
Design and Implementation
of E�ect Handlers

for Object-Oriented Programming Languages

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von
Jonathan Immanuel Brachthäuser, M.Sc.

aus Hanau

Tübingen
2019

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard
Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 07.05.2020
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Klaus Ostermann – Universität Tübingen
2. Berichterstatter: Prof. Dr. Philipp Haller – KTH, Stockholm, Schweden
3. Berichterstatter: Prof. Dr. Peter Thiemann – Universität Freiburg

To my family, who always believed in me — and my wife for her love, patience, and
unwavering support throughout the journey of life and thesis.

i

Acknowledgments
A PhD is challenging but you are not alone – you will always have friends and
colleagues. — Paolo G. Giarrusso (2014)

My friend Paolo and I were sitting in the Sudhaus pub in Marburg, where this remark by Paolo
finally convinced me to start doing a PhD. And, as it turned out, Paolo was right. In both
regards. The times of my PhD studies were volatile and challenging. And, luckily, there were all
these amazing people offering their friendship and support. I want to use this opportunity to
express my gratitude to all of you who accompanied my journey – including many that are not
mentioned in the following.

First of all, I want to thank my committee: Klaus Ostermann, Philipp Haller, Peter Thiemann,
Torsten Grust, and Oliver Bringmann. In particular, I want to thank my supervisor Klaus
Ostermann: Thank you for believing in me and giving me the opportunity to do the PhD
with you. I am indebted to you for teaching me the theoretical foundations of programming
languages. Writing my first academic paper with you for OOPSLA‘14 was a great experience
that eventually motivated me to do the PhD. I am also grateful for the freedom of choice to work
on topics I personally find interesting. It was this freedom that kept me in the PhD program.
In particular, thank you for enabling me to attend the POPL’17 conference in Paris. At that
time I was not sure about my choice of topic and attending the conference gave me a completely
fresh start. Despite that it also led to my luggage being stolen and a bad case of influenza.

At POPL’17, it was the talk by Daan Leijen on algebraic effects and his language Koka that
motivated me to start working on algebraic effects. A year later, Daan gave me the opportunity
to do a PhD research internship with him at Microsoft Research, Redmond. Thank you Daan!
For your enthusiasm and positivity, for being a great person, a great collaborator, and a great
mentor. Working with you is a delight and I hope we can continue our collaboration over the
years to come.

I want to thank my Marburg friends and colleagues: Paolo Giarrusso, Tillmann Rendel, and
Sebastian Erdweg. Discussions with every single one of you, showed me how interesting PL
research is. From you I not only learnt a plethora of things about PL, but also the basics of
working scientifically, how to write papers, and critical judgement. I am deeply indebted to
all three of you, for being my mentors and friends at the same time. Thank you Paolo, for
answering every single question on Stack Overflow! Thank you Tillmann, for teaching me how to
tie my shoes the right way! Thank you Sebastian, for handing me down your Canne de Combat
sticks!
Luckily, Paolo was right, and thus my PhD is the result of various collaborations. Every

single collaboration was a pleasure and helped me to evolve, both personally and professionally.
Thank you Tillmann, Paolo, Klaus, Matthias, Daan, Ningning, and especially Philipp for being
awesome collaborators! Philipp, thank you for always challenging my ideas and for the fruitful
and inspiring collaboration – I think we will never stop fighting about naming conventions.
Thanks to everybody who gave feedback on early drafts of this thesis, including Matthias Hirzel,
Ingo Skupin, David Binder, Philipp Schuster, and Tobias Stumpp.

I also want to thank my colleagues in Tübingen: Cai, Julia, Matthias, Philipp, Julian, Theo,
David, Ingo, Luzia, and Stephen. I am very lucky to have had you as colleagues and friends in
the last five years. Having you in the office, I was happy to go to work, every single day. Thank
you for the many lunch-room discussions and random insights. The hardest part in working
from home during the epidemic was to not have you around anymore. I also want to thank our

iii

secretaries Birgit, Céline, and Bettina for keeping my back and fighting the uphill battle against
bureaucracy.
I am grateful to my friends Michaël and Morgane for teaching me how to brew beer and for

making Tübingen an interesting place to be!
Lastly, my eternal gratitude goes to my family and my wife. There are no words that can

express how grateful I am to have you in my life.

Thank you all.

iv

Abstract

An important aspect of software development is to structure the control flow of a program.
Features to structure the control flow range from simple branching between two possible execution
paths, to non-local control-flow transfers by means of jumps or exceptions. Furthermore, modern
programming languages offer advanced control-flow structures like async/await to avoid blocking
when performing input / output actions, generators to model demand driven computation of
streams, or coroutines to express control-flow transfer between different software components.
Often, those advanced control-flow abstractions are built into the language and are thus not
user definable. Users are thus limited to the control-flow features provided by the programming
language designers and cannot create their own custom domain-specific control-flow abstractions.

Another aspect of software development is to parametrize a software component over details
that might vary. Parametrizing a component with configuration, behavior, or other components,
enables reuse of the same component in different contexts. Components can be configured
statically, or dynamically at runtime. Manually parametrizing components can quickly become
tedious, both for the component author who needs to design the component for parametrization,
as well as the user of the component who needs to provide all parameters. This is especially the
case for components that depend on other parametrized components. They often need to be
parametrized by all transitive parameters of their dependencies.
Algebraic effects (Plotkin and Power, 2003) and their extension with handlers (Plotkin and

Pretnar, 2009, 2013) offer interesting new ways to structure programs. Programs use effect
operations, which, like normal functions, can receive arguments and return results. However,
the implementation of effect operations is left open and depends on the context in which the
program is executed. Effect handlers, much like exception handlers, handle effect operations
and provide their implementation. Like throwing an exception, calling an effect operation
transfers control to the corresponding handler. Unlike exceptions, the handler can resume the
computation and thus transfer control back to the call site. Effect handlers support both aspects
of software development concisely: they can express advanced control-flow structures as well
as parametrization of software components. It has been shown in the literature that effect
handlers can express many of the aforementioned control-flow structures as libraries, such as
async/await, generators, and coroutines. At the same time, effect operations can conveniently
be used to parametrize software components while handlers provide the configuration. Unifying
both aspects also guarantees well-defined interaction between control flow and parametrization.
While algebraic effects recently gained popularity in the programming language research

community, we identify two problems hindering adoption by a wider audience of programmers.
Firstly, programmers are immediately confronted with the full generality of effect handlers.
While effect handlers are expressive enough to model advanced control-flow structures, not all
use cases require this expressivity. Secondly, algebraic effects and handlers have been conceived
in the realm of functional programming languages. In consequence, most implementations of
effect handlers are either standalone languages following the functional programming paradigm
or are library embeddings into existing functional programming languages.
In this thesis, we propose solutions to the two aforementioned problems with the goal to

facilitate adoption of effect handlers by a wider audience.
To address the first problem, we systematically present effect handlers as a combination

of delimited control (that is, they allow control-flow transfers) and dynamic binding (that
is, they allow parametrization). While the connection between effect handlers and delimited
control has previously been established and it has been shown that effect handlers can express

v

dynamic binding, we discover that dynamic binding and effect handlers form a spectrum. We
present a language design that embraces this spectrum. Increasing expressivity and conceptual
complexity step-by-step, we introduce the three features ambient values, ambient functions,
and ambient control. Ambient values coincide with dynamically bound variables and ambient
control coincides with a slightly restricted form of effect handlers. The novel intermediate form
of ambient functions enables abstraction similar to effect handlers, but without modifying the
control flow: Ambient functions are dynamically bound, but statically evaluated. Introducing
effect handlers from dynamic binding offers programmers an alternative way to approach handlers.
They can incrementally learn and understand the different generalizations (ambient values,
functions, and control). We hope this facilitates adoption of effect handlers by a wider audience.

To address the second problem, we present a library design, which embeds effect handlers in
object-oriented programming languages. Our design embraces the object-oriented programming
paradigm and we map abstractions of effect handlers to key abstractions of object-oriented
programming. Combining the two paradigms not only enables programmers to use effect
handlers in object-oriented programs, but also to use object-oriented programming abstractions
to modularize effect handlers. Our design employs explicit capability-passing style. That is,
instead of dynamically searching for a handler at runtime, we pass instances of handlers as
additional arguments to methods. We present an implementation of our library design in the
language Scala. It is based on a variation of a continuation monad for multi-prompt delimited
control (Dybvig et al., 2007) to allow effect handlers to express advanced control-flow structures.
We study the extensibility properties gained by embedding effect handlers into an object-oriented
programming language. While it opens up new dimensions of extensibility, the implementation
still comes with two limitations. Firstly, being based on a monad user programs have to be
written in monadic style. Secondly, the implementation is not effect safe and capabilities can
escape the scope of their handler. This potentially results in runtime errors. We separately
address the two limitations. Firstly, we present an implementation in Java that performs a
type-selective continuation-passing style transformation by rewriting of bytecode. This way, user
programs in the Java implementation can be written in direct-style overcoming the limitation
of the Scala implementation. Secondly, we enhance our Scala library with an embedded effect
system. We index the type of effectful programs with an intersection type to track the set
of used effects. Expressing the set of used effects as an intersection type allows us to reuse
Scala’s support for subtyping to express effect subtyping and to reuse Scala’s support for type
polymorphism to express effect polymorphism.

vi

Zusammenfassung

Ein wichtiger Aspekt bei der Entwicklung von Software ist es, den Kontrollfluss eines Programmes
zu strukturieren. Hierzu bieten Programmiersprachen verschiedenste Funktionalität an: Diese
reichen von einfachen Verzweigungen zwischen zwei Ausführungspfaden, zu nicht-lokalem Transfer
des Kontrollflusses durch Sprünge oder Ausnahmebehandlungen (engl. Exception Handler).
Darüber hinaus lassen sich heutzutage in einigen Sprachen auch fortgeschrittene Mittel zur
Kontrollflussstrukturierung finden. Beispiele hier für sind: Asynchrone Programmierung, die es zu
verhindern sucht, dass Ein- und Ausgabevorgänge andere Berechnungen blockieren; Generatoren,
die es vereinfachen Berechnungen erst auf Bedarf durchzuführen; und schließlich Koroutinen, die
es erlauben, die Kommunikation und den Kontrollflusswechsel zwischen kooperativen Prozessen
zu modellieren. Leider sind diese Kontrollflussabstraktionen häufig fest in die jeweilige Sprache
eingebaut und können nicht durch Nutzer der Sprache angepasst oder neu definiert werden. Dies
erschwert es Programmierern ihre eigenen, domänen-spezifischen Kontrollflussabstraktionen zu
entwickeln.
Ein weiterer, wichtiger Aspekt der Softwareentwicklung ist es, Softwarekomponenten über

mögliche Variationspunkte zu parametrisieren. Eine Komponente kann so in verschiedenen
Kontexten wiederverwendet werden. Parametrisierung erlaubt es Konfiguration und Verhalten
statisch oder zur Laufzeit anzupassen. Komponenten manuell zu parametrisieren kann schnell
aufwändig werden. Dies gilt sowohl für den Autor der Komponente, welcher veränderliche
Aspekte identifizieren und abstrahieren muss, als auch für den Nutzer der Komponente. Um die
Komponente zu verwenden, muss jener alle nötigen Parameter bereitstellen. Eine Komponente,
die von einer anderen abhängig ist, muss diese entweder konfigurieren, oder selbst über deren
Variationspunkte parametrisiert werden.

Algebraische Effekte (Plotkin and Power, 2003) und ihre Erweiterung mit lokaler Effektbe-
handlung (Plotkin and Pretnar, 2009, 2013) (engl. Effect Handler) bieten interessante neue
Wege, um Programme zu strukturieren. Programme nutzen Effektoperationen, die wie normale
Funktionen Argumente erhalten und Ergebnisse zurückgeben können. Ein wichtiger Unterschied
zu Funktionen ist jedoch, dass die Implementierung von Effektoperationen offengehalten wird
und vom Kontext abhängt, in welchem das Programm ausgeführt wird. Effekthandler, vergleich-
bar mit Exceptionhandlern, behandeln Effekte und weisen Effektoperationen ihre Bedeutung
zu. Ähnlich zu dem Werfen einer Exception, überträgt der Aufruf einer Effektoperation den
Kontrollfluss zum entsprechenden Handler. Ein wichtiger Unterschied zu Exceptions ist jedoch,
dass der Handler die Berechnung an der Stelle der Effektoperation fortsetzen kann und damit den
Kontrollfluss zurücküberträgt. Effekthandler erleichtern beide Aspekte der Softwareentwicklung:
Sie können die zuvor genannten fortgeschrittenen Kontrollflussabstraktionen als Programmbiblio-
theken ausdrücken, ohne dass diese in die Sprache selbst eingebaut werden müssen. Gleichzeitig
bieten sie Möglichkeiten zur Parametrisierung von Komponenten. Effektoperationen können als
Variationspunkte betrachtet werden, während Handler Konfigurationen darstellen. Beide Aspekte
in einem Sprachkonstrukt zu vereinen garantiert, dass Interaktionen zwischen Kontrollfluss und
Parametrisierung wohldefiniert sind.
Obwohl algebraische Effekte kürzlich in der Forschungsgemeinde an Popularität gewinnen

konnten, lassen sich zwei Probleme identifizieren, die potentiell einer praktischen Anwendung und
weiteren Verbreitung unter Softwareentwicklern im Wege stehen. Zum einen werden Entwickler
häufig direkt mit der vollen Ausdrucksstärke von Effekthandlern konfrontiert. Effekthandler
sind zwar ausdrucksstark genug, um wichtige Kontrollflussabstraktionen auszudrücken, jedoch
ist diese Ausdrucksstärke nicht immer erforderlich. Zum anderen sind algebraische Effekte und

vii

Handler im Rahmen der funktionalen Programmierung entwickelt worden. Infolgedessen sind die
meisten Implementierungen dieses Sprachkonstrukts lediglich auf funktionale Programmierung
ausgelegt. Dies gilt sowohl für eigenständige Sprachimplementierungen, als auch für eingebettete
Implementierungen in Form von Programmbibliotheken.

Diese Dissertation untersucht diese zwei Probleme mit dem Ziel eine größere Verbreitung von
Effekthandlern als Sprachkonstrukt zu ermöglichen.

Bezüglich des ersten Problems präsentiert diese Dissertation Effekthandler im Spannungsfeld
zwischen den zwei oben genannten Aspekten der Softwareentwicklung: als Kombination von
begrenzten Kontrolleffekten (engl. Delimited Control) mit dynamischen Gültigkeitsbereichen
(engl. Dynamic Binding). Kontrolleffekte erlauben es den Kontrollfluss zu strukturieren, während
dynamische Bindung die Parametrisierung von Komponenten ermöglicht. Existierende Arbeiten
haben bereits den Zusammenhang zwischen Kontrolleffekten und Effekthandlern untersucht.
Weiterhin wurde es gezeigt, dass Effekthandler dynamische Bindung ausdrücken können. Wir
zeigen nun, dass dynamische Bindung und Effekthandler ein Spektrum bilden und präsentieren ein
Sprachdesign, welches auf diesem Spektrum basiert. Das neuartige Sprachkonstrukt „ambiente
Funktionen“ (engl. Ambient Functions) liegt in der Ausdrucksstärke zwischen dynamischer
Bindung und Effekthandlern. Es ermöglicht Abstraktion ähnlich zu Effekthandlern, aber ohne
den Kontrollfluss zu beeinflussen. Ambiente Funktionen sind dynamisch gebunden, werden aber
im statischen Definitionskontext ausgewertet. Effekthandler aus der Sicht von dynamischer
Bindung einzuführen, bietet Entwicklern einen neuen, alternativen Zugang. Sie können die
verschiedenen Generalisierungsschritte von dynamischer Bindung, über ambiente Funktionen zu
Effekthandlern separat erlernen und verstehen.

Bezüglich des zweiten Problems präsentiert diese Dissertation einen Entwurf, um Effekthand-
ler als Softwarebibliothek in objektorientierte Programmiersprachen (OOP) einzubetten. Im
Gegensatz zu existierenden Arbeiten steht objektorientierte Programmierung im Mittelpunkt des
Entwurfs. Dieser bildet essentielle Abstraktionen aus der Programmierung mit Effekthandlern un-
mittelbar auf OOP Abstraktionen ab. Die Kombination der zwei Paradigmen ermöglicht nicht nur
die Verwendung von Effekthandlern in objektorientierten Programmen, sondern erlaubt es auch
OOP Modularisierungsstrategien zu verwenden, um Effekthandler zu strukturieren. Ein wichtiger
Bestandteil des Entwurfs ist es, Handlerinstanzen als zusätzliche Argumente an Methoden zu
übergeben, statt nach diesen zur Laufzeit zu suchen. Wir präsentieren eine Implementierung
unseres Entwurfs in der Programmiersprache Scala. Um Effekthandlern Kontrollflusstransfers
zu ermöglichen, basiert unsere Bibliothek auf einer monadischen Implementierung begrenzter
Kontrolleffekte (Dybvig et al., 2007). Eine Evaluation unserer Bibliothek zeigt neue Dimensionen
der Erweiterbarkeit auf, welche durch die Kombination von Effekthandlern und OOP erschlossen
werden. Die Implementierung hat jedoch zwei Einschränkungen: Erstens gründet sie auf einer
monadischen Implementierung, welches die Art Programme zu schreiben diktiert. Zweitens ist
die Implementierung nicht sicher in dem Sinne, dass Handlerinstanzen ihren Gültigkeitsbereich
verlassen können. Wir präsentieren mögliche Lösungen für beide Einschränkungen. Zum einen
stellen wir eine weitere Implementierung in der Sprache Java vor, welche darauf basiert Bytecode
zu transformieren. Auf diese Weise können Programme wie gewohnt geschrieben werden und
erfordern keine monadische Schreibweise. Zum anderen erweitern wir unsere Scala Implemen-
tierung um ein eingebettetes Effektsystem. Wir indizieren den Typ effektvoller Ausdrücke mit
einem Schnitttyp (engl. Intersection Type), welcher die Menge der genutzten Effekte repräsen-
tiert. Die Verwendung von Schnitttypen erlaubt es uns unmittelbar Scala’s Unterstützung für
Subtypbeziehungen und Typpolymorphie für Effekte wiederzuverwenden.

viii

Contents

1. Introduction 1
1.1. Thesis Overview and Contributions . 4
1.2. List of Papers and Publications . 8
1.3. Structure of the Thesis . 13

I. E�ect Handlers in Perspective 15

2. From Delimited Control to E�ect Handlers 17
2.1. Delimiting Control . 19
2.2. Families of Delimited Control Operators . 24
2.3. From Delimited Control to Effect Handlers . 27
2.4. A Type System for Effect Handlers . 32
2.5. Related Work and Chapter Conclusion . 36

