL-Ca?* event in
the hippocampus (Fig. 4a), which was previously reported in the
cortex of both animal and human brains®»>>, but not with
concurrent fMRIL Interestingly, the epileptic Ca?t transients
could be elicited concurrently with SDL-Ca’t during inter-
stimulus intervals even with 3 and 5Hz light pulse stimulation,
followed by the spreading positive BOLD signal from individual
vessels in the hippocampus (Fig. 4b). Occasionally, after
spontaneous high-amplitude Ca?* events, evoked single-vessel
BOLD signals were diminished in the following 5-6 min and then
gradually recovered with reduced amplitude, indicating the
conventional depression pattern (Fig. 4b, trial #3). We have
systematically analyzed occurrence rates of the SDL and SLD with
seizure (SDL + seizure) events across multiple trials recoded from
rats, showing that the occurrence rate is dependent on the
optogenetic light pulse frequency and stimulation duration
(Fig. 4c). When the light pulse stimulation duration is longer
than 8 s, the occurrence rate of the SDL events (36.2 + 5.5%) was
significantly higher than that (12.5+3.8%, p=0.001) of the 4s
stimulation-on duration (Fig. 4c). These results demonstrate that
the multi-modal fMRI platform can detect both optogenetically
evoked and spontaneous SDL-Ca?t transients with specifically
coupled fMRI signals, presenting a unique scheme to investigate
the NVCe to varied hippocampal activities.

Vessel-specific NCE at different forms of Ca2* spikes. Different
from the random incidence of epileptic events (Fig. 4c, <4s, 2+
1.1%, =8, 3.5 + 1.2%), SDL-Ca2* events were often detected after
the first epoch of 8 s optogenetic stimulation across multiple trials
of several animals (=50% induction rate, Fig. 4c, 8, 5Hz, and
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>10 Hz conditions). It enabled to statistically compare the spa-
tiotemporal hemodynamic response pattern and the NVCe
between the SDL and the optogenetically evoked Ca™ transients
in the hippocampal vasculature. The bSSFP-fMRI method was
used to characterize the distinct spatiotemporal hemodynamic
patterns of the single-vessel fMRI signal coupled to either opto-
genetically evoked or SDL-Ca?™ events in the hippocampus. The
single-vessel hippocampal A-V map can be used to specify the
relative position of individual vessels with respect to the optical
fiber tip (Fig. 5a). First, BOLD fMRI signals from individual
venules were extracted to show the temporal dynamics corre-
sponding to different Ca2t events. In contrast to the evoked
BOLD signals that co-occurred instantaneously across different
hippocampal penetrating venules upon the optogenetic stimula-
tion, the SDL-Ca?*-coupled BOLD signals presented a propa-
gation delay from individual venules as a function of distance to
the optical fiber. Figure 5b shows the early onset and time to peak
(TTP) from the venule closest to the optical fiber (Vy), and the
delayed onset time and TTP from hippocampal venules aligned
further away from the optical fiber (V_, _,, V;,). BOLD
signal propagation velocity was estimated by measuring TTP
or the half-peak onset time (#;,,) across different hippocampal
venules (Vprp = 4.58 + 0.47 mm/min; Vi, = 5.94 + 1.31 mm/min)

(Fig. 5¢), which fell into the top-end SD propagation speed range
(1-6 mm/s) detected in the cortex®*->6, In addition, time-lapsed

6 NATURE COMMUNICATIONS | _### #

fMRI maps show slowly spreading BOLD signals from individual
venules through the sub-centimeter scale hippocampal vascu-
lature corresponding to SDL-Ca?* events, which are different
from the optogenetic activation pattern specific to evoked Ca®*
events (Fig. 5d, Supplementary Movie 4). Also noteworthy is the
fact that although peak BOLD amplitudes were similar between
the two different forms of Ca?* events, the evoked Ca?* transient
amplitude was significantly lower than that of the SDL-Ca’*
event across different trials from the same animal and among
different animals (Fig. 5e). These results suggested that varied
NVC events are coupled to the optogenetically evoked and SDL-
Ca?* signal, and can be directly measured with the multi-modal
single-vessel fMRI method in the hippocampus from the same
experimental trials.

Concurrent single-vessel fMRI and Ca?* signals can be used to
estimate the efficiency of the vessel-specific NVC according to the
different forms of neuronal activity. In contrast to the conven-
tional general linear model (GLM) that fits the fMRI signal with
the ideal time course, describing the hemodynamic function
derived from the stimulation paradigm, we analyzed the
concurrent Ca’t signal amplitude and applied an amplitude
modulated (AM) response model to calculate f3-coefficients, as
estimates of the NVCe to the optogenetically evoked and SDL-
Ca?T events (Supplementary Fig. 6, see Methods section for
details)?!. Figure 5f demonstrates NVCe f3 maps of the two forms
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significantly lower than that of SDL-Ca2* spikes in the hippocampus (left: *p =

6.22e — 11,10 trials from a representative rat; right: *p = 0.028, n = 4 rats).