3. From Dynamic Binding to E�ect Handlers 39
3.1. Ambient Values . 41
3.2. Ambient Functions . 45
3.3. Ambient Control . 49
3.4. Type-Safety of Ambient Values . 54
3.5. Ambient Values and Ambient Functions as Ambient Control 59
3.6. Translating to Effect Handlers and Back . 63
3.7. Related Work and Chapter Conclusion . 64

II. E�ect Handlers and Object-Oriented Programming 67

4. E�ekt – A Library Design 69
4.1. Programming with Effect Handlers in E�ekt . 72
4.2. Delimited Control . 78
4.3. Ambient State . 83
4.4. Composing Effect Signatures . 84
4.5. Composing Effect Handlers . 87
4.6. Composing Effectful Programs . 93
4.7. Related Work and Chapter Conclusion . 96

5. Java E�ekt – E�ectful Programming in Direct Style 101
5.1. Programming with Effect Handlers in JavaE�ekt 103
5.2. Implementing Effect Handlers for Java in three Steps 106
5.3. Use Cases . 112

ix

Contents

5.4. Implementation of the Type Selective CPS Transformation 117
5.5. Discussion and Related Work . 123
5.6. Performance of Effekt . 124
5.7. Chapter Conclusion . 128

6. Scala E�ekt – E�ect Safety through Regions 129
6.1. Effect-Safe Delimited Control . 132
6.2. Effect-Safe Ambient State . 139
6.3. From Effect-Safe Delimited Control to Effect Handlers 140
6.4. Discussion: Effect Handlers and Object Orientation 146
6.5. Discussion: Properties of the Effect System . 149
6.6. Related Work and Chapter Conclusion . 153

7. Discussion and Conclusion 159
7.1. Future Work: Effect-Safe and Direct-Style E�ekt 161
7.2. Future Work: Efficient Compilation of Effect Handlers 162
7.3. Future Work: Effectful Traversals and Modular Interpreters 163
7.4. Future Work: Naturalistic DSLs and Effectful Syntax 164
7.5. Conclusion . 167

x

List of Figures

1.1. Effect handlers generalize exception handlers. They allow resuming the computa-
tion at the call site. Examples of an effect signature, an effectful program, and
an effect handler in Scala-like pseudo syntax. 2

1.2. Overview of the different calculi presented in Chapters 2 and 3. The new feature
of ambient values is highlighted. 5

2.1. Syntax and semantics of delimited control (λdc). Reduction rule (shift) is defined
in-text. 21

2.2. Comparison of different control operators in the literature. 24
2.3. Generalization of syntax and semantics to families of control-operators (λdcp). . . 25
2.4. Syntax and semantics of multi-prompt delimited control with handlers (λdch). . . 29
2.5. Summary of syntax and semantics for λdch , specialized to variant −do+ and a

statically declared set of prompts (adapted from Leijen, 2017c). 31
2.6. Syntax of types, typing rules, and equivalence of effect rows for λdch (adapted

from Leijen, 2017c). Every prompt p has a uniquely defined signature in Σ. . . . 33

3.1. Language of ambient values, λdb (adapted from Kiselyov et al., 2006). 43
3.2. Extension of λdb with ambient functions (λdbf). 47
3.3. Implementation of a depth-first traversal (adapted from Lewis et al., 2000). Call

sites of ambient functions highlighted. 49
3.4. Extension of λdbf with ambient control (λdbc). 53
3.5. Standard typing rules for λdb (adapted from Kiselyov et al., 2006, Figure 2). . . 55
3.6. Effect safety for ambient values, functions, and control. Ambient rows π are

considered equivalent up to the order of the names in the row. 57
3.7. Translating ambient values and ambient functions to ambient control. The

translation is homomorphic except for the highlighted cases. 58
3.8. Translating the language of ambient control (λdbc) to delimited control with

handlers (λdch) and back. Both translations are fully homomorphic. 62

4.1. Mapping concepts from effect handlers to object-oriented programming. 71
4.2. The control interface – a monad for multi-prompt delimited control. 73
4.3. Implementation of effect handlers for Exc and Amb using the library class Handler. 76
4.4. The prompt interface – control operators shift / reset and the marker trait

Prompt. 78
4.5. Programming with effect handlers as structured programming with delimited

control. 80
4.6. Using answer-type-safe delimited control to declare and handle exception and

ambiguity effects. 81
4.7. The State effect: mutable state that interacts well with multiple resumptions. . . 82

xi

List of Figures

4.8. The handler implementation – handlers contain a prompt marker, use captures
the continuation and handle delimits the scope. 88

4.9. Handler for the Async effect – using two effects State and Fiber. 90
4.10. Handler for the Fiber effect – using the State effect after capturing the continuation. 92
4.11. Representing stacks as prompt-separated list of frames. 98

5.1. Structure of the JavaE�ekt framework. Directed, solid arrows express dependencies.102
5.2. Example of using two effects in an effectful program. 103
5.3. Implementation of effect handlers for Exc and Amb using the library class Handler. 105
5.4. CPS translation of the example in Figure 5.4a, presented as a source-to-source

transformation. 107
5.5. Interface and example implementation of the user-level stack. Implementations

of stack operations (push, pop and isEmpty) are left abstract. 108
5.6. Implementation of control operators. Usage of the splittable stack implementation

Seq is highlighted. 109
5.7. The essence of the effect handler library: The Handler class. 112
5.8. Effect signature Fiber with operations for cooperative multitasking and a round-

robin scheduler implemented as handler Scheduler. 116
5.9. Example of translating a method doLoop . 118
5.10. Type selective CPS translation via bytecode transformation. 120
5.11. Performance of bytecode instrumentation libraries. Runtime in ms, lower is better.125
5.12. Performance of effect libraries. Runtime in ms, lower is better. 127

6.1. The effect-safe control interface – changes compared to Figure 4.2 are highlighted.
Type alias Pure defined in text. 134

6.2. The effect-safe prompt interface – changes compared to Figure 4.4 are highlighted.135
6.3. Using effect-safe delimited control to declare and handle exception and ambiguity

effects. Effect type related changes compared to Figure 4.6 highlighted. 138
6.4. Effect-safe state effect – effect signature of the built-in state effect and its handler

region. 140
6.5. Implementation of effect handlers for Exc and Amb using the effect-safe library

class Handler – changes compared to Figure 4.3 are highlighted. 141
6.6. Effect-safe versions of the Fiber effect signature and the Scheduler handler. All

term-level implementations are unchanged. 143
6.7. Effect-safe versions of the Async effect signature and the Poll handler. All

term-level implementations are unchanged. 145
6.8. Using Control to embed the λ calculus into Scala. 154

xii

Chapter 1

Introduction

Computer programming is intimately coupled to structuring control flow. From branching
control flow based on conditionals, over employing a stack discipline when calling procedures, to
using alternative return paths and transferring control flow with exceptions – thinking about
control flow is a substantial aspect of every programmer’s daily tasks.

The increasing need for distributed computing and non-blocking IO has led to the development
of various advanced control-flow abstractions and programming models, such as asynchronous
programming (that is, async/await) (Bierman et al., 2012), lightweight user-level threads and
fibers (Dolan et al., 2013), and different forms of non-preemptive multitasking like asymmetric
coroutines (Moura and Ierusalimschy, 2009) or generators (Politz et al., 2013). Each of these
solutions is tailored to one particular programming problem. The way these abstractions are
realized today is unsatisfactory. Often, they are either hard-coded into a language, (i.e., they
are not user-definable), they are not composable (i.e., multiple abstractions cannot be used in
one project), or implementations for one control-flow abstraction cannot be reused to implement
similar other control-flow abstractions.
In contrast, algebraic effects (Plotkin and Power, 2003) in their extension with effect han-

dlers (Plotkin and Pretnar, 2009) are a general control-flow structuring paradigm that is not
tailored to a particular programming problem. Like Monads (Moggi, 1989), algebraic effects have
originally been conceived as a framework to model the semantics of computational effects. Also
like Monads, starting as a tool for semanticists, algebraic effects have then been rediscovered as
a general program-structuring tool for programmers. However, there is a fundamental difference
between the two concepts: Monads are centered on a type constructor, a semantic domain
(like Either String a), from which effect operations (like throwError) emerge (Wadler, 1995).
Algebraic effects instead start with the set of effect operations to then find a domain that
supports the operations (Plotkin and Pretnar, 2009). Algebraic effects and handlers are thus
operation centric, while monads are domain centric. Algebraic effects have their theoretical
foundations in Lawvere theory (Plotkin and Power, 2003), but in this thesis we will view effect
handlers more from the perspective of a software engineer. Following Kammar et al. (2013),
effect handlers can be thought of as a generalization of the simpler and widely known control-flow
construct exceptions. Similar to exceptions, programs using effect handlers are conceptually
split into three parts: Effect operations, effectful functions, and effect handlers. Figure 1.1 gives
pseudo code examples for each of the three components. We use Scala-like pseudo syntax for
easier comparison with the exception handling mechanism.

This chapter is partially based on the contents of the following publication: Jonathan Immanuel Brachthäuser,
Philipp Schuster, and Klaus Ostermann. 2018. “Effect Handlers for the Masses”. Proc. ACM Program. Lang.,
2 (OOPSLA): 111:1–111:27. DOI: https://doi.org/10.1145/3276481.

1

https://doi.org/10.1145/3276481

1. Introduction

E�ect Signature:

effect Amb {

def flip(): Boolean

}

E�ectful Program:

def choice(n: Int): Int =

if (n > 1 && Amb.flip())

choice(n - 1)

else

n

E�ect Handler:

def collect[R](prog: () ⇒ R): List[R] =

handle { Cons(prog(), Nil) }

with Amb {

def flip() = resume(true) ++

resume(false)

}

Figure 1.1. Effect handlers generalize exception handlers. They allow resuming the computation
at the call site. Examples of an effect signature, an effectful program, and an effect handler in
Scala-like pseudo syntax.

E�ect operations
Compared with exceptions, effect operations correspond to throw as found in languages like
Java (Gosling et al., 1996). However, instead of being built in, effect operations are user
defined. One can define operations like yield to output elements of a (push-based) stream,
getHttp to send (asynchronous) http-requests, or suspend to (cooperatively) transfer control
to a scheduler (Leijen, 2016). Opposed to throw, effect operations can potentially return
results. In the example in Figure 1.1, we follow Leijen (2017c) and declare the operation
flip which returns a boolean.

E�ectful programs
Programs are effectful (Kammar et al., 2013; Bauer and Pretnar, 2015) if they call effect
operations. This can occur either directly or indirectly via other effectful programs. Like
checked exceptions in Java, some implementations of effect handlers track the effects used
by an effectful program in its type. This allows the type checker to distinguish effectful
programs from pure programs and to assert that all effects are eventually handled. The
effectful program choice, adapted from Danvy and Filinski (1992, p. 154), uses the flip

operation to nondeterministically return a number between 1 and n.

E�ect handlers
Effect handlers generalize exception handlers (Plotkin and Pretnar, 2009; Bauer and Pret-
nar, 2013). They implement the effect operations, specifying what it means for example
to yield, send http-requests or suspend. Like exception handlers delimit the scope with
try { ... }, effect handlers delimit the dynamic scope in which effect operations of a par-
ticular effect signature are handled by this very handler; The example handler, adapted
from Plotkin and Pretnar (2013, p. 13), handles the operation Amb.flip for the extent of
evaluating Cons(prog(), Nil).

Effect operations are typically declared (and grouped) in effect signatures (such as Amb), which
act as an interface between the user of effect operations (that is, effectful programs) and the
implementer of effect operations (that is, effect handlers). Programming with effect handlers en-
courages modularity, by separating the declaration of effect operations from their implementation
in effect handlers (Kammar et al., 2013).
While conceptually related, there is one important improvement of effect handlers over

exception handlers: To handle effects and to implement effect operations, handlers get access to
the delimited continuation, which is the remainder of the program execution – from the call of

2

the effect operation up to the enclosing effect handler (Plotkin and Pretnar, 2013). Provided
with the continuation, the effect handler can decide to resume the execution from the point
where the effect operation was originally called. This can also be understood from an operational
perspective. Following the analogy to exceptions, let us recall how traditional implementations
of exceptions perform a search for the corresponding handler. Exceptions unwind the stack
frame-by-frame, until a matching handler is found. The stack segment between the exception
throwing site and the handler is discarded (Gosling et al., 1996).

Like exception handlers, effect handlers can be thought of as marking positions on the runtime
stack. Also, the search for a corresponding handlers proceeds similar to exceptions. However, in
contrast to exceptions, effect handlers do not discard the unwound stack segment. Instead, they
reify the stack segment as a resumption function (Leijen, 2017c) (or continuation) and make it
available to the handler implementation (Plotkin and Pretnar, 2013).
Figure 1.1 defines the handler collect (Plotkin and Pretnar, 2013) which takes a program

prog potentially using the Amb.flip effect to compute a result of type R. We assume a call-by-
value language and thus the program needs to be thunked to defer the effects (like flip) to
the point of handling. To handle the Amb.flip operation, the collect handler can access the
delimited continuation by using resume. Resuming with a value is similar to returning from
a normal method call. Computation will proceed at the call site of the effect operation flip.
However, like with exceptions, we can decide to never resume, or as in our example, we can
even resume multiple times. We resume once with true and once with false, enumerating
all possible outcomes of flip. Since the type of our handled program (Cons(prog(), Nil)) is
List[R], resuming will each time yield a list, which we finally concatenate to gather all results.
For example, calling

collect(() ⇒ (choice(2), choice(3)))

yields the result:

I List((1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3))

The ability to resume the computation at the call site of the effect operation is the impor-
tant ingredient that provides effect handlers with additional expressive power over exceptions.
Effect handlers can express the aforementioned control-flow abstractions as libraries (Dolan
et al., 2015, 2017; Wu et al., 2014; Kammar et al., 2013; Hillerström and Lindley, 2016; Lei-
jen, 2017a). Implementing abstractions like concurrent programming (Dolan et al., 2017) and
async/await (Leijen, 2017a) with effect handlers naturally allows a combined usage. This is good
news for both language implementers and programmers. Implementers who want to implement
multiple of the aforementioned control-flow structures now only need to support effect handlers.
Interaction between the features can be considered on the user-/ library-level. Furthermore, users
can use effect handlers to define custom (potentially domain specific) control abstractions.

3

1. Introduction

1.1 Thesis Overview and Contributions
Effect handlers are a powerful program-structuring paradigm. However, we identify two problems
that potentially hinder a widespread adoption of effect handlers.
Firstly, as in the previous section, programmers are often immediately confronted with the

full generality of effect handlers. In consequence, effect handlers are reported (Abramov, 2019)
to have the reputation of being difficult to understand. While effect handlers are expressive
enough to model advanced control-flow structures, not all use cases require the expressiveness
to the full extent. For instance, to make the current request object available in a webserver
implementation does not necessarily require the ability to capture the continuation.
Secondly, algebraic effects and handlers have been conceived in the realm of functional

programming languages. In consequence, many implementations of effect handlers can be found
in functional programming languages. They are either built into the language, like in Eff (Bauer
and Pretnar, 2015), Koka (Leijen, 2014), Frank (Lindley et al., 2017), Multicore OCaml (Dolan
et al., 2017), Links (Hillerström et al., 2017), and Helium (Biernacki et al., 2019). Or they
are implemented as a libraries for Haskell (Kammar et al., 2013; Kiselyov et al., 2013; Wu
and Schrijvers, 2015), OCaml (Kammar et al., 2013; Kiselyov and Sivaramakrishnan, 2016), or
Idris (Brady, 2013). With the notable exception of a recently presented object-oriented calculus
JEff (Inostroza and van der Storm, 2018), effect handlers are not widespread in the realm of
object-oriented programming (OOP).
In this thesis, we propose solutions to the two aforementioned problems with the goal to

facilitate adoption of effect handlers by programmers. The thesis is structured in two parts,
reflecting the two different ways in which we work towards this goal.

In the first part, we systematically present effect handlers as a combination of delimited control
and dynamic binding. We follow Moreau (1998) and refer to dynamically scoped variables as
dynamic binding . We use late binding (Suzuki, 1981) to refer to dynamic binding of method
implementations in OOP. Step-wise generalizing dynamic binding to effect handlers, we discover
that dynamic binding and effect handlers form a spectrum and present a language design that
embraces this spectrum. Introducing effect handlers from dynamic binding offers programmers
an alternative way to approach handlers. They can incrementally learn and understand the
different generalizations.

In the second part, we present a library design that embeds effect handlers in object-oriented
programming languages. Our design embraces the OOP paradigm and we map abstractions
of effect handlers to key abstractions of OOP. Combining the two paradigms not only enables
programmers to use effect handlers in object-oriented programs, but also to use OOP abstractions
to modularize effect handlers.
We now give a more detailed overview over the two parts and summarize our contributions.

1.1.1 E�ect Handlers in Perspective
In the first part of this thesis, we establish the necessary terminology and present effect handlers as
a combination of two seemingly orthogonal features: delimited control and dynamic binding. The
developments of this part of the thesis are illustrated in Figure 1.2. To introduce terminology and
to discuss the abstractions provided by effect handlers, we summarize existing work in different
calculi (Figure 1.2). In Chapter 2, we follow historical developments in the literature on control
effects and present effect handlers in the light of delimited control (Felleisen, 1988). In Chapter 3,
we then perform similar steps of generalization, but starting from dynamic binding (Moreau, 1998).

4

1.1. Thesis Overview and Contributions

λdc

λdcp

λdch ≡ λdbc

λdbf

λdb

Delimited Control
(Section 2.1) Multi-Prompt

Delimited Control
(Section 2.2)

E�ect Handlers
(Sections 2.3 and 2.4)

Ambient Values
(Section 3.1 and 3.4.1)

Ambient Functions
(Section 3.2 and 3.4.2)

Ambient Control
(Sections 3.3 and 3.4.2)generalizes to

structured use of

generalizes to

generalizes to

Figure 1.2. Overview of the different calculi presented in Chapters 2 and 3. The new feature of
ambient values is highlighted.

Both features, delimited control and dynamic binding, have a somewhat bad reputation and
naively combining them as two individual features comes with problems (Kiselyov et al., 2006).
Nevertheless, as a type- and effect-safe combination of both delimited control and dynamic
binding, effect handlers occupy a sweet spot in the design space between the two features. Both,
the relation between delimited control and effect handlers (Forster et al., 2017), as well as the one
between dynamic binding and effect handlers (Kammar and Pretnar, 2017) have been established
previously. However, we believe that introducing effect handlers from dynamic binding offers
programmers an alternative way to approach programming with effect handlers. Increasing
expressiveness and conceptual complexity step-by-step, we introduce the three features ambient
values, ambient functions, and ambient control. Each step highlights a different, important
aspect of programming with effect handlers. Importantly, our systematic presentation helps us
to discover the novel feature of ambient functions, which resides between dynamic binding and
effect handlers. Ambient functions enable abstraction similar to effect handlers, but without
modifying the control flow: They are dynamically bound, but statically evaluated.