f NVCe coefficient map for both optogenetically evoked and SDL-Ca2* events. g Z-score normalized NVC coefficients of optogenetically evoked events are
significantly higher than those of SDL-Ca2+ events (n = 4 rats, *p = 0.003). h Scatter plot of z-score normalized coefficients from optogenetically evoked
vs. SDL-Ca2+ events from each trial in four representative rats. i Z-score normalized NV Ce coefficients from individual vessels were plotted as a function of
vessel distance for both optogenetically evoked and SDL-Ca2* events in a representative rat

of Ca?t events, showing peak NVCe B values on individual
hippocampal venules. Mean vessel-specific NVCe f values of
optogenetically evoked Ca?* events were significantly higher than
those of SDL-Ca2t events (Fig. 5g). To better quantify the spatial
distribution of the NVCe across hippocampal vasculature, we
plotted -coefficients from individual venules as a function of the
relative distance to V, (Fig. 5i). Despite the fact that the SDL-
Ca2t events were elicited in the hippocampal structure close to
Vo, the NVCe f values were found to be similar and evenly
distributed across the hippocampal vasculature, whereas NVCe 3
values of optogenetically evoked Ca?* events showed a distance-
dependent distribution (Fig. 5h, i, scatter plot of NVCe f3 values
from all hippocampal vessels through multiple trials of four
animals). These results demonstrate altered NVCe linking to
normal and SDL hippocampal activity detected by the multi-
modal fMRI platform.

Discussion

Here, we developed a multi-modal fMRI platform to investigate
detailed, spatiotemporally resolved NVC events in rat hippo-
campus. By implementing simultaneous optogenetic single-vessel
fMRI and optical fiber Ca?* recordings, distinct hemodynamic
spatiotemporal patterns across the sub-centimeter hippocampal
vasculature could be directly characterized based on concurrent
neuronal Ca?t signals, for example, optogenetically evoked or

SDL-Ca?* events, for the first time. We believe that this method
provides a unique multi-modal/cross-scale mapping scheme for
the study of neurovascular activity in the hippocampus in both
normal and pathological conditions.

Despite extensive imaging studies on hippocampal neural
activity, the actual information flow from neuronal activity to the
hippocampal neurovascular system, the modulation of which
provides the vast majority of fMRI signals, has seldom been taken
into account in investigations attempting to relate behavior to the
function or dysfunction of this structure3%3357. One major bar-
rier is our ability to access large-scale hippocampal vascular
dynamics in vivo with minimally invasive procedures, preserving
NVC function. Three critical features needed to be solved for
existing neuroimaging methods: large field of view (FOV), high
resolution to detect the vessel-specific hemodynamic signal with
sufficient signal-to-noise ratio (SNR), and accessibility to deep
brain nuclei. Although wide-field two-photon or the newly
developed three-photon microscopy has significantly enlarged the
FOV and the penetration depth for in vivo brain optical imaging
with cellular resolution3-41:98, it remains challenging to acquire
vascular hemodynamic signaling through the sub-centimeter
hippocampal structure in rats and higher mammals.

The fMRI signal directly represents vascular hemodynamic
responses to indicate large-scale brain function. Our work and
other animal fMRI studies have demonstrated the optogenetically
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evoked hippocampal BOLD signal in the context of whole-brain
functional mapping®2°°. By improving the spatial resolution of
the fMRI image, it is possible to detect fMRI signals from indi-
vidual penetrating vessels through the cortex!7-18:6061, The real
power of single-vessel fMRI can be further released when tar-
geting large deep brain regions beyond the penetration depth of
conventional optical methods. To achieve sufficient SNR, the
bSSFP-based single-vessel fMRI method was applied with an
implanted surface RF coil?2. The RF coil implantation could be
merged with the optical fiber targeting the hippocampus during
the surgical procedure. The RF coil implanted to the skull sub-
stantially increased Bl field sensitivity and prevented additional
signal loss due to the extra space occupied for fiber fixation
between the surface coil and the brain, which can be readily
implemented by MRI users with 7 to 11.7 T scanners. This
optimized multi-modal fMRI platform employed optogenetic
single-vessel fMRI mapping to detect venule-specific BOLD and
arteriole-specific CBV-weighted signals from individual vessels
aligned in parallel through the hippocampal structure (Fig. 2),
which have been previously described only by histological stu-
dies*>43, We delivered optical fiber-mediated optogenetic sti-
mulation using light pulses with varied frequencies and power
levels to specify BOLD and CBV-weighted fMRI signals from
individual hippocampal vessels (Supplementary Fig. 4), as well as
evoked LFP spikes and Ca?* transients (Supplementary Fig. 1),
representing highly correlated NVC features in the hippocampus.
Single-vessel fMRI provides a unique mapping scheme to identify
large-spread hemodynamic response patterns in the hippocampal
vasculature.