Related publications The first part of this thesis is based on the following articles:

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. “Effekt:
Capability-passing style for type- and effect-safe, extensible effect handlers in Scala”. Journal
of Functional Programming, 30, E8 .

Jonathan Immanuel Brachthäuser and Daan Leijen. 2019. “Programming with Implicit
Values, Functions, and Control”. Technical Report MSR-TR-2019-7 . Microsoft Research.

Contributions The first part of this thesis makes the following contributions:

– We systematically present two aspects of effect handlers. Once starting from (delimited)
control operators (Chapter 2), and once starting from dynamic binding (Chapter 3). The
two developments lead to two equivalent calculi (λdch and λdbc).

– While it has been previously established that effect handlers can express dynamic bind-
ing (Kammar and Pretnar, 2017), we observe that dynamic binding and effect handlers
form a spectrum. We perform a step-wise generalization from ambient values (dynamic

5

1. Introduction

binding) to ambient control (effect handlers). This leads us to a novel intermediate form
of abstraction: ambient functions (Section 3.2).

– We present a language design that incorporates all three generalization steps (ambient
values, functions, and control). We use the macro translation from ambients to effect
handlers (Sections 3.5 and 3.6) to implement the language design as an extension of the
programming language Koka (Leijen, 2017c).

– We present a type- and effect-system for ambient values, functions, and control (Sec-
tion 3.4.2). Expressing ambient values and functions in terms of ambient control (Sec-
tion 3.5) allows us to reuse existing soundness proofs (Sections 2.4 and 3.6).

1.1.2 E�ect Handlers and Object-Oriented Programming
The second part of this thesis represents our main contribution. We present E�ekt – a library
design for embedding effect handlers in object-oriented languages. There are two important
aspects of our library design.

Firstly, as opposed to many other effect libraries and language implementations, E�ekt is not
based on a free monad representation (Kiselyov and Ishii, 2015) but instead centers around the
concept of explicit capability-passing style on top of a runtime system for multi-prompt delimited
control (Hieb and Dybvig, 1990; Dybvig et al., 2007). That is, instead of searching for the correct
handler implementation of an effect operation at runtime, we explicitly pass capabilities as
additional arguments to effectful functions. Capability passing helps us to understand effects as
imposing an additional requirement on the calling context, rather than a side effect that occurs
in addition to computing the result. As we will see in Chapter 6, effects are thus contravariant.
Secondly, programming with effect handlers in E�ekt is object-oriented programming. Our

library design of E�ekt is designed to integrate well with object-oriented programming lan-
guages and we directly map abstractions of effect handlers to abstractions in object-oriented
programming. Effect signatures are interfaces declaring effect operations, effect handlers are
classes implementing those interfaces and capabilities are instances of effect handlers. Effectful
programs are written against the abstraction of effect signatures. Combining the paradigms not
only enables programmers to use effect handlers in object-oriented programs, but also to use
object-oriented programming abstractions to modularize effect handlers.
We evaluate our design in two implementations. A library implementation in Java (Gosling

et al., 1996), which we call JavaE�ekt (Section 5) and a library implementation in the programming
language Scala, which we call ScalaE�ekt (Sections 4 and 6). The two implementations both
perform capability passing and rely on an implementation of multi-prompt delimited control.
While the programming interfaces are similar, their implementations are quite different.

Our Java implementation consists of three core components: (1) A type selective continuation-
passing style (CPS) transformation (Fischer, 1972; Reynolds, 1972) via JVM bytecode trans-
formation, (2) an implementation of delimited continuations (Felleisen, 1988) on top of the
bytecode transformation, and finally (3) a library for effect handlers in terms of delimited
continuations. The CPS transformation allows us to implement the resumption behavior of
effect handlers, while user programs can be written in direct style.
In contrast, our Scala implementation is based on a monadic implementation of delimited

control (Dybvig et al., 2007). Consequently, users have to write effectful code in monadic style.
Another important difference is that ScalaE�ekt (as presented in Chapter 6) is effect-safe, while
in JavaE�ekt capabilities can leak, which might result in runtime errors.

6

1.1. Thesis Overview and Contributions

Related publications The second part of the thesis is based on the following articles:

Jonathan Immanuel Brachthäuser and Philipp Schuster. 2017. “Effekt: Extensible Algebraic
Effects in Scala (Short Paper)”. In Proceedings of the 8th ACM SIGPLAN International
Symposium on Scala (SCALA 2017). ACM, New York, NY, USA, 67-72.

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. “Effekt:
Capability-passing style for type- and effect-safe, extensible effect handlers in Scala”. Journal
of Functional Programming, 30, E8 .

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2018. “Effect
Handlers for the Masses”. Proc. ACM Program. Lang., 2 (OOPSLA): 111:1–111:27.

Contributions The second part of this thesis makes the following contributions:

– We present the first library design of a type-safe embedding of effect handlers that revolves
around object-oriented programming. The design is based on capability-passing style as an
alternative to dynamic binding of effect handlers. In our library design, programming with
effect handlers is object-oriented programming. Effect signatures correspond to interfaces;
handlers correspond to implementations of the interfaces (Chapter 4).

– We implement the design in two libraries, one for Java (Chapter 5) and one for Scala
(Chapters 4 and 6).

– For our implementation of JavaE�ekt, we present an implementation of multi-prompt
delimited continuations in Java. It uses trampolining and avoids the typical linear
overhead of restoring the stack upon resumption common to all continuation libraries in
Java that we are aware of (Section 5.2.2).

– We present a type-selective, signature preserving CPS transformation of JVM bytecode.
We use closures introduced in Java 1.8 to create specialized instances of continuation
frames. The general idea is applicable to any VM-based language that supports closure
creation (Section 5.4).

– For our implementation of ScalaE�ekt, we build on the operational semantics of Dybvig
et al. (2007) but make it effect-safe (Section 6.1). We achieve effect safety by generalizing
techniques of Launchbury and Sabry (1997) to nested regions (Kiselyov and Shan, 2008)
but using intersection types of abstract type members instead of rank-2 types (Chapter 6).

– We study the extensibility gained by combining effect handlers with object orientation; in
particular Scala’s traits and mixin composition. We identify the effect expression problem
as an instance of Wadler’s (1998) expression problem and show how ScalaE�ekt supports
the required dimensions of extensibility (Section 4.4).

– We evaluate the performance of our Scala and Java implementations of E�ekt (Section 5.6.2).
We compare the performance of programs translated with our bytecode instrumentation
with other Java bytecode instrumentations (Section 5.6).

7

1. Introduction

1.2 List of Papers and Publications
The work on this thesis resulted in a number of paper submissions and publications at interna-
tional conferences and workshops. Here, we briefly summarize the main contributions of each
paper and discuss its relationship to the other papers and this thesis.

1.2.1 E�ekt: E�ect Handlers and Object-Oriented Programming
In the following articles, we presented different aspects of our library design.

E�ect Handlers as a Monadic Library in Scala

Jonathan Immanuel Brachthäuser and Philipp Schuster. 2017. “Effekt: Extensible Algebraic
Effects in Scala (Short Paper)”. In Proceedings of the 8th ACM SIGPLAN International
Symposium on Scala (SCALA 2017). ACM, New York, NY, USA, 67-72.
DOI: https://doi.org/10.1145/3136000.3136007

In this paper, we introduce a Scala library for programming with effect handlers. The library
design is based on the concept of explicit capability-passing style. Viewing effect operations
as constructors of an embedded domain specific language (Hudak, 1998), capability-passing
style corresponds to a shallow embedding (Carette et al., 2007; Hofer et al., 2008). Taking this
point of view, we describe the effect expression problem as a variant of Wadler’s “Expression
Problem” (Wadler, 1998). It is the first effect handler library to make extensive use of Scala’s
new feature of implicit function types (Odersky et al., 2017). Implicit function types allow
us to reduce most of the syntactic overhead associated with capability passing. To support
continuation capture, we implement our library on top of a monad for multi-prompt delimited
control (Dybvig et al., 2007). Preliminary benchmarks suggest that capability passing offers
significant performance improvements over an established Scala library (Torreborre, 2016), which
is based on freer monads (Kiselyov and Ishii, 2015).

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. “Effekt:
Capability-passing style for type- and effect-safe, extensible effect handlers in Scala”. Journal
of Functional Programming, 30, E8 . DOI: https://doi.org/10.1017/S0956796820000027

While passing first-class capabilities offers an interesting alternative to implement effect handlers,
it does not guarantee effect safety. Effect handlers introduce capabilities, which are only valid in
the dynamic scope of the effect handler. Since capabilities are first class, they can leave the
scope of the handlers, which potentially results in a runtime exception. In this paper, we add
an effect system to our library implementation to ensure that capabilities can only be used
in the dynamic scope of the corresponding handler. The effect system is inspired by the one
of Zhang and Myers (2019). In our Scala implementation of the embedded effect system, we
use intersection types and path-dependent types to guarantee well scopedness of capabilities.
Trying to run a program that uses a capability outside of its corresponding handler results in a
Scala type error. Using the existing Scala type-system to express effect safety of our library

8

https://doi.org/10.1145/3136000.3136007
https://doi.org/10.1017/S0956796820000027

1.2. List of Papers and Publications

embedding has the advantage that we can reuse Scala’s support for subtyping to express effect
subtyping and Scala’s support for polymorphism to express effect polymorphism.

E�ect Handlers via Bytecode Transformation in Java

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2018. “Effect
Handlers for the Masses”. Proc. ACM Program. Lang., 2 (OOPSLA): 111:1–111:27.
DOI: https://doi.org/10.1145/3276481

In this paper, we evolve the original library design of ScalaE�ekt to integrate better with Java.
The efforts to integrate with Java result in a design, which directly maps effect signatures
to interfaces, handlers to implementations, and capabilities to handler instances. While in
ScalaE�ekt, effectful user programs have to be written in monadic style, users of JavaE�ekt write
effectful programs in direct style. That is, programmers can use existing control-flow structures
such as conditional branching and loops to describe effectful programs. To enable this, in the
paper we introduce a type-selective, signature preserving CPS transformation of JVM bytecode.
An implementation of multi-prompt delimited continuations on top of the instrumented bytecode
allows capturing the continuation. The implementation performs trampolining and avoids the
typical linear overhead associated with restoring the stack upon resumption. All continuation
libraries in Java that we are aware of suffer from this linear overhead.

E�ekt in this Thesis
The introduction of Chapter 2 is partially based on the second article (Brachthäuser et al., 2020).

Chapter 4 is based on the three articles (Brachthäuser and Schuster, 2017; Brachthäuser
et al., 2018, 2020) and presents E�ekt, a library design centered on capability passing. The library
is designed to blend into object-oriented languages with interfaces and classes. Section 4.6.1
briefly discusses the use of implicits to remove the burden of passing capabilities (Brachthäuser
and Schuster, 2017). Otherwise, in this thesis we mostly refrain from using the feature of
implicit function types to make capability passing more explicit. Section 4.4 introduces the
effect expression problem (Brachthäuser and Schuster, 2017) and describes different dimensions
of extensibility, enabled by the design of E�ekt.
Chapter 5 is closely based on the third mentioned publication (Brachthäuser et al., 2018)

and presents the implementation of JavaE�ekt and our CPS transformation. Compared to
the publication, this thesis contains additional benchmark results. The results illustrate the
linear overhead of other continuation libraries and provide further evidence for the difference in
asymptotic complexity (Section 5.6)
Chapter 6 is closely based on the second mentioned article (Brachthäuser et al., 2020) and

enhances the library with an embedded effect system. For a uniform presentation, and to facilitate
comparison between the different stages of development, the library interfaces presented in
Chapters 4 to 6 slightly differ from the original presentations in the corresponding articles.

9

https://doi.org/10.1145/3276481

1. Introduction

1.2.2 From Dynamic Binding to E�ect Handlers

Jonathan Immanuel Brachthäuser and Daan Leijen. 2019. “Programming with Implicit
Values, Functions, and Control”. Technical Report MSR-TR-2019-7 . Microsoft Research.

It has been previously established that effect handlers can express dynamic binding (Kammar
and Pretnar, 2017), that is, dynamically scoped variables.

In this paper, we take the opposite approach and start from dynamic binding. We step-wise
generalize dynamic binding from implicit values to implicit control . While implicit values
correspond to dynamic binding (Lewis et al., 2000; Kiselyov et al., 2006), implicit control closely
corresponds to effect handlers (Plotkin and Pretnar, 2013).

We discover that dynamic binding and effect handlers form a spectrum and propose the novel
feature of implicit functions, which (from an expressivity point-of-view) resides between the
two other features. Like implicit values, implicit functions are bound dynamically. Like implicit
control (and effect handlers), the body of implicit functions is evaluated in the lexical scope of
its definition. We show how the small generalization from regular implicit values to implicit
functions allows encapsulating control-effects at the definition site of the function, as opposed to
leaking them (in the type and operationally) at the call site of the function.
We formalize the new feature as an extension to Moreau’s calculus of dynamic bind-

ing (Moreau, 1998) and show how all three features are macro-expressible (Felleisen, 1990) in
terms of effect handlers. Both, the design of a language with implicit functions, values, and
control as well as the implementation on top of the Koka language (Leijen, 2017c) are the result
of a PhD research internship at Microsoft Research, Redmond, USA. The formalization of the
type- and effect systems in the article (Brachthäuser and Leijen, 2019) and the corresponding
soundness proofs are largely due to Daan Leijen.

Ambient Functions in this Thesis
Chapter 3 is closely based on this paper. To match the most recent implementation in the
Koka language (Leijen, 2017c), in Chapter 3 we renamed implicit values, functions, and control
to ambient values, ambient functions, and ambient control , correspondingly. In the paper, we
translate implicit (i.e., ambient) values, functions and control to effect handlers. Instead, in
Section 3.5 of this thesis we show how ambient values and functions can be macro expressed in
terms of ambient control. We adjust the corresponding proofs of type- and semantics preservation.
In this thesis, ambient control coincides exactly (syntactic differences notwithstanding) with
the simplified effect handlers of Section 2.4. The type- and semantics preserving translation of
ambient functions and values to ambient control (and effect handlers in extension) allows us
to reuse the proof of semantics soundness for effect handlers (Section 2.4.1 which is adapted
from Leijen (2017c)).

10

1.2. List of Papers and Publications

1.2.3 Software Modularity

Tillmann Rendel, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. 2014. “From
Object Algebras to Attribute Grammars”. In Proceedings of the 2014 ACM International
Conference on Object-Oriented Programming Systems Languages & Applications. (OOP-
SLA 2014). ACM, New York, NY, USA, 377-395.
DOI: https://doi.org/10.1145/2660193.2660237

In this paper, we analyze the relationship between object algebras (Oliveira and Cook, 2012)
and attribute grammars (Knuth, 1968).

Many application domains require traversing tree-structured data. Amongst the most promi-
nent examples are interpreters and compilers that traverse the abstract syntax tree to evaluate
or translate the source program. There exists a multitude of techniques, based on the idea
of separating the recursive traversal from the computation at each node. Examples are the
visitor pattern (Gamma et al., 1995), folds (or “catamorphisms”) (Meijer et al., 1991), shallow
embeddings (Carette et al., 2007), and Church encodings (Barendregt, 1984, 1992). Object
algebras (Oliveira and Cook, 2012; Oliveira et al., 2013) are a recent approach to structure tree
traversals, similar in spirit to the aforementioned techniques. Programs written with object
algebras can be structured in a pleasingly modular and extensible way. At their foundation,
object algebras correspond to folds and the computation at a given node is expressed composi-
tionally in terms of the results of the child nodes. This limits the class of programs that can be
expressed in terms of object algebras.

In contrast, attribute grammars (Knuth, 1968) allow declarative specification of attributes as
part of context-free grammars. Attributes on one node can be described in terms of attributes
on other nodes, such as the parent node, child nodes, or sibling nodes. Attributes that can be
computed bottom-up are called synthesized ; attributes that are computed top-down are called
inherited . Grammars with only synthesized attributes are called S-attributed (Knuth, 1968;
Lewis et al., 1974).

In the paper, we show that object algebras as presented by Oliveira and Cook (2012) can be
seen as a Church encoding of S-attributed grammars. We extend the expressiveness of object
algebras in order to support traversals that correspond to richer classes of attribute grammars.
We allow to additionally express dependencies (1) on attributes computed for child nodes, (2)
on attributes computed for the current node, and (3) attributes computed on left siblings of the
current node. With the latter, we are able to encode the full class of L-attributed grammars – a
class that can express one-pass compilers. Implementing L-attributed grammars with object
algebras has several advantages. Attributes can be defined and type-checked separately while
dependencies between attributes are statically checked.
It is our prior work on this paper, which sparked the idea for shallow embeddings of effect

handlers (Chapter 4). Effect handlers are often introduced as a fold over a computation
tree (Kammar et al., 2013; Lindley, 2014). If handlers are folds, can we express them as a
shallow embedding to inherit the associated modularity and extensibility benefits? The idea
of shallowly embedding effect handlers resulted in explicit capability-passing style, which is an
important aspect of the E�ekt design. In Section 4.4, we study the extensibility properties that
E�ekt inherits from shallow embeddings.

11

https://doi.org/10.1145/2660193.2660237

1. Introduction

Jonathan Immanuel Brachthäuser, Paolo G. Giarrusso, Tillmann Rendel, and Klaus Oster-
mann. “The Co-Expression Problem”. Unpublished. 2016.

Programs that traverse tree-shaped data often suffer from the expression problem (Wadler, 1998),
an important and well-studied problem in software engineering. The expression problem describes
the difficulties of extending a recursive data type with new variants, while at the same time being
able to modularly add new functions over the data type. With the notable exception of Lämmel
and Rypacek (2008), the expression problem is often described only informally in the literature.
Following Lämmel and Rypacek, in the paper, we formally model the expression problem using
category theory. We then introduce the co-expression problem by applying categorical duality.
While the expression problem centers on extending the least fixed point of a sum type and
recursive functions consuming it — the co-expression problem is concerned with extending the
greatest fixed point of a product type and co-recursive functions producing it.

In our papers on E�ekt (Brachthäuser et al. 2017, 2018, 2020) and in Section 4.5.2 of this thesis,
we use the intuition gained through the work on the (co-)expression problem to formulate the
effect expression problem – a variant of the expression problem in the context of effect handlers.

Jonathan Immanuel Brachthäuser, Tillmann Rendel, and Klaus Ostermann. 2016. “Parsing
with First-Class Derivatives”. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA 2016). ACM, New York, NY, USA, 588-606.
DOI: https://doi.org/10.1145/2983990.2984026

Brzozowski derivatives (Brzozowski, 1964) are a well-known concept in the context of regular
expressions. Recently, they have been rediscovered to give a simplified explanation to parsers of
context-free languages (Danielsson, 2010; Might et al., 2011; Adams et al., 2016). Might et al.
use the derivative of a parser as part of the implementation. In this paper, we add derivatives as
a novel first-class feature to the interface of a standard parser combinator language. First-class
derivatives enable an inversion of the control flow. This allows modularly implementing parsers
for languages that previously required separate pre-processing steps or crosscutting modifications
of the involved parsers. This opens up new opportunities for reuse and supports a modular and
declarative specification of layout-sensitive parsers.

While at first parsing and effect handlers might seem like two very different fields, there
are interesting connections between the two. Firstly, it has been shown that effect handlers
can be used to implement parsers (Leijen, 2016). In Section 4.6, we will briefly revisit this
approach and see how grammars can be expressed in terms of effect operations, and how the
semantics of parsers is implemented as handlers for the effect operations. In general, by varying
the effect handlers, we can freely choose between different parsing strategies: Depth-first or
breadth-first parsing, computing only the first result or enumerating all results. Secondly, as
observed by Kiselyov (2007), delimited control (and effect handlers in extension) can be used to
invert the control flow and to incrementally provide the parser with input. This way we can
implement online (that is, streaming) parsers (Swierstra, 2009), or use the results of our paper
to add first-class derivatives to a parser combinator language.

12

https://doi.org/10.1145/2983990.2984026

1.3. Structure of the Thesis

1.2.4 E�cient Compilation of E�ect Handlers

Philipp Schuster and Jonathan Immanuel Brachthäuser. 2018. “Typing, Representing, and
Abstracting Control”. In Proceedings of the 3rd ACM SIGPLAN International Workshop
on Type-Driven Development (TyDe 2018). ACM, New York, NY, USA, 14-24.
DOI: https://doi.org/10.1145/3240719.3241788

Despite existing optimization efforts (Pretnar et al., 2017; Leijen, 2017b; Dolan et al., 2015),
to the current day, the abstraction of effect handlers still comes with a significant runtime
cost that is associated with searching the correct handlers and capturing the continuation. A
well-known translation strategy for delimited control in general (Danvy and Filinski, 1990),
and for effect handlers in particular (Hillerström et al., 2017; Leijen, 2017c) is to compile to
continuation-passing style. As a first step towards efficient compilation of effect handlers, in
this paper, we combine the results of Danvy and Filinski (1990) and Danvy and Filinski (1992)
and present a compilation strategy for multiple level of delimited control. We implement the
translation of terms and of types in Idris. Our translation preserves typability by intrinsically
typing both source and target language. We additionally index the type of effectful expressions
by a list of answer types. This indexing serves two purposes: (1) it restricts the contexts in
which this expression can be used and guarantees effect safety, and (2) it drives our type-directed
compilation process. Each entry in the list of answer types results in one iteration of the CPS
translation. We generalize standard techniques (Danvy and Filinski, 1992) to the iterated
translation, in order to avoid multiple classes of administrative beta and eta-redexes.

Philipp Schuster, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. 2020. “Com-
piling Effect Handlers in Capability-Passing Style”. To appear in Proceedings of the 25th
ACM SIGPLAN International Conference on Functional Programming .

Building on the results of this thesis, in the paper we generalize the techniques of the previous
paper from delimited control to effect handlers. In particular, like in E�ekt, we employ explicit
capability-passing style. We present a calculus that guarantees full elimination of redexes
associated with handler abstractions. To achieve this, we restrict capabilities to be second-class,
which prevents them from being returned from functions. Passing capabilities at compile-time
allows us to always specialize effectful programs to the corresponding handler implementations.
While the inlining guarantees are powerful, our proposed solution comes with restrictions.
Handlers are second-class, which implies that programmers cannot abstract over handlers at
runtime.

1.3 Structure of the Thesis
The remainder of this thesis is structured according to the aforementioned two parts. The first
part provides the necessary overview over delimited control and dynamic binding and relates
both to effect handlers. The second part describes the library design of E�ekt and discusses
new modularization opportunities enabled by combing effect handlers with object-oriented
programming. Chapter 7 discusses our approach, sketches potential future work and concludes.

13

https://doi.org/10.1145/3240719.3241788

Part I.

E�ect Handlers in Perspective

15

Chapter 2

FromDelimited Control to E�ect Handlers
In this chapter, we follow historical developments in the literature and first generalize
control effects to delimited control to then generalize from one control operator to a family
of control operators. We finally introduce effect handlers by shifting the perspective on
multi-prompt delimited continuations (Hieb et al., 1994; Dybvig et al., 2007): With effect
handlers the implementation of an effect operation is localized at the handler, not at the
effect operation (Sitaram, 1993).

Neither the overview, nor the generalizations bear much technical novelty and have been given
in similar form by Shan (2004b) and Dybvig et al. (2007). Furthermore, the relation between
effect handlers and control operators has been studied formally by Forster et al. (2017).
However, presenting the different control operators in the context of effect handlers helps
us to discuss modularity properties of the various control operators and effect handlers.
Furthermore, this background chapter serves two purposes: firstly, it establishes the necessary
vocabulary and concepts. The different calculi presented in this chapter serve as a point
of reference for the rest of this thesis. In particular, we use the variant of multi-prompt
delimited control to implement our effect handler libraries in the second part of this thesis.
Secondly, it highlights that programming with effect handlers can be seen as structured
programming with delimited control (Kammar et al., 2013, pp.150-151). This point of view
is the foundation for explicit capability-passing style, established in later chapters.

Cartwright and Felleisen describe an effect as

“a closed expression that [. . .] is not a value, and cannot be reduced to a value
without affecting the context.” — Cartwright and Felleisen (1994, p. 248)

As opposed to pure expressions, which can be reduced to a value without regarding the context
(assuming well-typed expressions and neglecting non-termination), the evaluation of effectful
expressions might depend on or even modify the context. While in general, the context can
include resources like the heap, the file system, or I/O, in this work we focus on the syntactic
evaluation context (Wright and Felleisen, 1994). We refer to effects that affect the evaluation
context also more specifically as control effects and to built-in or user-defined operations that
have control effects as control operators (Felleisen and Friedman, 1986).

Parts of this chapter are based on the following article: Jonathan Immanuel Brachthäuser, Philipp Schuster, and
Klaus Ostermann. 2020. “Effekt: Capability-passing Style for Type- and Effect-safe, Extensible Effect Handlers
in Scala”. Journal of Functional Programming, 30, E8 . DOI: https://doi.org/10.1017/S0956796820000027
The presentation of the type- and effect system in Section 2.4, appeared in similar form in the publication:
Jonathan Immanuel Brachthäuser and Daan Leijen. “Programming with Implicit Values, Functions, and
Control”. Technical Report MSR-TR-2019-7 . Microsoft Research, 2019.

17

https://doi.org/10.1017/S0956796820000027

2. From Delimited Control to E�ect Handlers

For multiple decades, control operators like call/cc have been used to program with control
effects (Friedman et al., 1984). Similar to goto, which can be understood as undelimited,
local continuation (Landin, 1965; Kennedy, 2007), call/cc captures the undelimited global
continuation, i.e., the entire future of the program execution. We will shortly see an example,
but abstractly, invoking call/cc, captures the continuation, reifies it as a first-class value, and
makes it available to the programmer. When the continuation is called, execution proceeds
at the very point where call/cc was originally called (Haynes and Friedman, 1987). Such a
captured continuation is undelimited, since it spans the entire future, not just some parts of it.
It is global in the sense that it potentially spans across procedure boundaries.
Recently, in disguise, control effects have found their way into mainstream programming

languages in the form of specialized solutions such as async/await, fibers, coroutines, generators
and others. While many of these programming language constructs can be implemented in terms
of other control effects (Wand, 1980; Haynes et al., 1986), programming language designers often
refrained from directly offering control operators like call/cc to the users. And rightfully so!
Like goto, while being very general and expressive, programs written with the control operator
call/cc tend to be fragile, hard to understand, and difficult to maintain. In contrast, each of the
programming language constructs listed above focuses on one particular problem domain. Each
offers domain terminology, potentially specialized typing rules and semantics, seemingly reducing
the complexity for the user of the programming language. However, the specialization to one
particular solution comes with a price: Each feature is typically implemented individually in the
compiler or runtime. Even worse, combining multiple features in one programming language
often leads to interaction of the features, again increasing the complexity of the language for
both the user and the implementer.

Also recently, the programming languages research community found new interest in control
effects in the form of algebraic effects (Plotkin and Power, 2003) and their extension with
handlers (Plotkin and Pretnar, 2009, 2013). Effect handlers occupy a sweet spot between the
very general control operators (such as call/cc) and specialized programming language features
(such as async/await). Like general control operators, effect handlers are powerful and can
express many of the language features above as user-defined libraries (Dolan et al., 2015, 2017;
Leijen, 2017a). However, unlike general control operators, effect handlers also encourage
modularity by separating programs into effect signatures (interfaces listing the available effect
operations), effectful programs written against those signatures, and effect handlers implementing
the effect signatures thereby providing semantics to the effect operations (Kammar et al., 2013).
This separation improves modular reasoning, simplifies type checking, and enables well-defined
composition of programs using different effects.

The connection between effect handlers and delimited control is not accidental. It has been es-
tablished practically (Kiselyov and Sivaramakrishnan, 2016, 2018) as well as theoretically (Forster
et al., 2017; Piróg et al., 2019) that certain forms of delimited continuations can express certain
forms of algebraic effect handlers. In the literature, effect handlers are sometimes introduced
as a structured way to programming with delimited continuations (Kammar et al., 2013; Lei-
jen, 2017c).

“Effect handlers are to delimited continuations as structured programming is to
goto.” — Andrej Bauer (Dagstuhl Seminar 18172, March 2018)

Viewing programming with effect handlers as structured way of programming with delimited
continuations has merits on its own.

18

2.1. Delimiting Control

In particular, we believe the regained interest in control operators comes from four important
generalizations and improvements effect handlers make over call/cc:

1. Generalizing from undelimited to delimited continuations
2. Generalizing from one control operator to a family of control operators
3. Establishing answer type safety of control operators
4. Establishing effect safety of control operators

From an engineer’s perspective, each of these improvements helps to write programs in a modular
way, making them easier to extend, and making it easier to reason about parts of a program
in isolation. While effect handlers can be seen as a revival of structured programming with
delimited control operators, there exists an alternative point of view we want to emphasize:
effect handlers generalize dynamic binding (Chapter 3). Hence, effect handlers encapsulate two
powerful (but often frowned upon) features behind a single uniform abstraction.

Delimited control
Effect handlers can capture the (delimited) continuation when handling effect operations
– effect operations are thus related to control operators and effect handlers are related to
control delimiters (Kammar et al., 2013).

Dynamic binding
Effect operations are dynamically bound (or dynamically scoped (Moreau, 1998)) – effect
operations are thus related to dynamically bound (effectful) functions and effect handlers
are related to binders of such dynamically scoped (Kammar and Pretnar, 2017).

In this chapter, we follow the above generalizations in order to establish important terminology
and to better understand the relation between effect handlers and delimited control. We review
the design space of delimited control, explore different variants of delimited control operators,
generalize from one control operator to families of control operators, to finally identify one
particular variant (spawn / controller) that most closely matches the operational semantics of
effect handlers in our implementations of the second part of this thesis.

2.1 Delimiting Control
The control operator call/cc (as present in some Scheme dialects) captures the entire continua-
tion of the program.

Example

print((1 + callcc { k ⇒ k(10); k(20) }) ∗ 2)

In this example, reducing callcc captures the entire rest of the program execution as continuation
k . The continuation corresponds to the evaluation context E = print((1 + �) ∗ 2). Invoking
the continuation with k(10) aborts the computation and replaces the current evaluation context
with E. The example thus evaluates to E[10] and running it prints the number 22. We can also
understand callcc as a labeling instruction and calling the continuation k(10) as a jump to that
label with the given argument. This analogy to jumps also makes it immediate that calling the
continuation discards the current continuation (that is, the second call k(20)) and replaces it
with print((1 + 10) ∗ 2). The call to k(10) never returns.

19

2. From Delimited Control to E�ect Handlers

A first step towards effect handlers is to allow users to delimit the extent to which the
continuation is being captured. In variations, such a delimited continuation (Felleisen, 1988) is
also referred to in literature as subcontinuation (Hieb et al., 1994) or partial continuation (Johnson
and Duggan, 1988). Since their introduction by Felleisen, different variants of delimited control
operators have been introduced – maybe the most prominent example being shift / reset (Danvy
and Filinski, 1992). Using shift, we can write a variation of the above example as:

print(reset { (1 + shift { k ⇒ k(3) + k(4) }) ∗ 2 })

Now the continuation (highlighted in grey) corresponds to the evaluation context (1 + �) ∗ 2.
Its extent is delimited by reset and thus does not include the call to print. The example will print
the number ((1 + 3) ∗ 2) + ((1 + 4) ∗ 2) = 18. Importantly, in contrast to the example
with call/cc, the call to the delimited continuation k(3) does return with the value 8.

2.1.1 Four Variants of Delimited Control
Figure 2.1 formally captures the operational semantics of delimited control. It defines the syntax
and semantics of a calculus for a call-by-value language with delimited control λdc . The style we
present the calculi in this and the following chapter is adapted from Leijen (2017c), who in turn
uses the style of Wright and Felleisen (1994). The syntax includes the usual forms for lambda
abstraction (λx .e) and application (e(e)), variables (x) and constants (c). In addition, it also
includes the two special forms for capturing the continuation (shift) and delimiting the extent of
the captured continuation (reset). In addition to the standard abbreviations for curried function
definition and application, we use the following abbreviations:

val x = e1; e2
.
= (λx . e2)(e1)

def f (x) = e1; e2
.
= val f = λx . e1; e2

e1; e2
.
= val _ = e1; e2

Akin to blocks in C-style languages, we sometimes use braces (instead of parenthesis) to group
sequenced expressions (i.e., { e1; . . .; ei ; . . .; en }) in definitions.

To reduce an expression to a value, the expression is decomposed into an evaluation E context
and a redex following the rules for forming evaluation contexts of Figure 2.1. We use e[x 7→ v]
to denote capture free substitution of x by v in e. All pure expressions not involving the control
operator shift are completely standard and can be reduced independently of the evaluation
context. We use e 7−→ e ′ to denote reduction in an evaluation context E (rule Cong) and
e −→∗ e ′ for the reflexive, transitive closure of our reduction relation.

(±shift±) reset { H[shift {k ⇒ e}] } −→

inner delimiter︷ ︸︸ ︷
reset { e[k 7→ λx. reset { H[x] }] }︸ ︷︷ ︸

outer delimiter

The reduction rule for shift makes use of a special evaluation context H, which we call a capture
context . Like the context E the capture context is a call-by-value context, but does not include
any reset-frames. To reduce a shift, we thus capture the context delimited by the closest
dynamically surrounding reset, reify it as a function, and bind it to k . The rule (±shift±) leaves
us with interesting design choices: As summarized by Dybvig et al. (2007) and Shan (2004b),

20

2.1. Delimiting Control

Syntax:

Expressions e ::= e(e) application
| reset { e } delimiting control effects
| shift { k ⇒ e } continuation capture
| v value

Values v ::= x | c | λx . e

Evaluation Contexts:

E ::= � | E(e) | v(E) | reset { E }
H ::= � | H(e)| v(H)|

Operational Semantics:

(δ) c(v) −→ δ(c, v) if δ(c, v) is defined
(β) (λx . e)(v) −→ e[x 7→ v]
(reset) reset { v } −→ v

e −→ e ′

E[e] 7−→ E[e ′]
[cong]

Figure 2.1. Syntax and semantics of delimited control (λdc). Reduction rule (shift) is defined in-text.

control operators can be characterized by whether or not they leave the (outer) delimiter behind
and whether or not the body of the captured continuation is enclosed by the (inner) delimiter.
That is, we can choose between four different variants of the rule (±shift±), each corresponding
to a different control operator introduced in the literature (Dybvig et al., 2007):

(+shift−) reset { H[shift { k ⇒ e }] } −→ reset { e[k 7→ λx . H[x]] }

Leave the outer delimiter behind, but do not include the inner delimiter in the continuation.
This semantics corresponds to the control operator F by Felleisen (1988) also referred to as
control in later publications.

(−shift−) reset { H[shift { k ⇒ e }] } −→ e[k 7→ λx . H[x]]

Neither leave the delimiter behind, nor contain it in the continuation. Shan (2004b) refers to
this variant of control as control0.

(−shift+) reset { H[shift { k ⇒ e }] } −→ e[k 7→ λx . reset { H[x] }]

Do not leave the outer delimiter behind but include the inner delimiter in the continuation.
This corresponds to the control operator shift0 by Danvy and Filinski (1989, Appendix C).

(+shift+) reset { H[shift { k ⇒ e }] } −→ reset { e[k 7→ λx . reset { H[x] }] }

Both leave the delimiter behind and contain the delimiter in the continuation. This semantics
corresponds to shift as introduced by Danvy and Filinski (1989, 1992)).

21

2. From Delimited Control to E�ect Handlers

We use (±shift±) as an abbreviation for the choice between the four different reduction rules
(+shift−), (−shift−), (−shift+), and (+shift+). This classification of control operators has been
presented by Dybvig et al. (2007), but we change their notation from ±F± to ±shift±. Since we
can instantiate it with four rules for (±shift±), we also refer to λdc as a calculus schema.

Delimiters and Modular Reasoning

The choice of the evaluation semantics ±shift± has no influence on our particular example above.
However, it makes significant difference in non-trivial programs and has implications on modular
reasoning:

The outer delimiter Leaving the outer delimiter behind, rule (+shift±) guarantees encapsulation
of control effects. That is, reset { e } is guaranteed to be a pure term and thus only has “a
single exit point” (Felleisen, 1988, p. 186). For a terminating expression e, the code following
reset { e } will be executed exactly once. This property is important to reason about resource
safety in presence of control effects (Felleisen, 1988). Take the following example:

val file = open(”my− file.txt”); reset { action() }; close(file)

No matter how action in the above example uses control effects; the +shift± variants guarantee
that the file will eventually be closed, given action terminates.

The inner delimiter Similarly, delimiting the body of the continuation (±shift+) guarantees that
all subsequent calls to shift are conceptually delimited by the same reset. This is illustrated by
the following example2 adapted from Danvy and Filinski (1990):

def flip() = shift { k ⇒ k(true) ++ k(false) };
reset { List(flip() || flip()) }

Here, we use the control operator shift to express an ambiguity effect. For this example,
both ±shift+ variants result in the list List(true, true, true, false). Delimiting the body of the
continuation is essential for type-safety of the example. Both calls to k return a list and flip
returns a boolean. This is not the case for the variant −shift−, which would make this example
ill typed. After reducing the first shift with rule (−shift−) the example corresponds to:

def k(x) = {
def flip() = shift { k ⇒ k(true) ++ k(false) };
List(x || flip())

};
k(true) ++ k(false)

The marked call to flip will result in a stuck term, since the body of flip cannot be reduced
without a corresponding delimiter. In contrast, evaluating the example with rule +shift− will

2We use List(e1, . . ., en) to denote the creation of a list with n elements and the infix operator ++ for list
concatenation. We use the infix operator x || y to express strict boolean disjunction.