Optogenetic light exposure may contribute directly to hemo-
dynamic responses in the hippocampus. As reported by Christie
et al.#8, direct light exposure can directly regulate blood flow
through arteriole dilation following the reduced Ca2* signal from
smooth muscle cells, similar to NVC events but independent of
neuroglial activity. Our work and a previous optogenetic fMRI
study® on naive animals mainly detect the susceptibility-based
non-physiological MRI signal changes sensitive to the light-
induced heating effect, which can shadow the MRI signal relevant
to blood flow changes as detected by ultrasound Doppler mea-
surement. In addition, the direct heating effect through light
illumination can alter the spiking activity in the animal brain®2.
To avoid the confounding effects of light exposure-induced blood
flow regulation, we have aligned the single-vessel 2D slice at least
500 um away from the optical fiber tip. Also, both two-photon
and single-vessel fMRI studies have shown that the spatial scale of
the hemodynamic coherence in the arteriole network is <2 mm
spatial scale in the cortex?>°8. The spatial distribution of light
exposure-induced flow regulation can be controlled using light
pulses with low frequency and power, which could further reduce
direct light-exposure contribution to the sub-centimeter scale
hippocampal vascular hemodynamic responses and heating-
induced neuronal activity modulation.

Using GCaMP6f, optogenetically evoked hippocampal neuro-
nal Ca™ transients showed similar temporal dynamics to cortical
Ca2* transients detected by the optical fiber in anesthetized rats
upon sensory stimulation?!. This temporal feature makes it
possible to distinguish individual Ca®* transients from light
pulse-induced artifacts, which has been previously reported in the
Opto-fMRI with Ca?* dye (OGB-1) sensing-based optical fiber
measurements28, To reduce the spectral signal cross-talk, we
applied a red-shifted ChR2 variant (C1V1) to alter the optoge-
netic light pulse up to 590 nm (Supplementary Fig. 3). Although
the artifacts can be significantly reduced, the remaining light
pulse signals detected by the photomultiplier can be caused by
imperfect filtering of the dichroic filter. It is noteworthy that the
optogenetic light pulses were delivered at 1-5mW from the

200 um optical fiber tip, which is significantly higher than the
power used for GCaMP fluorescent excitation (5-10 pW)?2L. Since
the optical excitation was delivered at a low power level for
continuous Ca®* signal recording, its effect on optogenetic acti-
vation is negligible.

To better validate hippocampal Ca2* transients free of opto-
genetic light pulse artifacts, we also observed individual Ca®*
transients coinciding with interictal LFP spikes during seizure
induction following high-frequency optogenetic activation
(Fig. 4). These interictal spikes paired with the train of sponta-
neous Ca?T transients have also been observed in the mouse
cortex with an optogenetically induced seizure®3. Also, we
observed robust SDL-Ca?* events during inter-stimulus intervals
in the hippocampus following 8 s (=5 Hz) optogenetic stimulation
(Fig. 4). These SDL-Ca?™ events were recently reported to follow
trains of interictal spikes during the optogenetically induced
seizure®? in the mouse cortex, which could be reliably detected in
the hippocampus following optogenetic stimulation with fMRI. In
our study, the number of seizure events detected by calcium
recordings is much smaller than that of the SDL events, which
might be due to the lack of sensitivity of calcium recording to
detect interictal spikes through the 8-m optical fiber. The multi-
modal fMRI mapping scheme allows us to specify unique NVC
patterns according to different formats of hippocampal activity.

The hippocampal CA1 region has been considered as a key
component in the framework of epilepsy induction and treat-
ment>3>7%4, Previous hippocampal Opto-fMRI studies have also
shown the seizure behavior in animals following high-frequency
light exposure, demonstrating broad hippocampal BOLD fMRI
spatial patterns and global hemodynamic effects concurrent with
epileptic events®>%>, which are different from the evoked hippo-
campal activity with Opto-fMRI*%%0. Epileptic events observed in
the cortex are usually accompanied by cortical spreading
depression®*>>03, which is typically studied with fMRI by direct
KCI topical treatment or focal ischemia in animal brains®’. In the
hippocampus, we detected robust SDL-Ca* events independent
of epileptic activity in inter-stimulus intervals when 3-5Hz
optogenetic light pulses were used (Fig. 3d, Supplementary
Fig. 5B), which have dominated the random incidence of epileptic
events using similar stimulation paradigm in the hippocampus.
The optogenetically induced cortical spreading depression has
been reported in the mouse cortex without seizure induction®8.
These SDL-Ca? ™ events link to specific spatiotemporal patterns of
hippocampal vascular hemodynamic responses. Intermediate
characteristics of SDL-Ca%t-specific NVC events can be quanti-
tatively examined to bridge the normal condition to the typical
spreading depression, as well as hippocampal epileptic events
despite their scarce occurrence in normal animals.

Coupled to SDL-Ca’* events, the BOLD signal propagation
through individual hippocampal vessels has a 4-6 mm/min
velocity in a ~6-8 mm spatial scale (Fig. 5c). This speed falls to
the relatively top-end propagation speed range of cortical SD
detected from the neuronal network>#->6:68.69 This observation
might be because of intrinsic architectural differences between the
cortex and the hippocampus; the latter is highly susceptible to SD
and may sustain faster SD propagation speed’%”!. Kunkler et al.”?
have observed Ca?* waves occurring in neurons (~6 mm/min)
and astrocytes (~4 mm/min) during SD initiation and propaga-
tion in hippocampal organ cultures. Meanwhile, in contrast to
astrocytic Ca?t waves propagation speed of (2-3.3 mm/min)
related to cortical SD in both rat and mouse neocortex%7374,
Heuser et al.”> also reported a 6-8 mm/min propagation speed of
SD Ca?t waves from both neurons and astrocytes in the hippo-
campal CA1 region. Interestingly, unique, spontaneous astrocytic
Ca2T waves, which have been reported to propagate at ~4 mm/
min in the hippocampus, do not show the long-term spreading
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depression features’®. It is noteworthy that the neuronal Ca2*
signal was only acquired through the single optical fiber inserted
into the hippocampus with limited coverage of neuronal activa-
tion in comparison to the large-scale hippocampal vascular
dynamic mapping with single-vessel fMRI. To better characterize
neuron-glial-vascular interaction at various brain states in the
hippocampus, we will apply the multiple fiber insertion with
single-vessel fMRI to image transgenic mice expressing GCaMP
specifically in astrocytes’”, as well as the right-shifted calcium
indicator in neurons’8, with a multi-slice single-vessel fMRI
method to cover the three-dimensional hippocampal structure.

Besides the similarity of the propagation speed of SDL-Ca2t-
specific hemodynamic responses to SD events reported in the
hippocampus, the baseline Ca* signal was reduced following the
SDL-Ca?* event for 5-6min (Fig. 3d). Nevertheless, we only
detected the correlated BOLD signal increase and CBV-weighted
signal decrease (due to vasodilation), but no clear sign of
vasoconstriction-based fMRI signal change was detected. Also,
suppressed fMRI signals recovered in 3-6 min in most of the
SDL-Ca?* events (except for one dramatic case showing a long-
term depression over 10 min, which was shown in Fig. 4b).
Interestingly, although no clear vasoconstriction-based fMRI
signal was detected following the SDL-Ca?T event, significantly
reduced NVCe was detected when comparing to the optogen-
etically evoked Ca2* transients (Fig. 5). Consistent with impaired
NVC during cortical SD>%7%, we provide a multi-modal fMRI
platform to directly measure altered NVCe directly linked to
concurrent SDL-Ca?™ events in the hippocampus.

In summary, we have developed a multi-modal fMRI platform
to acquire concurrent neuronal Ca?T and single-vessel fMRI
signal in a subcortical brain region, for example, the hippo-
campus. This method allows for detecting hemodynamic fMRI
responses from individual vessels through the sub-centimeter
hippocampal vasculature. In particular, when neuronal activation
is elicited in the hippocampus, large-scale vascular hemodynamic
responses can be represented based on the estimated NVCe. This
multi-modal fMRI platform will possibly be used to specify dis-
tinct NVC events through the hippocampal structure in animal
models at various disease states.

Methods

Animal preparation and instrument setup. All surgical and experimental pro-
cedures reported in this paper were approved by local authorities (Regierung-
spraesidium, Tiibingen Referat 35, Veterindrwesen, Leiter Dr. Maas) and were in
full compliance with guidelines of the European Community (EUVD 86/609/EEC)
for the care and use of laboratory animals. Experimental animals were rodents,
specifically Sprague-Dawley male rats, ~3 to 4 weeks old, or ~90 g, provided by
Charles River Laboratories in Germany. The rats were housed in transparent
Plexiglass cages (381 x 513 x 256 mm?) under conditions of well-controlled
humidity and temperature. A 12-12 h on/off lighting cycle was maintained to
assure an undisturbed circadian rhythm. Food and water were obtainable ad libi-
tum. A total of 37 male Sprague-Dawley rats were used at 2-3 months of age. Five
rats were imaged under 14 T at the Max Planck Institute (both BOLD and CBV-
weighted fMRI data with A-V maps were acquired from four of five rats). In 12
rats, optogenetically driven neuronal calcium signals were concurrently recorded
with BOLD/CBV-weighted signals (in 4 of these 12 rats optogenetically evoked
responses and SDL-Ca?* calcium events were acquired). Twenty rats were used for
concurrent optogenetically driven electrophysiological and neuronal calcium
recordings. For the SDL and seizure induction rate calculation, 4 of the 32 rats were
not included due to a failed calcium signal detection from hippocampal neurons. If
the optical fiber insertion caused severe micro-bleeding in the hippocampus, which
led to poor calcium recording and optogenetic activation, the data acquired from
that rat was not included in the statistical analysis.

Viral injection. After 1 week habitation, rats were injected with the non-replicating
AAV vectors into BC and hippocampus (AAV5.Syn.GCaMP6f.WPRE.SV40:
Addgenel00837-AAV5; AAV5.CAG.hChR2 (H134R)-mCherry. WPRE.SV40:
Addgenel100054-AAV5; AAV9-CaMKIIa-C1V1 (t/t)-TS-EYFP: Addgene35499-
AAV9). Viral vectors were procured from the University of Pennsylvania Vector
Core. The injection process was carried out under isoflurane anesthesia with an
induction concentration of 5.0% and a maintenance concentration of 1.5-2.0% in