22

2.1. Delimiting Control

diverge. Again, after one step of reducing shift with rule (+shift−) we obtain:

reset {
def k(x) = {

def flip() = shift { k ⇒ k(true) ++ k(false) };
List(x || flip())
};
k(true) ++ k(false)

}

This time the second call to flip will be delimited. However, the captured continuation also
contains the highlighted call to the first captured continuation, which in turn will call flip again,
and again.

Multiple e�ects with −shift+ As it has already been observed by Danvy and Filinski (1989,
Appendix C), the −shift+ variant (also called shift0) allows to access outer contexts by shifting
multiple times within the body of the shift. For example we can add a second effect operation
raise to our example:

def raise(msg) = shift { kflip ⇒ shift { kraise ⇒None } };
def flip() = shift { kflip ⇒ kflip(true) ++ kflip(false) };
def action() = . . .
reset { Some(reset { List(action()) }) }

Here action can make use of both raise and flip. In case of raise we immediately abort with
None. Compare this to

def raise(msg) = shift { kraise ⇒None };
def flip() = shift { kraise ⇒ shift { kflip ⇒ kflip(kraise(true)) ++ kflip(kraise(false)) } };
def action() = . . .
reset { List(reset { Some(action()) }) }

which enumerates all possible outcomes of flip in a depth-first manner. An exception terminates
the search in the current execution branch and potentially continues execution in another branch.
We can define action to model a drunk trying to flip a coin (Kammar et al., 2013):

def action() =
if (!flip()) raise(”dropped it”)
else if (flip()) ”heads” else ”tails”

the first interpretation results in None, while the second one yields:

I List(Some(”heads”), Some(”tails”), None)

By assigning a number of shifts to each effect, programs can simultaneously use different effects
(exceptions and ambiguity in this example). It is this variant of delimited control, that is
semantically closest to algebraic effect handlers (Kammar et al., 2013; Forster et al., 2017).
To summarize the comparison, the semantics of −shift− is very general since we can easily

express all other forms by manually inserting calls to reset; the +shift± variants enable effect
encapsulation and reasoning about external, linear resources; the ±shift+ variants guarantee that
all subsequent effects are confined to the call of the continuation. The −shift+ variant allows
users to combine multiple effects, albeit statically fixing the ordering of effects.

23

2. From Delimited Control to E�ect Handlers

One Control Operator Family of Control Operators
−shift− control0 Shan (2004b) cupto Gunter et al. (1995)

pushSubCont Dybvig et al. (2007)
+shift− F Felleisen (1988) control Sitaram and Felleisen (1990)
−shift+ shift0 Danvy and Filinski (1989, Appx. C) controller Hieb and Dybvig (1990)
+shift+ shift Danvy and Filinski (1989, 1992) ξn Danvy and Filinski (1990)

Figure 2.2. Comparison of different control operators in the literature.

2.2 Families of Delimited Control Operators
The semantics of −shift+ allowed us to express multiple effects, such as exceptions and ambiguity,
while at the same time it guaranteed that using the effects together in the same program is
well-defined. However, as we have seen in the example above, the order of effects is encoded in
the number of required shifts and thus statically fixed.

To overcome this issue and to express multiple effects more robustly, Sitaram and Felleisen (1990),
Danvy and Filinski (1990), and Hieb and Dybvig (1990) almost simultaneously each generalized
a different variant of delimited control from one control operator to a family of control operators.
Figure 2.2 organizes the relevant related work, grouping by the semantics in terms of ±shift±
and by the generalization to families of control operators. While details of the approaches
differ, conceptually the control operator shift and its delimiter are generalized to a family of
control operators shiftp (and resetp correspondingly) indexed by what we refer to as a prompt p
(adopting the terminology of Felleisen (1988)). Each control operator for one particular p can be
used to express a different effect without risking interference between different control operators.
Figure 2.3 follows Gunter et al. (1995) to capture this indexing formally. We extend and

generalize the calculus schema λdc to λdcp (pronounced “delimited control with prompts”). In
the syntax we replace the control operator shift by its indexed counterpart shiftp and reset by
resetp , accordingly. We extend values with the set of prompts p ∈ P and include an operation
new_prompt (Gunter et al., 1995; Dybvig et al., 2007) to create fresh prompts. Every prompt
p gives rise to a control operator shiftp and its matching delimiter resetp . Like in λdc, the
reduction rule (±shift±) is a rule scheme and offers four different choices for the operational
semantics.

We also adjust the reduction rules accordingly. The most important change compared to the
semantics in Figure 2.1 is that now the capture context Hp is also indexed (Gunter et al., 1995).
Just like previously omitting reset altogether in H, the side condition (p 6= p′) asserts that the
innermost reset delimits the extent of the captured continuation. However, now the continuation
can contain delimiters as long as they are indexed by a different prompt. The continuation
captured by shiftp represented by the capture context Hp is thus delimited by the closest reset
for the very prompt p.

Four variants of delimited control As in the calculus schema λdc , we again offer four variations of
reduction rule (±shift±). The discussion on tradeoffs of the different ±shift± variants carries over
from the single-prompt setting to the multi-prompt setting. However, there is one important
difference. Considering the +shift± variants, a delimited expression resetp { e } now is only
pure with respect to one particular prompt p. In consequence, we lose the guaranty of the
single-prompt setting, where resetp { e } would return exactly once. This is not the case in the

24

2.2. Families of Delimited Control Operators

Syntax:

Expressions e ::= . . .
| resetp { e } delimiting control effects
| shiftp { k ⇒ e } continuation capture
| new_prompt creating a fresh prompt

Values v ::= . . . | p

Evaluation Contexts:

E ::= � | E(e) | v(E) | resetp { E }
Hp ::= � | Hp(e)| v(Hp)| resetp′ { Hp } if p 6= p′

Operational Semantics:

. . .
(fresh) new_prompt −→ p fresh
(reset) resetp { v } −→ v

(±shift±) resetp { Hp [shiftp { k ⇒ e }] } −→ resetp { e[k 7→ λx . resetp { Hp [x] }] }

Figure 2.3. Generalization of syntax and semantics to families of control-operators (λdcp).

multi-prompt setting. Other control effects (with p′ 6= p) can still capture resetp { e } (and
expressions following it) as part of the continuation. The following example illustrates that
generalizing to multiple prompts invalidates any linearity assumptions:

resetp′ { val file = open(”my− file.txt”); resetp { action() }; close(file) }

We can now assume action to be defined as shiftp′ { k ⇒ 0 }, which discards the continuation k
and aborts the computation up to resetp′ . In consequence, resetp { action() } aborts and the
file will be opened, but not closed.

Multiple prompts give rise to multiple e�ects Choosing one of the variants ±shift+, we can recast
our drunkFlip example from the last section to use prompts to distinguish different effects:

val exc = new_prompt
val amb = new_prompt
def raise(msg) = shiftexc { k ⇒None }
def flip() = shiftamb { k ⇒ k(true) ++ k(false) }
def action() = . . .
resetexc { Some(resetamb { List(action()) }) }

To reorder the effects, with prompts, we can now keep the definitions of flip and raise unchanged.
We just need to rearrange the order of the resets to:

resetamb { List(resetexc { Some(action()) }) }

25

2. From Delimited Control to E�ect Handlers

This demonstrates the flexibility gained from generalizing to multiple prompts. While before, we
could express multiple effects with shift0, we needed to statically assign a number of shifts to each
effect and thus fix the order of effects upfront. With multiple prompts, this choice is deferred to
the point of reset. In particular, the implementation of effect operations is independent of the
ordering.

2.2.1 On the Choice of Prompts
So far, when generalizing to multiple prompts we have assumed that there exists a set of prompts
P whose elements can be used to index the control operators. Different approaches in the
literature not only vary in the choice of ±shift± but also in their treatment of prompts. Some
approaches treat prompts as first-class values, while others do not. Some include an explicit
new_prompt operation, whereas others make prompt creation implicit or assume a globally static
set of prompts. The exact treatment of prompts is important. This can easily be seen by
removing new_prompt from the language and choosing the static singleton set P = { # } for
the source of available prompts. In this case, the extension to multiple prompts is conservative
and degenerates to λdc .

Dynamic prompts Gunter et al. (1995), Sitaram and Felleisen (1990), Hieb and Dybvig (1990),
and later Dybvig et al. (2007) all allow the creation of new prompts at runtime. This way, users
can dynamically create new control operators and corresponding delimiters.
Gunter et al., Sitaram and Felleisen, and Dybvig et al. additionally make prompts first class
objects. Gunter et al. and Dybvig et al. introduce a separate type of prompts P = Prompt
and offer built-in functions new_prompt (resp. newPrompt) to the user to create new prompts at
runtime. In contrast, Sitaram and Felleisen use natural numbers to distinguish levels of control
operators, that is P = N and consequently do not need to offer a way to create fresh prompts.
Different to the semantics presented in Figure 2.3, their prompts form a hierarchy and the
comparison on prompt equality in the capture context thus needs to be replaced by p < p′.

Implicit prompts In contrast to approaches with first-class prompts and explicit prompt creation,
Hieb and Dybvig (1990) introduce the operator spawn { c ⇒ e } that unifies creating a fresh
prompt and delimiting the extent of the continuation. Conceptually, invoking spawn creates a
new control operator (named c for “controller”), which is delimited by this very call to spawn.
Following Dybvig et al. (2007), the semantics of spawn can be captured by

spawn { c ⇒ e } .
= val p = new_prompt; def c(body) = shiftp { k ⇒ body(k) }; resetp { e }

with semantics −shift+ for the operator shiftp . By grouping the creation of prompts and
delimiting of continuations in one feature, Hieb and Dybvig (1990) introduce a slight restriction
on expressivity. Always creating a fresh prompt p prevents users from using the same prompt
on multiple, potentially different resetps.

Static prompts The effect operation raise above illustrated that control effects can be used to
model exceptions. Deliberately ignoring subtyping, to model the exceptional control flow of
Java, we can instantiate λdcp with a globally static set of prompts, corresponding to the different
types of exceptions, such as:

P = { ArithmeticException, NullpointerException, . . . }

26

2.3. From Delimited Control to E�ect Handlers

Conceptually, exception types are not first-class, though this view changes when also considering
runtime reflection. Since exceptions discard the continuation, we can choose any of the −shift±
variants as the reduction rule.

2.2.2 Static Hierarchies
Like the generalization to multiple prompts, the CPS-hierarchy (Danvy and Filinski, 1990) is an
alternative approach that gives rise to a family of control operators. Danvy and Filinski (1990)
translate programs with multiple levels of control operators by repeatedly applying a CPS
transformation. Each iteration of the CPS transformation adds an additional continuation
argument to the translated program, which gives rise to a new pair of control operators 〈 e 〉i
(i.e., reset) and ξi k . e (i.e., shift). Since the number of CPS translations needs to be known at
translation time, this way they obtain a static hierarchy of control operators. While in terms
of delimiter treatment, their semantics corresponds to +shift+, there is a significant semantic
difference to our description with prompts: in the CPS-hierarchy, the control operator ξn k . e
captures the first n delimited contexts and binds their composition to k in e. Likewise, 〈 e 〉n
delimits the first n contexts (Danvy and Filinski, 1990). As a consequence, when implementing
effects like flip and raise as above, we need to globally fix the order of effects, for instance
choosing ξ1 to express flip and ξ2 to express raise. From a users point of view, programming in
the CPS hierarchy is thus closer to our development of multiple effects with shift0 (−shift+) in
the previous section, than to programming with multiple prompts.

2.2.3 Multi-Prompt Delimited Control in E�ekt
In the second part of this thesis, we base our implementations of the E�ekt library on multi-prompt
delimited control in the semantics −shift+. This holds true for both our Scala implementations
in Chapters 4 and 6, as well as the Java implementation in Chapter 5. As we will see, every
handler implicitly introduces a fresh prompt. Our operational semantics is thus closest to the
one of spawn (Hieb and Dybvig, 1990).

2.3 From Delimited Control to E�ect Handlers
In the last two sections, we have revisited two important generalizations in the history of
control operators: first from undelimited control to delimited control and then from one control
operator to a family of control operators. In this section, we will now draw connections between
multi-prompt delimited control and effect handlers.

It was Sitaram (1993), who performed an important (though not often recognized) step on the
way from delimited control to effect handlers3. Sitaram observed that with callcc (and likewise
with other control operators)

“the handling of the continuation takes place at the identical site as the creation of
the continuation” — Sitaram (1993, p. 148)

This is fundamentally different when programming with exception handlers. With exception
handlers, throw just signals an exception, but the handling is performed at the exception handler.
3We are grateful to Youyou Cong to bring the work of Sitaram (1993) to our attention.

27

2. From Delimited Control to E�ect Handlers

Following Sitaram (1993)4, we can apply the same idea to control effects,
and instead of

resetp {
. . . val x = arg ; shiftp { k ⇒ body } . . .
}

we now write:

handlep { (x , k) ⇒ body } in {
. . . dop(arg) . . .
}

That is, instead of grouping continuation capture and handling in the construct shift, we group
handling with the continuation delimiter handle (called run by Sitaram). The effect operation do
(called fcontrol by Sitaram) now merely signals a control transfer to the corresponding handler .
The choice of the terminology “handler” is not accidental, as the construct was inspired by
exception handling (Sitaram, 1993).
Figure 2.4 defines a calculus scheme modifying λdcp to λdch (pronounced “delimited control

with handlers”). As in λdcp , prompts are first-class and can be created with new_prompt. Like in
all previous presentations of calculus schemes, λdch offers the choice of four different reduction
rules ±do±. The semantics of Sitaram (1993) corresponds to +do−. However, as mentioned in
Section 2.1, of the four different variants the reduction rule (−shift+) is closest to effect handlers.
Similarly, we will always assume rule (−do+) in the remainder of this thesis unless otherwise
noted.

Example Using prompts to distinguish different effect operations, we can express our running
example as follows:

val amb = new_prompt;
val exc = new_prompt;
def flip() = doamb()
def raise(msg) = doexc(msg)
def action() = . . .

The effect operations flip and raise immediately forward to control operations doamb and doexc

respectively. They do not carry any implementation details. The implementation itself is now
located at the handlers:

def collect(action) = handleamb { ((), k)⇒ k(true) ++ k(false) } in { List(action()) }
def maybe(action) = handleexc { (msg , k)⇒None } in { Some(action()) }

For more flexibility, we abstract over the handlers as functions collect and maybe. Similar to
our previous examples, handling the effects gives:

collect(λ().maybe(drunkFlip))
I List(Some(”heads”), Some(”tails”), None)

maybe(λ(). collect(drunkFlip))
I None

We can safely treat the involved prompts and definitions of effect operations as globally static.
This does not prevent us from providing alternative implementations in handlers like:

def report(action) = handleexc { (msg , k)⇒ log(msg) } in { action(); () }
4We deliberately adjusted the syntax of Sitaram (1993) to be closer to the one of effect handlers.

28

2.3. From Delimited Control to E�ect Handlers

Syntax:

Expressions e ::= . . .
| handlep h in { e } delimiting effects
| dop(v) effect operation call

Handlers h ::= { (x , k) ⇒ e } handler clause

Evaluation Contexts:

E ::= � | E(e) | v(E) | handlep h in { E }
Hp ::= � | Hp(e)| v(Hp)| handlep′ h in { Hp } if p 6= p′

Operational Semantics:

. . .
(reset) handlep h in { v } −→ v

(±do±) handlep h in { Hp [dop(v)] } −→ handlep h in { e[x 7→ v , k 7→ λy . handlep h in { Hp [y] }] }
where h = { (x , k) ⇒ e }

Figure 2.4. Syntax and semantics of multi-prompt delimited control with handlers (λdch).

This alternative handler for exceptions assumes logging facilities to report the provided message
and always return the unit value. While programs express that they use the raise effect, the
exact semantics is determined by the handler. We can think of the handler as a dynamic binder
for the effect operation – a point of view, which we will explore in detail in Chapter 3.
Moving the handling (body) from the control operation to the delimiter seems like a simple

change in syntax. However, it has profound consequences on the way users can reason about
effectful programs.

Localized reasoning about the continuation With shiftp each use of the control operator to capture
the continuation can vary. Parts of the program might use shiftp to discard the continuation
and abort with a dummy value (like raise above), other parts might use it as a backtracking
facility (like flip above) for the same delimiter. Even though different occurrences of shiftp need
to coordinate the way they use the continuation, they are spread all over the program. Not
so with handlers. Locating body with the delimiter establishes an important restriction: all
bodies of shiftp need to coincide. This way, a programmer can easily determine all usages of
the continuation for a prompt p by analyzing the corresponding handler. The different ways a
handler might capture and use the continuation is thus confined to one module. This allows
syntactically localized reasoning about the continuation usage.

Localized reasoning about e�ects Syntactically grouping the handlers with the delimiter has
another important consequence. It naturally suggests that effects used by the expression body
are evaluated in the context of the handler, not in the context of the corresponding shiftp or
fcontrol. What might seem obvious (when considering handlers) initially lead to confusion in

29

2. From Delimited Control to E�ect Handlers

the context of delimited control. Danvy and Filinski (1990) describe “the desirable relation”5

shiftp { k ⇒ k(e) } ≡ e

which as they remark, in general, does not hold for the CPS-hierarchy. Translated to our setting
of multiple prompts, by simple reduction we can see that it also does not hold for any of our
multi-prompt ±shift±-variants.

resetp { Hp [shiftp { k ⇒ k(e) }] } −→∗ resetp { (λx . resetp { Hp [x] })(e) }

In general, the reduction of expression e might involve a reduction of shiftp′ for any other prompt
p′ 6= p. This prompt p′ in turn might be delimited in the capture context Hp since the capture
context only excludes delimiters for the same prompt6. We want to argue, that this relation is
not desirable after all! As illustrated above, effects in e are evaluated in the current evaluation
context, while shiftp { k ⇒ k(e) } leads to a shift in perspective: The body of shiftp is evaluated
at the position of the corresponding resetp . Grouping handling expressions with the delimiter
clarifies this and furthermore allows syntactically localized reasoning about the effect usage.
With handlers, a programmer can lexically reason about effects used by the handler since the
scope of evaluation and the scope of definition is syntactically unified. In general, this is not
true for languages with shiftp-like control operators.