an oxygen-enhanced gas (30% oxygen). Following their stabilization, the rats were
secured in a stereotaxic apparatus (Model 900, David Kopf Instruments). Eyes of
the rats were protected with an ophthalmic ointment (Puralube), and the level of
anesthesia was regularly checked by testing toe and tail pinch reflexes. With a
midline incision, one small craniotomy (1-2 mm) was performed above the region
of interest by using a dissecting microscope (Leica) and a pneumatic drill (Ideal
Micro Drill, Harvard Apparatus). A 10 pL syringe (NanoFil, World Precision
Instruments Inc.) with a 35 gauge beveled metal needle (World Precision Instru-
ments Inc.) were placed in the stereotactic frame and slowly lowered towards target
sites (BC: caudal, 2.5 mm, lateral, 5.0 mm, and ventral, 1.5~0.9 mm; hippocampus:
caudal, 4.2 mm, lateral, 2.8 mm, and ventral, 2.75-2.65 mm, respectively, from
bregma). The flow rate of the virus injection was controlled by an infusion pump
(Pumpl1 Elite, Harvard Apparatus) at a speed of 0.1 uL/min. The total injection
volume was around 0.2-0.6 uL (ChR2)/0.6-1 uL (GCaMP6f). After the injection,
the syringe needle was kept in place for an additional 10 min before being slowly
withdrawn. The hole was sealed by bone wax (W31G, Ethicon), and the incision
was sutured. Ketoprofen (5 mg/kg, q.d. (one a day)) was subcutaneously injected to
relieve postoperative pain for 3 days after surgery. fMRI experiments were per-
formed 4-8 weeks after the injection to ensure the expression of the AAV viral
vectors.

Optical fiber/electrode preparation and implantation. Optical stimulation and
electrophysiological recordings were performed with a 2 m (bench experiment) or
8 m (fMRI experiment) optic fiber (FT200-EMT, NA = 0.39, 200 um, Thorlabs).
The coating of both ends of the optical fiber was stripped off. One end was glued
into an FC/PC connector (Thorlabs), and the other end was carefully polished by
using polishing sand papers with appropriately selected grit size (LF1P/3P/5P,
Thorlabs). Optical quality of the polishing interface was confirmed by using a fiber
inspection microscope (FS200, Thorlabs). For simultaneous Ca?* recording and
fMRI, two fibers (one for optical stimulation, the other for Ca?* recording) were
closely glued (454, Loctite) together. For simultaneous Ca?* and electro-
physiological recording, a Tungsten electrode (1 MQ, ~100 pum, FHC) was closely
glued to the optical fiber tips. The dura was carefully removed, the optical fibers
with the electrode were slowly inserted into either the BC or the hippocampus. The
reference and ground were placed on the screws, which were fixed above the
cerebellum. After implantation, the fibers with the electrode were glued to the skull
for acute terminal experiments.

Animal preparation for fMRI. The experiments were described in the previous
studies!84>61, Briefly, after induction of anesthesia, animals were endotracheally
intubated with a mechanical ventilator (SAR-830, CWE). Plastic catheters (PE50,
INSTECH) were carefully implanted into the right femoral artery/vein of rats to
administer drugs and monitor arterial blood gases. After catheterization, the rats
were secured into a stereotaxic apparatus. One small craniotomy (1-2 mm) was
performed just above the regions of the virus injection and the dura was carefully
removed. Two optical fibers were slowly inserted into the virus expression regions
in the hippocampus, and the fibers together with a custom-made coil were fixed
above the skull by using super glue (454, Loctite). Around 30 min for fixation, after
the injection of a bolus of a-chloralose (60 mg/kg, intravenously (i.v.)), the rats
were transferred into the MR scanner (14T, Bruker). Maintenance anesthesia was
switched from isoflurane to continuous infusion of a-chloralose (infusion rate:
26.5 mg/kg/h). Throughout the whole experiment, the rectal temperature of the rat
was monitored and maintained at around 37 °C by using a feedback heating sys-
tem. All relevant physiological parameters were continuously monitored, including
rectal temperature, arterial blood pressure (Biopac 150, Biopac Systems Inc.),
pressure of the tidal ventilation (SAR-830, CWE), and end-tidal CO, (capnometer,
Novametrix). Arterial blood gas was measured regularly to guide physiological
status adjustments by changing the respiratory volume or administering the
sodium bicarbonate (8.4%, Braun) to maintain normal pH levels. For a-chloralose
anesthetized animals, a muscle relaxant (pancuronium bromide, 1 mg/kg/h) was
intravenously injected to minimize motion artifacts. Dextran-coated iron oxide
(15 mg of Fe/kg, BioPAL, MA, i.v.) was additionally injected for obtaining high
SNR CBV-weighted signal.

Optogenetic-driven Ca2* with electrophysiological recording. Around

4-8 weeks after virus injection, LFP signal and Ca?" signal were simultaneously
recorded in a terminal experiment. Virus injection coordinates were first confirmed
by a FLASH (fast low angle shot) anatomical MRI image before surgery. Anes-
thetics and surgical preparation procedures were similar to those of the fMRI
experiments. After insertion, the LFP signal was amplified using a BioPac
EEG100C module (gain factor, 5000, bandpass filter, 0.02-100 Hz, sampling rate,
5000/s). The GCaMP6f-mediated Ca?* signal was recorded by the analog input
module of the BioPac 150 system. For electrical stimulation, electrodes were placed
into rat whisker pads and later delivered electrical pulse sequences (1.0-2.0 mA,
330 ps duration repeated at 1-5 Hz) by using a high voltage stimulator (A360LA,
WPI). Stimulation was controlled by the Master-9 AMPI system (Jerusalem, Israel)
based on the stimulus paradigm, and triggering pulses were recorded by the analog
input module of the BioPac 150 system (sampling rate, 5000/s). For optical sti-
mulation, light pulses were delivered through the 473 nm laser (CNI, China). An
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analog module was applied to trigger the light pulse to give the optical stimulation
with different pulse durations (1, 2, 4, and 8 s). Light intensity from the fiber tip
was measured by using fiber optical power meters (PM20A, Thorlabs), which were
controlled from 1 to 36 mW (light power higher than 40 mW was beyond the
measurement range).