Localized type checking Grouping delimiter and handling expressions not only helps the pro-
grammer to reason about programs, it also simplifies type checking. While type systems for
various variants of control operators exist (Danvy and Filinski, 1989; Asai and Kameyama, 2007;
Biernacka et al., 2011; Materzok and Biernacki, 2011) they are typically quite involved. One
particular challenge is answer type modification (Asai and Kameyama, 2007). Answer type
modification describes the situation where the body of a shift changes the resulting type (the
answer type) at the corresponding reset. Take the following example:

val ans = reset { 1 + action() }

Just from the type of the top-level addition, one would assume reset to return a numeric value.
However, with

def action() = shift { k ⇒ λx . k(x) ∗ 2 }

the body of shift changes the type of ans to a function between numeric values. Applying
ans(20) thus yields 42.
Answer type modification is powerful and can for instance express sprintf concisely by changing
the number and the type of additional arguments based on the parsed format string (Asai
and Kameyama, 2007). However, this expressiveness takes its toll on the understandability of
programs and the simplicity of type checking. Handlers improve on this situation by syntactically
grouping continuation usage and delimiter in one module. This simplifies type checking: Most
type systems for languages with support for (algebraic) effect handlers simply require that the
answer types of the handled expression and the one handling coincide (Plotkin and Pretnar, 2013;
Leijen, 2017c; Lindley et al., 2017). That is, handlers do not support answer type modification.
Notably, Gunter et al. (1995) achieve a similar restriction by fixing the answer type at prompt
creation time.
5For easier comparison, we present the relation in the syntax of λdcp .
6As before, the optional outer and inner delimiter are highlighted in grey.

30

2.3. From Delimited Control to E�ect Handlers

Syntax:

Expressions e ::= e(e) application
| handlep h in { e } delimiting effects
| dop(v) effect operation call
| v value

Values v ::= x | c | λx . e

Handlers h ::= { (x , k) ⇒ e } handler clause

Evaluation Contexts:

E ::= � | E(e) | v(E) | handlep h in { E }
Hp ::= � | Hp(e)| v(Hp)| handlep′ h in { Hp } if p 6= p′

e −→ e ′

E[e] 7−→ E[e ′]
[cong]

Operational Semantics:

(δ) c(v) −→ δ(c, v) if δ(c, v) is defined
(β) (λx . e)(v) −→ e[x 7→ v]
(reset) handlep h in { v } −→ v
(−do+) handlep h in { Hp [dop(v)] } −→ e[x 7→ v , k 7→ λy . handlep h in { Hp [y] }]

where h = { (x , k) ⇒ e }

Figure 2.5. Summary of syntax and semantics for λdch , specialized to variant −do+ and a statically
declared set of prompts (adapted from Leijen, 2017c).

31

2. From Delimited Control to E�ect Handlers

2.4 A Type System for E�ect Handlers
In the previous section, we argued that grouping the handling expressions with the delimiter
facilitates type checking. To support this observation and as a point of reference for later
chapters, in this section we present a simple monomorphic type and effect system for λdch .
Figure 2.6 defines the typing rules for λdch in the variant −do+. Since this chapter presented
the development of λdch in multiple steps, for easier reference, we also include syntax and
operational semantics (Figure 2.5). For the effect system, we build on a simplified version of the
effect system of Koka (Leijen, 2017c), which we presented in similar form as λaeh in previous
work (Brachthäuser and Leijen, 2019). In Koka, the set of labels is statically determined by
global effect declarations, such as:

effect amb { flip(): bool }

By listing effect operations as part of an effect declaration, effect operations only implicitly
refer to the corresponding effect label. Hence, labels are not first-class8. Likewise, for the
presentation in this section, we assume an arbitrary, but statically fixed set of prompts (that is,
we exclude new_prompt from the language). Following Leijen (2017c), for every prompt p, we
assume the presence of a unique effect declaration in Σ, that assigns a signature to the prompt
(i.e., Σ(p) = τ1 → τ2). For instance, we would require amb ∈ P and amb : unit → bool ∈ Σ
to express the flip operation as:

def flip() { doamb() }

Both, the operational semantics and the effect system are adapted from Leijen (2017c). While
λdch is close to the calculus presented by Leijen (2017c), there are notable differences:

– We simplify the type system of λdch to monomorphic types and effects.
– Handlers in λdch do not have return-clauses.
– Handlers in λdch are restricted to a single effect operation, whereas Leijen (2017c) allows

grouping of multiple effect operations under one effect label / prompt.

Figure 2.6 introduces two typing judgments. The judgment Γ v̀al v : τ types values, which, by
construction, cannot use any control effects. The judgment Γ d̀ch e : τ | π types expressions
that can use control effects specified in row ε. Following Leijen (2017c), a row is either empty 〈 〉
or an extension with a prompt label 〈p|ε〉. We also treat rows as equivalent up to the order of
different prompts (Figure 2.6) and use the following shorthands:

〈p1, . . ., pn |ε〉
.
= 〈p1| . . . 〈pn |ε〉 . . . 〉 〈p1, . . ., pn〉

.
= 〈p1| . . . 〈pn |〈 〉〉 . . . 〉

Rule do types control transfers dop and introduces the prompt label in the effect row. In
contrast, rule handle eliminates the prompt label from the row to type a handler. Handlers in
λdch do not have return clauses and thus the rule handle requires e1 and e2 both to agree on
the type τ . To type the handler body e1, the typing environment is extended with the argument
type x : τ1, and the type of the reified continuation k : τ2 → ε τ . In particular, both the
body of the handler and the continuation can use residual effects ε, which are not handled by
the handler itself.
8Recently, Leijen (2018b) extended Koka with support for dynamic effect handlers by adding the rule

new handleh (v) −→ handlel
h (v(l)) where l fresh, which is reminiscent of the above mentioned rule for spawn.

By generating fresh labels, the set of labels is now open and by passing the label to the handled program
labels effectively become first-class objects.

32

2.4. A Type System for E�ect Handlers

Syntax of Types:

Types τ ::= unit | bool | . . . set of builtin types
| τ→ ε τ effectful functions

Effect Row ε ::= 〈 〉 empty row
| 〈p | ε〉 row extension

Effect Labels p ::= exc | amb | . . . static set of prompts

Type Environment Γ ::= ∅ | Γ, x : τ

Effect Signatures Σ ::= ∅ | Σ, p : τ1 → τ2

Typing Rules:

Γ(x) = τ

Γ v̀al x : τ
[var]

Γ v̀al v : τ

Γ d̀ch v : τ | ε
[val]

Σ(p) = τ1 → τ2 Γ v̀al v : τ1

Γ d̀ch dop(v) : τ2 | 〈p|ε〉
[do]

Γ, x : τ1 d̀ch e : τ2 | ε
Γ v̀al λx .e : τ1 → ε τ2

[lam]
Γ d̀ch e1 : τ1 → ε τ2 | ε Γ d̀ch e2 : τ1 | ε

Γ d̀ch e1(e2) : τ2 | ε
[app]

Σ(p) = τ1 → τ2 Γ d̀ch e2 : τ | 〈p|ε〉 Γ, x : τ1, k : τ2 → ε τ d̀ch e1 : τ | ε
Γ d̀ch handlep { (x , k) ⇒ e1 } in { e2 } : τ | ε

[handle]

Row Equivalence:

ε ∼= ε [eq-refl]

ε1 ∼= ε2 ε2 ∼= ε3

ε1 ∼= ε3
[eq-trans]

ε1 ∼= ε2

〈p | ε1〉 ∼= 〈p | ε2〉
[eq-head]

p1 6= p2

〈p1 | 〈p2 | ε〉 〉 ∼= 〈p2 | 〈p1 | ε〉 〉
[eq-comm]

Figure 2.6. Syntax of types, typing rules, and equivalence of effect rows for λdch (adapted from
Leijen, 2017c). Every prompt p has a uniquely defined signature in Σ.

33

2. From Delimited Control to E�ect Handlers

2.4.1 Semantic Soundness
Since λdch is a restriction of the language presented by Leijen (2017c), the proofs carry over
mostly unchanged. Leijen (2017c) extends a previous proof (Leijen, 2014) and uses standard
techniques from Wright and Felleisen (1994) to show that well-typed effectful programs cannot
go wrong . That is, all effect operations are eventually handled. Here, we repeat some of the
necessary lemmas and proofs of Leijen (2017c). Following Leijen, we state semantic soundness:

Theorem 1. (Semantic Soundness)
If ∅ d̀ch e : τ | 〈 〉 then either e diverges, or evaluates to a value e 7−→∗ v where ∅ v̀al v : τ .

Note, that we require the set of effects to be empty (i.e., 〈 〉). That is, the program should not
have any control-effects, which are observable from the outside7. We only focus on effect safety
and identify the following expressions as faulty:

De�nition 1. (Unhandled effect)
A term has an unhandled effect p, if it has the form Hp [dop(v)].

Leijen (2017c) continues and proves semantic soundness using two lemmas, which we prove in
the remainder of this section:

Lemma 1. (Subject reduction)
If Γ d̀ch e1 : τ | ε and e1 7−→ e2, then Γ d̀ch e2 : τ | ε.
That is, types and effects are preserved by the reduction relation 7−→.

Lemma 2. (Effects are meaningful)
If Γ d̀ch Hp [dop(v)] : τ | ε, then p ∈ ε.
Lemma 2 states that effect types are meaningful . Only effect handlers can remove labels p from
the effect row ε.

Proof of Semantic Soundness
Leijen (2017c) uses Lemma 2 (stating that effects are meaningful) together with Lemma 1
(subject reduction) to prove semantic soundness (Theorem 1).

Proof. (of Theorem 1) To reduce e1 to a value (or diverge), we repeatedly apply 7−→. Every
such reduction step either leads to another expression e2 or it is stuck on a faulty expression
(Definition 1), that is, an unhandled effect. Lemma 1 gives us, that the new expression e2 has
the same type τ and the same effects ε.

Now, let us assume that a sequence of reductions leads to an expression Hp [dop(v)], which is
faulty. By subject reduction (Lemma 1), we know that Γ d̀ch Hp [dop(v)] : τ | ε. Additionally,
by Lemma 2, we know that p ∈ ε.

However, the fact that p ∈ ε contradicts our assumption of Theorem 1. It requires an empty
effect row. The reduction thus cannot lead to an unhandled effect. �

7Leijen (2017c) allows arbitray effects ε, which we believe is an oversight in the original formalization.

34

2.4. A Type System for E�ect Handlers

Proof of Subject Reduction
To prove subject reduction (Lemma 1), we need the following two standard lemmas (Wright
and Felleisen, 1994):

Lemma 3. (Substitution)
a. If Γ, x : τ v̀al v ′ : τ ′ and Γ v̀al v : τ then Γ v̀al v ′[x 7→ v] : τ ′

b. If Γ, x : τ d̀ch e : τ ′ | ε and Γ v̀al v : τ then Γ d̀ch e[x 7→ v] : τ ′ | ε

By mutual induction on the derivations Γ, x : τ v̀al v ′ : τ ′, and Γ, x : τ d̀ch e : τ ′ | ε.

Lemma 4. (Replacement)
Given a typing derivation D that ends in Γ d̀ch E[e] : τ | ε, and D ′, which is a subderivation
of D ending in Γ′ d̀ch e : τ ′ | ε′ and occurs at the hole of E, and Γ′ d̀ch e ′ : τ ′ | ε′, then
we have that Γ d̀ch E[e] : τ | ε.

Proof by induction on the derivation tree and case analysis of the evaluation context E.
Since effect operations allow to transfer control flow and send values “up the stack”, we also

need the following non-standard lemma:

Lemma 5. (Context inversion)
If we have a typing derivation D that ends in Γ d̀ch E[e] : τ | ε, and D ′ is a subderivation of
D ending in Γ′ d̀ch e : τ ′ | ε′. Then Γ′ can be weakened to Γ.

That is, the evaluation context E has no influence on the type environment Γ′. Proof by induction
on the derivation tree and case analysis of the evaluation context E. Informally, only the rules
App and Handle are applicable. Neither changes the typing context.

Proof. (Of Lemma 1) We are now ready to prove Lemma 1. The proof proceeds by induction over
reductions −→. We assume that the induction hypothesis holds for subterms. The interesting
cases are rules (reset) and (−do+):

case (−do+)
We need to construct a derivation for: Γ ` e[x 7→v , k 7→ λy . handlep h in { Hp [y] }] : τ | ε.
From rule Handle we have Σ(p) = τ1 → τ2 (1), Γ d̀ch Hp [dop(v)] : τ | 〈p|ε〉 (2), and
Γ, x : τ1, k : τ1 → ε d̀ch e : τ | ε (3).
The derivation (2) includes a subderivation for Γ′ ` dop(v) : τ2 | ε′ (4) with the premise
Γ′ v̀al v : τ1 (5). From (5) and Lemma 5, we can obtain Γ v̀al v : τ1. With (2), (4),
assuming ∅ d̀ch y : τ2 | ε′, and Lemma 4, we can derive Γ d̀ch Hp [y] : τ | 〈p|ε〉 (6). Us-
ing Handle, (1), (6), and (3) we have Γ d̀ch handlep h in { Hp [y] } : τ | ε. By Lam, we
obtain Γ v̀al λy . handlep h in { Hp [y] } : τ2 → ε τ (7). Assuming x , k 6∈ fv(Hp [y]), and
using Lemma 3 twice (once for x and once for k), we finally construct the desired typing
derivation.

case (reset)
We need to construct a typing derivation for Γ d̀ch v : τ | ε. From rule Handle we have
the premise Γ d̀ch v : τ | 〈p|ε〉 (1). Since v is a value, the derivation has to end in an
application of Val with the premise Γ v̀al v : τ (2). From (2) we can again apply Val
choosing a different effect ε (instead of 〈p|ε〉). This gives us the desired derivation. Intuitively,
values do not have effects and we can thus choose arbitrarily.

�

35

2. From Delimited Control to E�ect Handlers

Proof that E�ects are Meaningful

After having shown subject reduction (Lemma 1), we continue and show that faulty expressions
are not typeable. To show that faulty expressions are not typeable, we need to prove Lemma 2.

Proof. (of Lemma 2) We proceed by induction over the structure of the capture context Hp .

case�
By rule Do, we immediately have ε = 〈p|ε′〉 and thus p ∈ ε.

case H′p(e)
We can apply rule App to obtain the premise Γ d̀ch H′p [dop(v)] : τ1 → ε τ2 | ε (1). By
(1) and the induction hypothesis, we have p ∈ ε.

case v(H′p)
Similar to the previous case.

case handlep′ h in { H′p } if p 6= p′

By the grammar for capture contexts, we have p 6= p′ (1). Applying rule Handle, we obtain
Γ d̀cp H′p [dop(v)] : τ | 〈p′|ε〉 (2). By the induction hypothesis, (2) we have p ∈ 〈p′|ε〉. By
side condition (1) we finally get p ∈ ε.

�

2.5 Related Work and Chapter Conclusion
In this chapter, we introduced effect handlers from the perspective of control effects and discussed
the relation between effect handlers and multi-prompt delimited control. In a natural progression,
starting from undelimited control, via delimited control and multiple prompts, we finally arrived
at effect handlers (λdch). Since this chapter summarized existing work, most related work has
already been discussed throughout the text. Here, we want to briefly put λdch into perspective
of other calculi and implementations of delimited control and effect handlers.

Delimited Control and E�ect Handlers

It has previously been established that algebraic effect handlers can be expressed with delimited
control. Forster et al. (2017) formally relate the expressive power of effect handlers with the
expressive power of single-prompt delimited control in variant −shift+ (that is, shift0). Piróg
et al. (2019) extend the work by Forster et al. (2017) to a typed setting and show that it requires
type polymorphism. They provide a typed correspondence between deep handlers (Kammar
et al., 2013) and shift0. They also give a typed correspondence between shallow handlers, as
they can be found in the language Frank (Lindley et al., 2017), and the control operator control0
(that is, −shift−). Kiselyov and Sivaramakrishnan (2016) present a practical embedding of the
language Eff into OCaml in terms of multi-prompt delimited control. They build on semantics
−shift− but manually delimit the body of the continuation.
Dybvig et al. (2007) give a comprehensive overview over the different control operators and

show how they can be expressed in terms of withSubCont (that is, semantics −shift−). We adopt
their notation to classify control operators by delimiter treatment, but write ±shift± instead of
±F±. While they present the operational semantics of control operator withSubCont in terms

36

2.5. Related Work and Chapter Conclusion

of an abstract machine, we adapt the style of Wright and Felleisen (1994) and use the capture
context H (respectively, Hp). This is also how Leijen (2017c) defines the operational semantics
of Koka, which inspired the presentation of the calculi in this and the following chapter.

Comparison with E�ect Handlers in Koka
As established by Forster et al. (2017), of the four different variants the reduction rule (−shift+)
is closest to effect handlers. One can also see this relation between delimited control and
algebraic effect handlers clearly when comparing the operational semantics of λdch with the one
of Koka (Leijen, 2017c, 2018b), a language with support for algebraic effect handlers. We repeat
the relevant reduction rules of Leijen (2017c) where necessary. In Koka, handlers can use the
delimited continuation to provide semantics to an effect operation. The continuation capture is
expressed by the following evaluation context,

Hl = � | Hl(e) | v(Hl) | handlel′

h (Hl) if l 6= l ′

and the following reduction rule (handle):

handlel
h(Hl [opl(v)]) −→ e[x 7→ v , resume 7→ λy . handlel

h(Hl [y])]
where (opl(x) → e) ∈ h

The reduction rule shows how the call to the effect operation op is handled by the handler h.
Comparing this to λdch and mapping effect labels l to prompts p, we can see that the delimited
context Hl directly corresponds to th capture context Hp and that the handle-rule corresponds
to rule (−do+), repeated here for easier comparison:

handlep h in { Hp [dop(v)] } −→ e[x 7→ v , resume 7→ λy . handlep h in { Hp [y] }]
where h = { (x , resume) ⇒ e }

Like in rule (−do+), the continuation bound to resume is again delimited by handlel
h and no

outer delimiter is left behind. Also, both Koka and λdch perform lookup for the handler body.
However, there are also a few differences. As mentioned above, effect declarations in Koka are

not limited to just one effect operation. If we also want to express multiple, different effects
in λdch by using one prompt p, we can do so by tagging the operations (Sitaram, 1993). For
instance, we can express the state effect as:

val state = new_prompt
def get() dostate(”get”)
def set(value) dostate(”set”, value)

Assigning static types to operations tagged this way would require some form of GADTs (Pey-
ton Jones et al., 2006).

In addition to the implementation of effect operations, effect handlers in Koka also provide a
“return clause”. For comparison, the collect handler would be expressed as:

val collect = handler {

return x → Cons(x, Nil)

flip() → append(resume(True), resume(False))

}

In our examples, we inlined the return clauses. This naive solution is not always possible since
the body of the return might refer to an outer handler of the same effect. Leijen (2018b) shows
how to express return clauses as effect operations, which circumvents this problem.

37

2. From Delimited Control to E�ect Handlers

2.5.1 Chapter Conclusion
In this background chapter, we presented effect handlers from the perspective of delimited
control to illustrate that there are three important aspects to effect handlers:

1. One of the most important features of effect handlers is the ability to capture the contin-
uation. We summarized existing work in λdc and λdcp to illustrate the design space of
delimited control.

2. Effect handlers group delimiters and delimiter usage (control operator) in one module.
This grouping allows localized reasoning about the usage of continuations and other control
effects by effect operations. We highlight this difference by presenting both λdcp and λdch ,
where the only difference is the syntactic position of the handling body.

3. With effect handlers, effect operations are dynamically bound and looked up in the
evaluation context. They are thus related to dynamically scoped variables. Chapter 3
explores this connection in more detail.

With the presented calculi we not only provided necessary preliminaries for the implementations
of effect handlers presented in the second part of this thesis; we also hope that our presentation
puts Andrej Bauer’s statement that “effect handlers are to delimited continuations as structured
programming is to goto” (at Dagstuhl Seminar 18172, March 2018) into a fresh perspective.

38

Chapter 3

FromDynamic Binding to E�ect Handlers
In this chapter, we offer a second, alternative perspective on effect handlers: as a generaliza-
tion of dynamic binding. To illustrate the relationship between effect handlers and dynamic
binding, we gradually generalize dynamic binding in two steps. From ambient values, over
ambient functions, to ambient control .

Ambient values are a typed implementation of dynamic binding (Moreau, 1998; Kiselyov
et al., 2006). Ambient functions are bound dynamically but evaluated in the lexical scope
of their binding . Ambient control further generalizes ambient functions by adding the
ability modify the control flow. It coincides exactly with effect handlers as presented in
the previous chapter. Each generalization steps reveals a certain aspect of effect handlers.
Effect operations are dynamically bound, evaluated in the lexical scope of their binding,
and can capture the continuation to resume to the call site.

We formalize all three features, ambient values, functions, and control as an extension
to Moreau’s calculus of dynamic binding (1998). Unifying all language features in one
framework guarantees that the interaction between ambient values, functions, and control
is well defined. We also show ambient values and ambient functions can be macro expressed
by ambient control. They can thus be seen as a restriction of effect handlers.

While the restricted features help us to understand effect handlers, they also serve as better
programming abstraction to the user. In particular, ambient values and functions are easier
to reason about than full effect handlers, while offering a similar form of effect encapsulation.

An important aspect of software development is to parametrize a software component over aspects
that might vary (Parnas, 1972). Parametrizing a component with configuration, behaviour,
or other components enables reuse of the same component in different contexts. Manually
parametrizing components, however, can quickly become tedious, both for the component author
who needs to design the component for parametrization, as well as the user of the component
who needs to provide all parameters. This is especially the case for components that depend on
other parametrized components. They often need to be parametrized by all transitive parameters
of their dependencies. Instead of explicitly passing around parameters, we could use dynamically
scoped variables.

“A dynamic variable is a variable whose association with a value exists only within
the dynamic extent of an expression, that is, while control remains within that
expression. If several associations exist for the same variable at the same time, the
latest one takes effect. Such association is called a dynamic binding.”

— Kiselyov et al. (2006, p. 26)

This chapter is closely based on the following publication: Jonathan Immanuel Brachthäuser and Daan Leijen.
“Programming with Implicit Values, Functions, and Control”. Technical Report MSR-TR-2019-7 . Microsoft
Research, 2019.

39

3. From Dynamic Binding to E�ect Handlers

In contrast to lexically scoped variables, the meaning of a dynamically bound variable is not
determined in its lexical scope, but in its dynamic scope. In particular, lambda abstractions do
not close over dynamically bound variables. In this thesis, we use dynamic binding (Moreau, 1998)
exclusively to describe dynamically scoped variables. This is not to be confused with dynamic
binding of method implementations in OOP, for which we use late binding (Suzuki, 1981). Due
to the overloaded meaning of both dynamic and variable, in this chapter, we prefer to use the
term ambient value to refer to a typed discipline of (immutable) dynamic variables.
Ambient values are a lightweight language feature that can be used to parametrize software

components. Instead of manually parametrizing a component with additional arguments,
component authors directly refer to the ambient value. Similarly, component users do not have
to explicitly provide the parameters. Instead, conceptually, those parameters are bound and
passed implicitly . This is useful in many practical situations, ranging from passing a type
environment in a compiler, maintaining context information like input-positions in parsers, to
associating the current request object in a web server implementation (Kiselyov et al., 2006).

Dynamic binding has a somewhat bad reputation – and not without a reason. In an untyped,
unrestricted setting (as in the original Lisp (McCarthy, 1960)) one might bind dynamic variables
accidentally. One might even forget to provide a binding, at all. We therefore follow the
discipline of Lewis et al. (2000) who introduce implicit parameters as “dynamically bound values
with explicit typing”. Likewise, we track ambient values in the type of a function to inform
callers that they might (accidentally or not) bind them. It also helps us guarantee that all
ambients are eventually bound.

The structure of this chapter follows the generalization from ambient values to ambient control,
that is, effect handlers. We gradually generalize ambient values in three steps, offering new
programming abstractions and insight into effect handlers:

Ambient values
We introduce ambient values and give examples in Section 3.1. Restricting us to ambient
values highlights the aspect of effect handlers that effect operations are dynamically bound.

Ambient functions
The main contribution of this chapter is ambient functions: these are bound dynamically
but evaluated in the lexical scope of their binding (Section 3.2). Ambient functions highlight
the aspect of effect handlers that effect operations are evaluated at the handler (the binding
site) not at the call site. We show how this small change from ambient values improves
abstraction. In particular, we show how ambient functions allow users to provide precise
interfaces without leaking the (side) effects of any particular implementation into the types.

Ambient control
We then generalize the notion of ambient functions to ambient control . Just like effect
handlers, ambient control allows modifying the control flow. This is essential to implement
control operations like exceptions and backtracking search (Section 3.3). Ambient control
highlights the aspect of effect handlers that effect operations can capture the continuation
to express advanced control structures – an aspect that has been the focus of the previous
chapter.

We use the calculus of dynamic binding λdb as defined by Moreau (1998) in its revised form
by Kiselyov, Shan, and Sabry (2006) to formalize the semantics of ambient values (which
coincides exactly). We then extend it, with ambient functions as calculus λdbf , and with ambient
control as λdbc. After having introduced the different language features, we present a type
system, extended with ambient rows, that guarantees that all ambients are eventually bound

40

3.1. Ambient Values

(Section 3.4). We give a type- and semantics preserving macro translation (Felleisen, 1990) of
ambient values and functions to ambient control (Section 3.5). Ambient control (λdbc) coincides
exactly with effect handlers of the previous chapter (λdch). The two calculi only differ in syntax
(Section 3.6). Nevertheless, we chose to present them a separately to emphasize the respective
aspect we started with: delimited control and dynamic binding.
Even though we can translate ambient values and functions to ambient control (and effect

handlers), we argue that each individual concept merits study. Following the principle of
least power (Berners-Lee, 2005), each feature gradually adds expressiveness to ambient values.
Explicitly distinguishing between ambient values, functions, and control makes it (a) easier to
reason about programs – for example, a program only using ambient values does not alter the
control flow, (b) easier to efficiently implement – compilers can use the additional information to
generate code specialized to the more limited control flow, (c) easier to learn the new concepts
– users can incrementally understand the generalizations from ambient values, via ambient
functions, to ambient control. We thus believe that the incremental generalization from ambient
values to control offers a novel and more approachable way of introducing effect handlers.

We implemented the language design presented in this chapter in the Koka language (Lei-
jen, 2017c), which we use to provide code examples. The implementation is available at:

https://github.com/koka-lang/koka

Koka is a strict functional language that tracks (side) effects in the types (including exceptions
and divergence). The reason to use Koka is two-fold: it already has a type system based on
row-types, which we adapted to track ambient bindings, and the run-time system supports effect
handlers, which we use to implement ambient control. However, the ideas described in this
chapter also apply to other programming languages and are not tied to Koka.

3.1 Ambient Values

To illustrate the use ambient values, we repeat an example of the canonical paper on implicit
parameters by Lewis, Launchbury, Meijer, and Shields (2000). For the example, we assume
that we are writing a pretty printing library that produces pretty strings from documents. Our
library has the following top-level entry-point:

fun pretty(d: doc): string

Unfortunately, deep inside the code, it has a hard-coded maximum display width (i.e., 40),
which we would like to make configurable to use our pretty printer in different contexts with
different display width.

... if (line.length ≤ 40) then ...

We have two choices to abstract over the maximum display width. We can either turn the width
into a global (mutable) variable, or add an extra explicit width parameter and thread it around
manually. Both options come with limitations. Global mutable state is difficult to encapsulate
and test, passing extra parameters requires significant change to the code base.

41

https://github.com/koka-lang/koka

3. From Dynamic Binding to E�ect Handlers

However, with an ambient value we can solve this cleanly. First, we declare the type signature
of an ambient value at the module level:

ambient val width: int

This way, we can simply refer to the ambient value width inside our library implementation:

... if (line.length ≤ width) then ...

The type system of Koka tracks the use of such ambient values in row types denoted between
angle brackets. In particular, the new inferred type of the pretty printing function is:

fun pretty(d: doc): <width> string

The type expresses that pretty can only be used in a context, which provides a binding for the
ambient value width. We can provide such a binding as follows:

fun pretty-thin(d: doc): <> string {

with val width = 40 in pretty(d)

}

Here, for the dynamic extent of evaluating the body expression pretty(d), the ambient value
width is dynamically bound to 40. Importantly, the scope of the with-binder is not limited
lexically. Note, how the inferred type of pretty-thin (that is, <> string) now reflects that there
are no more unbound ambient values.

In our implementation, we also offer a statement form of the with-expression that scopes over
the rest of the current block. Using this form we can write the previous example as function
pretty-thin on the left:

fun pretty-thin(d) {

with val width = 40;

pretty(d)

}

fun pretty-wide(d: doc): <width> string {

with val width = width * 2;

pretty(d)

}

Of course, we can also re-bind (that is, shadow) ambient values. For example, function
pretty-wide (on the right) pretty prints part of a document doubling the current display width.
The type of pretty-wide reflects that, even though it binds width, it still depends on a width

binding in its own context.

3.1.1 Ambient Values Operationally
To formalize the calculus of ambient values, Figure 3.1 repeats the calculus of dynamic binding
(λdb) by Moreau (1998) as presented by Kiselyov et al. (2006), slightly adapted to our setting.
There is one difference to the presentation of Kiselyov et al. (2006): To ease comparison with
calculi presented in the previous chapter, the operational semantics of ambient values uses a
special evaluation context Hp (Gunter et al., 1995) instead of a side condition p 6∈ bp(E) on
rule (dval) (Kiselyov et al., 2006). Otherwise, our presentation mostly differs in formatting. In
this section, we present the operational semantics. Section 3.4 then presents the type-system.

42

3.1. Ambient Values

Syntax:

Expressions e ::= e(e) application
| with bp in { e } dynamic binding
| p ambient name
| v value

Binding bp ::= val p = v ambient value binding

Values v ::= x | c | λx . e

Evaluation Contexts:

E ::= �| E(e) | v(E) | with bp in { E }
Hp ::= �| Hp(e)| v(Hp)| with bp′ in { Hp} if p 6= p′

Operational Semantics:

(δ) c(v) −→ δ(c, v) if δ(c, v) is defined
(β) (λx . e)(v) −→ e[x 7→ v]
(dret) with bp in { v } −→ v

(dval) with val p = v in { Hp [p] } −→ with val p = v in { Hp [v] }

e −→ e ′

E[e] 7−→ E[e ′]
[cong]

Figure 3.1. Language of ambient values, λdb (adapted from Kiselyov et al., 2006).

Following Kiselyov et al. (2006), we assume two disjoint sets of variables: lexical variables
denoted by x , and ambient names (dynamic variables) denoted by p. Note that ambient names
are not values, they are effectful expressions. Meta variables bp , ranging over binders, are
indexed by the name of the ambient p they bind. The evaluation context E contains the clause
with val p = v in { E }. This illustrates that dynamic bindings are part of the evaluation
context (that is, the stack). The right-hand-side of an ambient value binding is syntactically
restricted to be a value. This way, the bound expression is guaranteed to be fully evaluated at
the definition site before it is bound.

The operational semantics is given by the four rules for the relation −→. Like in the previous
chapter, the relation 7−→ lets us evaluate according to the evaluation context. The most
important reduction rule (dval) captures the semantics of ambient values. It dynamically
resolves an ambient binding p to its bound value v by searching in the evaluation context E.
Similar to capture contexts in Section 2.2, the special evaluation context Hp is a restriction on
contexts E and excludes other binders for p (Gunter et al., 1995). Ambient values thus resolve
to the closest with-binding that dynamically surrounds the ambient value. In the reduction
rule (dval), we highlight the unmodified context of the call site to the ambient value p. This
emphasize will become important in the following sections when discussion the generalizations
of ambient values and ambient control.

43

3. From Dynamic Binding to E�ect Handlers

3.1.2 Ambient Values Summarized

Let us summarize some key aspects of ambient values

Declared on the module level
Ambient values have to be declared , prior to their use. The declaration ambient val p: τ
brings both the term name p and an equally named type into scope. We use the latter to
track ambients as part of the type of a function (Section 3.4).

Resolved by name
Ambient values are resolved by name, not by type. This is similar to implicit parameters as
proposed by Lewis et al. (2000) and to their implementation in Haskell. It is different to
implicits in Scala (Odersky et al., 2017), which are resolved by type (see Section 3.7).

Dynamically scoped
Ambient values are dynamically scoped. Thus, lambdas do not close over bindings. This is
illustrated by the following example:

with val width = 40;

val x = 1;

val f = fun() { width + x }

with val width = 60;

val x = 2;

f()

The lambda f is created in a context on the left where x is bound to 1 and width is bound
to 40. Nevertheless, it only closes over the value of x, not over width. This also becomes
visible in its inferred type () → <width> int. Hence, running the example results in 61.

Type- and e�ect checked
The usage of ambients is tracked in the type of functions. The type and effect system
guarantees, that all ambients are eventually bound. Section 3.4 presents a type and effect
system.

Ambient types are inferred
While the ambient value width could be used in some deeply nested helper function of the
pretty-printing library, we neither have to change the call to that helper function, nor to any
other transitive caller. Also, by inferring the types, we do not need to change any of the
function’s type signatures. Being able to infer types is important for maintainability.

The following example again illustrates scoping of ambient bindings.

with val width = 40;

val g = fun() { with val width = 80 in width + 1 };

val h = with val width = 80 in (fun() { width + 1 });

println(g());

println(h())

Here we bind two functions g and h, and invoke them. The first println(g()) prints 81, since
during the evaluation of g() the ambient value width is bound to its innermost binding of
80. However, println(h()) prints 41 instead: during evaluation of h(), the width is bound
dynamically to 40 – the binding to 80 was only present during the evaluation of the function
value as such. This illustrates that functions do not close over ambient values.

44

3.2. Ambient Functions

3.2 Ambient Functions
Of course we can bind function values as ambient values. We refer to those dynamically bound
function values as ambient lambdas. For example, we can declare the ambient value

ambient val emit-naive: (s: string) → <> ()

and use the ambient lambda somewhere in our pretty-printing library to emit partial output:

...

match(doc) {

Text(s) → emit-naive(s)

...

}

Unfortunately, the ambient value declaration has a type signature that severely limits the
possible implementations. For example, an implementation might want to use the display width:

with val width = 80;

// type error: emit-naive cannot use ambient value ’width’

with val emit-naive = (fun(s: string){ println(s.truncate(width)) });

...

This leads to a type error, since the type signature of emit-naive promises to return unit without
using any ambient values (<> ()). To work around this restriction, we can of course change the
type signature of the value declaration to:

ambient val emit-naive : ((s : string) → <width> ())

But now the signature exposes accidental details of one particular implementation. Even worse,
it might not be the desired semantics, since the width would be dynamically bound at the call
site of emit-naive, while we often want to bind it at the definition site and encapsulate this
implementation detail in the definition of emit-naive.

Ambient Values and Closure In this particular example, we could lookup the ambient value once,
bind it to an explicit value and close over that value. In fact, the desired semantics is related to
closure: the binding should be resolved at the definition site of the function, not the call site.
However, not only the ambient bindings, which an ambient lambda uses, are resolved at the call
site – the same also extends to other (control) effects. For example, emit-naive might append
the output to a file as:

with val emit-naive = (fun(s){ ... width ... append(file, s) });

...

The function append uses the io effect. In Koka (Leijen, 2014), this is reflected in the type of
the defined function (i.e., (string) → <width,io> ()). Hence, just as before, this definition of
the ambient value emit-naive does not coincide with the declaration and is rejected by the type
checker.

45

3. From Dynamic Binding to E�ect Handlers

3.2.1 Ambient Functions: Dynamic Binding with Lexical Scoping
As motivated above, we would like to encapsulate implementation effects at the definition site of
a function. Using the traditional closure semantics suffices for simple values, but does not scale
to more general (control) effects. What we need instead is our new feature of ambient functions ,
which we summarize by:

Ambient functions are dynamically bound , but statically evaluated in the lexical
context of their binding.

Similar to ambient values, we first declare an ambient function as:

ambient fun emit(s: string): ()

Like with ambient values, the use of ambient functions is reflected in the type of an effectful
program. For example, if we call emit(...) somewhere in our pretty-printing library, the
inferred type of pretty becomes:

fun pretty(d: doc): <width, emit> string

The type now reflects that the function depends on ambient bindings for both the display width
and an emitter function. Ambient functions are bound similar to ambient values. We can change
our implementation of pretty-thin to also provide a binding for emit:

fun pretty-thin(d) {

with val width = 40;

with fun emit(s) { println(s.truncate(width)) };

pretty(d)

}

This definition of emit is very different from the previous binding as an ambient value emit-naive.
Like before, emit is dynamically bound and can be used for the extent of evaluating pretty(d).
However, when the ambient function emit is called, its body now executes in the lexical context
of its definition and not in its calling context. In particular, the ambient value width in the
body of emit now always resolves to 40 even if width is dynamically rebound inside pretty(d).
Importantly, the fact that the implementation of emit uses the ambient value width is

encapsulated at the call site. It neither leaks into the type of emit nor into its callers. Since
emit additionally uses println (i.e., the console effect), the inferred return type of pretty-thin
is <console> string.

3.2.2 Ambient Functions Operationally
Figure 3.2 extends the syntax and operational semantics of λdb to λdbf (pronounced “dynamic
binding with functions”) to add support for ambient functions. In contrast to the ambient value
rule (dval), in rule (dfun) we first evaluate the function body e outside the calling evaluation
context Hp . That is, the function body is evaluated in the scope of its definition. Again, we
highlight the original call-site context to emphasize this. After evaluating the body, we resume
in the original calling context with the result bound to a fresh variable y . While in the calculus
we distinguish between calls to ambient lambdas (i.e., (p)(e)) and ambient function calls (i.e.,
p(e)), we make no such difference in the surface syntax of our Koka implementation. However,

46

3.2. Ambient Functions

Extended Syntax:

Expressions e ::= . . .
| p(v) ambient call

Binding bp ::= . . .
| fun p(x) { e } ambient function binding

Extended Evaluation Contexts:

E ::= . . .| p(E)
Hp ::= . . .| p′(Hp)

Extended Operational Semantics:

. . .