Perfusion, section, and microscope. In all terminal experiments, after completion
of the data acquisition, rats were euthanized under deep anesthesia with isoflurane
(5%). They were subsequently transcardially perfused with 0.1 M ice-cold phos-
phate-buffered saline (PBS, Gibco) and 4% paraformaldehyde (PFA). Brains were
carefully removed from the skulls and placed into 4% PFA for post fixation (4 °C,
overnight). Then, they were cryoprotected in 30% sucrose in PBS at 4 °C for

2-3 days before being flash frozen in OCT on dry ice and finally stored at —80 °C.
Brain slices were sectioned in 30 um thickness using a cryostat (CM1860, Leica).
Brain slices were mounted on glass slides (Super-frost, Fisherbrand) and covered
with coverslips. A mounting medium with DAPI (4',6-diamidino-2-phenylindole;
VectaShield, Vector) was used to protect the fluorescence signal and to stain nuclei.
Wide-field images were acquired to assess the expression of ChR2/GCaMP in the
BC and the hippocampus with a microscope (Zeiss). The images were minimally
processed by Image]J to enhance the brightness for visualization purposes.

The optical setup for optical fiber Ca2* recordings. The light path was built
based on a previous report (Fig. 1a)21-22. The light source comes from a 488 nm
laser (MBL-III, CNI). Light beams were first reflected through a dichroic mirror
(F48-487, reflection 471-491 nm, >94%, transmission 500-1200 nm, >93%, AHF).
Then, by using an objective lens fixed on the fiber launch (MBT613D/M, Thor-
labs), the light beam was focused on the optical fiber (FT200-EMT, NA = 0.39,
200 um, Thorlabs). The laser intensity was measured at the optical fiber tip (5 yW
for neuronal calcium recording) by an optical power meter (PM20A, Thorlabs).
The same optical fiber guided the emitted fluorescent signal back to the light path.
The light beam was successively passed through a dichroic mirror and an optical
filter (F37-516, 500-550 nm bandpass, AHF). By using a tube lens (AC254-030-A1-
ML, Thorlabs), the GCaMP6-mediated fluorescent signal was coupled to a Peltier-
cooled SiPM with a transimpedance preamplifier (MiniSM-10035-X08, SensL).
Before being recorded by the analog input module of the Biopac 150 system, the
signal from the photomultiplier was amplified by a voltage amplifier (DHPVA-100,
Femto).

MRI and fMRI procedures. All images were obtained by using a 14T/26 cm
horizontal-bore magnet (Magnex Scientific) interfaced through the Bruker Avance
III (Bruker). The scanner has a 12 cm Magnet gradient set with a strength of 100
Gauss per cm (G/cm), and a 150 ps rise time (Resonance Research Inc.). Home-
made surface transceiver RF coils with an internal diameter of 7.5 and 21 mm,
respectively, were used for fMRI image acquisition.

Echo planar imaging fMRI. EPI image acquisition was preceded by FASTMAP
shimming (i.e., measuring BO field plots along projections instead of mapping
whole imaging planes). By adjustments of echo spacing, symmetry, and setting up
the BO compensation, it considerably increases the speed and performance. By
using the custom-made single surface coil, parameters of the 3D gradient echo
sequence were as below: volume TR = 1.5 s; TE = 14 ms; bandwidth: 170 kHz; flip
angle: 12°% matrix: 64 x 64 x 16; in-plane resolution: 300 x 300 um?; slice thickness:
500 um. The paradigm consisted of 360 dummy scans enabling the emergence of
reaching the steady state, 10 pre-stimulation scans, 3 scans during stimulation, and
12 post-stimulation scans with 8 epochs for each run or 5 scans during stimulation
and 25 post-stimulation scans for 10 epochs. For anatomical images, the RARE
(rapid imaging with refocused echoes) sequence was implemented to acquire
images with the same geometry of the fMRI images.

Balanced steady-state free precession fMRI. The bSSFP-fMRI method was
applied to acquire evoked fMRI signals using the following parameters: TR:

11.7 ms; TE: 5.85 ms; matrix: 128 x 128; FOV: 12.8 x 12.8 mm?; in-plane resolution:
100 x 100 pmz; flip angle: 22° (BOLD); TR: 10.4 ms; TE: 5.2 ms; matrix: 96 X 96;
FOV: 12.8 x 12.8 mm?; in-plane resolution: 130 x 130 um?; flip angle: 17° (CBV);
slice thickness: 500 um. The paradigm consisted of 300 dummy scans to reach the
steady state, 25 pre-stimulation scans, 1 scan during stimulation, and 14 post-
stimulation scans with a total of 8 epochs for each run, 1 scan during stimulation,
and 29 post-stimulation scans with a total of 10 epochs for each run, and 1 scan
during stimulation and 79 post-stimulation scans with a total of 3 epochs for each
run. CBV-weighted fMRI signals were acquired after intravenous injection of
dextran-coated iron oxide (BioPAL, MA, i.v.).

Single-vessel MGE Imaging. For the detection of the individual arterioles and
venules in rat hippocampus, a 2D MGE sequence was applied with the following
parameters: TR: 50 ms; TE: 2.5, 5.5, 11.5, 14.5, 17.5, 17.5, 20.5, 23.5 ms; flip angle:
58° matrix: 256 x 192; in-plane resolution: 67 x 67 um?; slice thickness: 500 pum.
The MGE images were averaged from the 2nd echo to the 5th/6th echo to get the
A-V map (Fig. 2¢).

Data analysis and statistics. Preprocessing and analysis of functional imaging
data were carried out by using the software package, Analysis of Functional
NeuroImages (AFNI) (NIH, Bethesda, MD). Evoked calcium signals were pro-
cessed in Matlab (MATLAB, MathWorks, USA).

For calcium data analysis, neuronal calcium signals were low-pass filtered
(100 Hz) by zero-phase shift digital filtering. The relative percentage change of the
calcium fluorescence (AF/F) was defined as (F — F0)/F0, where FO is the baseline
fluorescent signal.

For the EPI-fMRI analysis, EPI images were aligned to anatomical datasets,
which were registered to template images across the trials. Baselines of EPI images
were normalized to 100 for multiple trials of block-design statistical analysis of EPI
time courses.

For bSSFP-fMRI analysis, the tag-based registration method was used to register
the single-vessel functional map with the A-V map. We normalized time courses of
bSSFP-fMRI signals from SDL-Ca2* events by scaling the maximum to 1 (Fig. 5b).
GLM analysis was applied to estimate evoked and SDL-Ca?* NVCe f3-coefficients.
B Estimates were used to indicate the amplitude of the BOLD and CBV-weighted
responses in 3 maps. For the CBV percentage (%) map, the %CBV was estimated
based on the equation: %CBV = In(Ske-base/ Sstin)/I0(Sge-pre/Ske-base)- The Spe-pase is
the baseline level fMRI signal after iron oxide particle injection, and Sge.pr. is the
baseline level fMRI signal before iron oxide particle injection®l.

For the analysis of fMRI signals recorded simultaneously with hippocampal
SDL-Ca?* transients, an AM response model based on an AFNI script was
implemented to perform GLM analysis.

The AM response model is given by:

Tam (1) = zl(:h(t — tk)ay.,
K=1

where a, is the value of kth amplitude of hippocampal SDL Ca?* transient. A(t) is
the hemodynamic response function based on the y variate function implemented
by the AFNI BLOCK function:

min(t,L)
h(t) =

"0

ste™ /[4*e*)ds,

where L is the duration of the response. A varied duration (L) was applied to test
the goodness of fit for the general linear model with ¢ statistics reported in
Supplementary Fig. 6. Both NVCe f-coefficients were estimated simultaneously,
using GLM analysis implemented in the AFNI 3dDeconvolve function. The
response regressors are shown in the equation:

Y(t) = Bih(t) + Boram () + ¢,

where B, is the optogenetically evoked coefficient and f3, is the SDL-Ca?*
coefficient. ¢ is the error term. Polynomial terms regressing the baseline drift are
not shown. The calculated 3-coefficient was represented in a voxel-wise manner, as
a 3 map, which can be overlapped on the A-V map of the 2D hippocampal slice in
Fig. 5f or Supplementary Fig. 6D.

Evoked NVCe f-coefficients and SDL-Ca2t NVCe f-coefficients were
normalized within each trial to have zero mean and unit variance. Coefficients were
scaled to the range 0-1 using the minimal and maximal values (Fig. 5g, h).
Student’s t test (two-tailed) was performed for group analysis, to compare the
calcium AF/F (Fig. 5e) or the normalized NVCe B-coefficient (Fig. 5g) between
optogenetically evoked responses and SDL-Ca?* events in calcium and fMRI data.
Also, one-way analysis of variance was performed to examine the goodness of fit
for the hemodynamic function with varied duration. Data with error bars were
displayed as means + SEM. P values <0.05 were considered statistically significant.
No blinding and randomization design was needed in this work.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Raw data can be provided upon email request to the corresponding author. Excel files are
included for each quantitative plot included in main figures. Source data underlying Figs.
2f, 4c, 5c¢, e, g-i are provided as a Source Data file. The data presented in the figures and
other summary level data are contained within the Supplementary Files. Further
information on research design is available in the Nature Research Reporting Summary
linked to this article.

Code availability

AFNI software (NIH, USA) and Matlab (MATLAB, MathWorks, USA) were used to
process fMRI and simultaneously acquired calcium signals, respectively. Relevant source
codes can be downloaded through https://afni.nimh.nih.gov/afni/. Related image
processing codes can be provided upon direct email request to the corresponding author.
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Supplementary Figure 1. Optogenetically evoked LFP and GCamp6f-mediated Ca?*
recording in the hippocampus.

A. Optogenetically evoked LFP traces with 10 ms light pulse stimulation at different powers (1-36
mW) averaged from trails with 3 Hz light pulse stimulation paradigm and frequencies (0.5-10 Hz)
averaged from trails with 14 mW power of the light pulse (4 s on with 16 s off repeated for 20
times).

B. Optogenetically evoked neuronal Ca?* traces with 10 ms light pulse stimulation at different
stimulation on durations (1, 2, 4, 8 s) and frequencies (1-3 Hz) from experimental trails with each
epoch in 20 s (1-4s on) and 45 s (8s on) repeated for 20 times.
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Supplementary Figure 2. Blue light-evoked BO offset-induced MRI signal changes close
to the fiber tip in the naive rat hippocampus.

A. Representative color-coded EPI-fMRI maps at different powers (6->40 mW) (illumination: 10
ms light pulse, 10 Hz, 8 s).

B. Averaged color-coded EPI-fMRI map from different powers (13, 23, 36, >40 mW) (illumination:
10 ms light pulse, 10 Hz, 8 s).

C. Averaged EPI-fMRI time courses from optical fiber tip (upper) and hippocampus (lower) at
different stimulation powers (6->40 mW), averaged EPI-fMRI time courses from all the different
powers (23, 36, >40 mW) (middle), and ROIs in blue contour (optic fiber tip) and red contour
(hippocampus) of the MRI images (right).
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Supplementary Figure 3. Simultaneous C1V1-evoked GCamp6f-mediated Ca?* recording
with LFP or EPI-fMRI in the hippocampus.

A. Simultaneous LFP (blue) and Ca?* signal (green) traces from neurons expressing C1V1 in the
hippocampus with optogenetic stimulation (illumination: 10 ms light pulse, 3 Hz, 8 s, 5 mW, 590
nm) with enlarged view outlined in the red box.

B. Immunohistological staining of C1V1 and Gcamp6f co-expressed in the hippocampus (left),
and the T2*weighted (T2*-W) image shows the optical fiber (red arrow) inserted into the
hippocampus.

C. A representative color-coded BOLD-fMRI map shows the optogenetically activated
hippocampus through C1V1 (illumination: 10 ms light pulse, 3 Hz, 8 s, 5 mW, 590 nm).

D. The BOLD-fMRI time course from a single voxel in hippocampus is plotted in a block-design

paradigm (12 epochs).
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Supplementary Figure 4. The Optogenetically driven hippocampal single-vessel CBV %
map.

A. Representative 2D A-V map of the hippocampal vasculature.

B. The CBV-weighted fMRI map shows the T2*-weighted signal changes from the individual
hippocampal arterioles (bright dots). The time courses of the CBV-w signal from arterioles voxels
(3x3 windows, blue box) show the negative signal changes per epoch of the stimulation paradigm.
C. The CBV % fMRI map shows the percent CBV signal changes from the individual hippocampal
arterioles (bright dots). The time courses of the CBV % signal from arterioles voxels (3x3 windows,

red box) show the positive signal changes per epoch of the stimulation paradigm.
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Supplementary Figure 5. Simultaneous single-vessel BOLD/CBV fMRI and Ca?*recordings
in the hippocampus with different optogenetic stimulation paradigms.

A. Stimulation duration-dependent BOLD-fMRI with concurrent Ca?* recordings (1, 2, 4, 8 s).

B. Stimulation frequency-dependent BOLD-fMRI with concurrent Ca?* recordings (1, 2, 3, 5 Hz).
C. Stimulation duration-dependent CBV-fMRI with concurrent Ca?* recordings (1, 2, 4, 8 s).

D. Stimulation frequency-dependent CBV-fMRI with concurrent Ca?* recordings (1, 2, 3, 5 Hz).
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Supplementary Figure 6. The flow diagram to calculate the SDL-Ca?* signal-based single-
vessel BOLD fMRI correlation map.

A. Neuronal Ca?" signals and single-vessel BOLD fMRI signals were acquired simultaneously
during SDL-Ca?" events. A representative time course of the neuronal Ca?* signal shows the
optogenetically evoked Ca?* signal and the SDL-Ca?* signal with enlarged views of these two
events (blue and orange box).

B. Peak timing and amplitudes of the optogenetically evoked and SDL-Ca?" events were used to
create the regressors for the single-vessel BOLD fMRI correlation.

C. Amplitude modulated BOLD response models are generated base on the Evoked/SDL-Ca?*-
based regressors. The ideal functions (HRF models) of the representative time course of
Evoked/SDL-Ca?"* signal are represented with varied duration (L).

D. Voxel-wise correlation maps of the single-vessel BOLD fMRI signal with the simultaneously
acquired neuronal Ca?* signal with the HRF models at varied duration (L), showing t statistic
values at L=40 s (ANOVA, one way, F=4.93, p=0.013, n=5).

E. A representative time course of the single-vessel BOLD fMRI signal from the hippocampus

shows the positive fMRI signal correlated to the occurrence of the SDL-Ca?* signal.
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