(dfun) with fun p(x) { e } in { Hp [p(v)] } −→ (λy . with fun p(x) { e } in { Hp [y] })(e[x 7→ v])

Figure 3.2. Extension of λdb with ambient functions (λdbf).

we require the ambient signatures (declared at the top level of a module) to be globally unique.
This way, the compiler (and users) can statically determine whether a call refers to an ambient
function or a lambda bound by an ambient value by inspecting the corresponding signatures.
It is important to highlight the difference between the call to an ambient function and an

ambient lambda. To see this difference, let us compare rule (dfun) with the following reduction
using (dval) followed by (β):

with val p = λx . e in { Hp [(p)(v)] } −→ with val p = λx . e in { Hp [(λx . e)(v)] }
7−→ with val p = λx . e in { Hp [e[x 7→ v]] }

The only difference between the above reduction of an ambient lambda and rule (dfun) is the
context in which the expression e is evaluated. For ambient lambdas it is context of the call
site (that is, with val p = λx . e in { Hp [�] }). In contrast, the body of ambient functions
is evaluated in is context of the definition site (that is, (λy)(�)). This small difference in
operational semantics makes a big difference in terms of encapsulation.

3.2.3 A Novel Abstraction Mechanism
Changing the evaluation context to the defining scope seems like a minor extension, but it has
profound implications on abstraction. In particular, we are now able to confine ambient bindings
and other used effects to the lexical context of the ambient function definition. Continuing with
our example, we may want to collect all generated output using local mutable state:

fun emit-collect(action) {

var out := "";

with fun emit(s) { out := out + s + "\n" } in action();

out

}

47

3. From Dynamic Binding to E�ect Handlers

The dynamically bound function emit can access the locally scoped mutable variable out from
its body and update it. As we will see in Section 3.3.4, our local mutable variables are stack
allocated and thus should not be accessed outside of their dynamic scope. In general, variable
access can escape the scope through closures (Osvald et al., 2016). Similarly, if we would bind
the emit-naive function as an ambient value as in

with val emit-naive = (fun(s) { out := out + s + "\n" }) in action()

a reference to the out variable might indirectly escape through emit-naive. To prevent this,
Koka not only tracks ambients but also the use of mutable state and other effects as part of the
type. Thus, the Koka type checker rejects this example due to the restrictive ambient declaration
of emit-naive, which does not admit mutable state.
In contrast, the body of ambient functions executes in the lexical context of their definition

and our example type-checks. Any implementation related effects, such as the use of out, are
encapsulated in the scope of emit-collect. At the same time, in action, the ambient function
emit can be used as a function of type (string) → <emit> (). For example, the expression

emit-collect(fun() { emit("hello"); emit("world") })

just returns the string "hello\nworld\n" without any side effects observable from the outside.

Closures and mutable variables Readers with a background in C#, JavaScript, or Scala would
expect this very behavior. Those languages inhabit a middle ground: lambda expressions can
capture local variables by reference and would thus behave like in our example. While they
encapsulate the state-effect, they still leak other effects, like throwing an exception, to the calling
context.

Example: Depth-First Traversal
To illustrate the abstraction power of ambient functions, we adapt the example of Lewis, Launch-
bury, Meijer, and Shields (2000). The authors describe a depth-first traversal of a graph (King
and Launchbury, 1995), where the auxiliary function dfs-loop is implicitly parameterized by
three functions: one to mark vertices, one to query if a vertex is marked, and one to get the
children of a vertex in the graph. In the original example, the authors then use runST (Pey-
ton Jones and Launchbury, 1995) to efficiently implement the marking with isolated mutable
state. Figure 3.3 translates the example to Koka, using ambient functions.
The dfs function completely encapsulates the use of (scoped) mutable state to efficiently

implement the marking of the visited vertices. The inferred type of dfs-loop reflects that it
only depends on the declared ambient functions and has no other effects:

fun dfs-loop(vs : list<vertex>) : <children, marked, mark> list<rose>

In contrast, Lewis et al. (2000) bind functions as values and thus leak the effects (that is, mutable
state) of one particular implementation into the type of the dfs-loop function. The loop needs
to be written in a monadic style and has the type:

dfsLoop :: (?children :: Graph → [Vertex],

?marked :: Vertex → ST s Bool,

?mark :: Vertex → ST s ()) ⇒ [Vertex] → ST s [Rose]

48

3.3. Ambient Control

alias vertex = int

type graph { ... }

type rose { Rose(v: vertex, sub: list<rose>) }

ambient fun marked(v: vertex): bool

ambient fun mark(v: vertex): ()

ambient fun children(v: vertex): list<vertex>

fun dfs(g: graph, vs: list<vertex>): list<rose> {

var visited := vector(g.bound, False);

with fun children(v) { g.gchildren(v) };

with fun marked(v) { visited[v] };

with fun mark(v) { visited[v] := True };

dfs-loop(vs)

}

fun dfs-loop(vs: list<vertex>) { match(vs) {

Nil → Nil

Cons(v, rest) →
if (marked(v)) then { dfs-loop(rest) }

else { mark(v); Cons(Rose(v, dfs-loop(children(v))), dfs-loop(rest)) }

}}

Figure 3.3. Implementation of a depth-first traversal (adapted from Lewis et al., 2000). Call sites
of ambient functions highlighted.

Here the ST effect, used in the implementation of the operations, leaks into the definition of
dfsLoop. Note also how the type of dfsLoop is quite verbose. With implicit parameters, the
names of implicits (like ?children) are not declared on the top level. This is more flexible but
also leads to larger type signatures, as it is the case for dfsLoop. With explicit type declarations
for ambient values, the types are more concise and allow simplified type checking at the use site
of an ambient function.
Ambient functions encapsulate used effects as implementation details. Encapsulation is par-

ticularly relevant when combining ambient functions with general control effects, like exceptions.
To express control effects, in the next section, we thus perform a last step of generalization.

3.3 Ambient Control
On our journey to effect handlers, we started with ambient values, which are dynamically scoped.
We continued with the generalization of ambient functions, which encapsulate effects at the
definition site. We have seen the interaction between stack-allocated mutable state and ambient
functions and alluded to the fact that ambient functions integrate well with other control effects,
like exceptions. However, so far our language does not support control effects.

To also express general control effects in our unified framework, we perform one further step
of generalization: from ambient functions to ambient control . Ambient functions are evaluated
in their defining lexical scope. But like regular functions they return to the calling context.
Ambient control additionally returns to the defining lexical scope – similar to how exceptions
“return” to their innermost try block.

49

3. From Dynamic Binding to E�ect Handlers

3.3.1 Aborting Control

To motivate ambient control, we follow Leijen (2016) and use ambient functions and ambient
control to implement parsers. First, we declare the two ambients next and fail:

ambient fun next(): char

ambient control fail(msg: string): a

Using the two ambients, we can readily write a parser that expects a certain character in the
input stream or fails otherwise:

fun expect(e: char): <next, fail> char {

val c = next();

if (c == e) then c else fail("Expected " + e + " but got " + c)

}

Similarly, the parser that exactly accepts the word "hello" can be expressed by:

fun hello(): <next, fail> () {

expect(’h’); expect(’e’); expect(’l’); expect(’l’); expect(’o’); ()

}

As we will see, syntactic differences notwithstanding, ambient control is identical to effect handlers
from Section 2.3. It is thus not surprising, that ambient control also subsumes exception handling.
In our case, fail corresponds to throw and an ambient control binding corresponds to a try

handler. For example, here is a function that transforms an exception throwing action to a
maybe<a> result:

fun to-maybe(action: () → <fail|e> a): e maybe<a> {

with control fail(msg) { Nothing };

Just(action())

}

The syntax maybe<a> denotes type constructor application to the universally quantified type
parameter a.

A note on e�ect polymorphism Koka implements effect (and ambient) polymorphism in terms
of row polymorphism (Leijen, 2005, 2014, 2017c). In fact, the use of ambients is just one
particular class of effects that we track in the types. In the above example, action can
thus use arbitrary other effects e besides the fail effect. The binder to-maybe binds and
removes the ambient fail from the list of effects, while the resulting program still uses effects
e. The syntax <p|e> denotes row extension with the abbreviations defined in Section 2.4.
Additionally, e is short for the empty row extension <|e>. All one character type- and row-
variables implicitly introduce a universal quantification. The full type signature of to-maybe

thus is: forall<a, e>. (action: () → <fail|e> a) → <|e> maybe<a>.

50

3.3. Ambient Control

To run the parser, we also need to define a binding for the ambient function next:

fun reader(input: string, action: () → <next, fail|e> a): <fail|e> (a, string) {

var cs := input.list;

val res = with fun next() {

match(cs) {

Nil → fail("Unexpected EOS")

Cons(c,cc) → { cs := cc; c }

}

} in action();

(res, cs.string)

}

Similar to emit-collect, the function reader uses scoped mutable state to keep track of the
remaining characters. It binds next in the dynamic extent of action to return the next character
or otherwise uses the ambient control fail if no such character is available. Note, that this time,
we purposefully do not encapsulate the use of fail. The program action itself can also use fail

and potentially other effects e.
Finally, we can use the two binder functions to-maybe and reader to check whether a given

input has the string "hello" as a prefix.

fun parse-hello(input: string): maybe<((), string)> {

to-maybe(fun() { reader(input, fun() { hello() }) })

}

If fail(...) is called, it will directly return to its definition point with the value Nothing as the
result of parse-hello. This is the case when invoking parse-hello("help"). In contrast, calling
parse-hello("hello world") will successfully parse the prefix and yield Just(((), " world")).

Remark Higher-order functions like to-maybe and reader(input) can be thought of as first-class
binders for ambients – for fail respectively next in this case. In Koka, we treat those binder
functions uniformly like val, fun, or control binders and use the following extension of the with

statement syntax:

fun parse-hello(input: string): maybe<((), string)> {

with to-maybe;

with reader(input);

hello()

}

That is, if with is followed by an expression, i.e. not a keyword val, fun, or control, we treat
the expression as a higher-order binder function and pass the rest of the block as a function
argument (Leijen, 2018b, Sec. 4.4). Also, note the curried application of reader.

3.3.2 Resuming Control
In the previous parsing example, we defined a new ambient control fail to abort the parsing
in case of an error condition. Using fail together with next allowed us to describe expected
sequences of characters, like "hello". However, one important feature of parsers is still missing:

51

3. From Dynamic Binding to E�ect Handlers

how can we express alternative productions in a grammar? To this end, we declare a second
ambient control function choice:

ambient control choice(): bool

We can use choice to recognize the language AsB ::= ’a’ AsB | b, multiple characters a followed
by a single b, with the following parser:

fun as-b() : <fail, next, choice> int {

if (choice()) then { expect(’a’); as-b() + 1 }

else { expect(’b’); 0 }

}

As it turns out, ambient control functions like fail and choice not only return to their defining
context, but also allow us to resume at the call site. To enable this, a control binding is passed
an extra (implicit) argument resume that can be used to return to the calling context. Like in
the previous chapter, resume is a first-class function and represents the continuation delimited
by the corresponding control binder.
Using resume, we can bind fail and choice to collect all possible parse results in a list:

fun collect(action: () → <fail, choice|e> a): e list<a> {

with control choice() { append(resume(True), resume(False)) };

with control fail() { Nil };

Cons(action(), Nil)

}

The binder for choice immediately returns to the call site with the value True. Resuming will
eventually produce a value of type a, which is wrapped in a singleton list. Since the extent
of the continuation resume is delimited by the control binder for choice, both calls to resume

will return a list of results. Similarly, the extent of the continuation captured by calling fail

is delimited by the fail binder. The order of binders is important here: since the binder for
choice is the outermost one, capturing (and discarding) the continuation at the binder for fail
only aborts the current alternative with an empty list.
Finally, we can run the parser with

fun parse-as-b(input: string): list<int> {

with collect;

with reader(input);

as-b()

}

giving Cons(3, Nil) for parse-as-b("aaab") and Nil for parse-as-b("aaac"). Importantly, we
can only parse a string like "b" since local variables in reader are stack-allocated, not heap-
allocated. Conceptually, the captured continuation corresponds to a segment of the runtime
stack and also includes the values of mutable, stack-local variables at the time of capturing. This
enables the necessary backtracking behavior, when resuming a second time with False. If we
would use global (heap-allocated) state instead, the call to resume(False) would not backtrack
the position of the input stream, but would continue where the (potentially failed) alternative
resume(True) last left off. The same also holds when swapping the order of with collect and
with reader(input). State changes are then persisted across different alternatives.

52

3.3. Ambient Control

Extended Syntax:

Binding bp ::= . . .
| control p(x , k) { e } ambient control binding

Extended Operational Semantics:

. . .

(dctl) with control p(x , k) { e } in { Hp [p(v)] } −→ e[x 7→v , k 7→λy . with control p(x , k) { e } in { Hp [y] }]

Figure 3.4. Extension of λdbf with ambient control (λdbc).

3.3.3 Ambient Control Operationally
Figure 3.4 defines λdbc (pronounced “dynamic binding with control”) as an extension of λdbf

with ambient control. In contrast to the surface syntax, in the calculus we explicitly bind the
continuation argument k . For abortive ambient control binders, which discard the continuation
k (like to-maybe for fail), we can simplify the reduction rule (dctl) to:

(abort) with control p(x , k) { e } in { Hp [p(v)] } where k 6∈ e −→ (λx . e)(v)
−→ e[x 7→v]

This derived rule is similar to the rule (dfun) for ambient functions except that we do not
continue evaluation in the original context.

3.3.4 Mutable Variables as Ambient Control
The previous example illustrated that the interaction between local mutable state and ambient
control is subtle due to the first-class (delimited) continuation captured by resume. This is
already remarked upon by Moreau (1998, p. 276), who calls for “a single framework integrating
continuations, side effects, and dynamic binding.”. Kiselyov et al. (2006) studied the in the
context of delimited continuations.

However, it turns out we can view local mutable state in terms of ambient control and thus do
not need a special semantic treatment. In particular, we can use the translation by Kammar and
Pretnar (2017, Fig. 7) who show how to express mutable dynamic variables in terms of algebraic
effect handlers. We reuse their translation, except that we use ambient control instead of effect
handlers. First, we α-rename such that local variables are uniquely named. For every local
variable s, we define ambient declarations (on the left) and translate lexically bound occurrences
of s either to gets or puts operations (on the right):

ambient control gets(): τ
ambient control puts(x: τ): ()

s gets()

s := expr puts(expr)

Every binding of a local variable s of some type τ is then translated to a function application of
a locals function:

var s: τ := init; locals(init, fun() { ... })

...

53

3. From Dynamic Binding to E�ect Handlers

Finally, the binder function locals provides semantics to the operations gets and puts.

fun locals(init: τ, action: () → <gets, puts|e> a): e a {

val f = { with control gets() { (fun(st) { resume(st)(st) }) };

with control puts(x) { (fun(st) { resume(())(x) }) };

val x = action();

(fun(st){ x })

}

f(init)

}

The main difference to the translation in Kammar and Pretnar (2017) is that we use two
separate ambient control functions, while they group the two operations under a single handler.
Otherwise, both translations express mutable state by returning a function that gets the current
state as input. This as also essentially the way Kiselyov et al. (2006) express dynamic binding in
terms of delimited control. To implement the lookup of a binding p, they shift to the binder with
shiftp { f ⇒ λy . f (y)(y) } (Kiselyov et al., 2006, Fig. 3). This corresponds to the definition of
gets, mapping f to our resume and y to our st parameter.

Of course, this translation is useful from a semantic perspective, but in a practical implemen-
tation, we can use more efficient mechanisms. The Koka implementation directly uses mutation
of variables that are (handler) stack allocated. It also ensures that the state is properly captured
as part of the stack and restored on resume.

3.4 Type-Safety of Ambient Values
While our examples in Koka already used the type- and effect-system, so far, we only presented
the dynamic semantics of our calculi. In this section, we start again with λdb and repeat the type
system of Kiselyov et al. (2006). We then extend the type system with ambient-rows to assert
that all ambient values are eventually bound. We show that our type system is a conservative
extension of the original type system by Kiselyov et al. (2006). Finally, we extend the row-based
effect system with support for ambient functions and control.
Figure 3.5 repeats the standard typing rules for λdb . Like with the operational semantics of

the base calculus (Figure 3.1), except for formatting, the typing rules are the same as the ones
of Kiselyov et al. (2006). Like Kiselyov et al., we assume a global mapping Σ from dynamic
variables p to signatures val τ . We denote signature extension by Σ, p : val τ and require that
the mapping is globally unique.
The evaluation can get stuck if an ambient value is not bound, and Kiselyov et al. (2006)

define such terms as bp-stuck:

De�nition 2. (bp-stuck)
A term is bp-stuck if it has the form E[p] where p 6∈ bp(E).

The set of bound ambient variables in a context E is denoted as bp(E) and defined by:

bp(�) = ∅
bp(E(e)) = bp(E)

bp(v(E)) = bp(E)
bp(with bp in { E })= {p} ∪ bp(E)

Kiselyov et al. use a side condition on rule (dval) instead of the special context Hp . However,
by induction over the evaluation context, it can be seen that E = Hp if and only if p 6∈ bp(E).

54

3.4. Type-Safety of Ambient Values

Syntax of Types:

Types τ ::= unit | bool | . . . builtin types
| τ→ τ functions

Ambient Names p ::= width | next | fail | . . .

Type Environment Γ ::= ∅ | Γ, x : τ

Ambient Signatures Σ ::= ∅ | Σ, p : val τ

Type Rules:

Γ(x) = τ

Γ d̀b x : τ
[var]

Γ, x : τ1 d̀b e : τ2

Γ d̀b λx .e : τ1 → τ2
[lam]

Σ(p) = val τ

Γ d̀b p : τ
[dval]

Γ d̀b e1 : τ1 → τ2 Γ d̀b e2 : τ2

Γ d̀b e1(e2) : τ2
[app]

Σ(p) = val τ1 Γ d̀b v : τ1 Γ d̀b e : τ2

Γ d̀b with val p = v in { e } : τ2
[wval]

Figure 3.5. Standard typing rules for λdb (adapted from Kiselyov et al., 2006, Figure 2).

That is, we can equivalently define a term to be bp-stuck, if it has the form Hp [p]. The definition
of bp-stuck terms thus closely resembles Definition 1 of unhandled effects (Section 2.4).

Unbound ambient values notwithstanding, the type system is sound and Kiselyov et al. (2006)
prove progress and preservation:

Theorem 2. (Preservation)
If Γ d̀b e : τ and e 7−→ e ′, then Γ d̀b e ′ : τ .

Theorem 3. (Progress)
If ∅ d̀b e : τ and e is not a value and not bp-stuck, then e 7−→ e ′ for some term e ′.

3.4.1 E�ect Safety for Ambient Values
While the type system by Kiselyov et al. (2006) is pleasantly simple, it does not prevent bp-stuck
terms, which is left to future work by the authors. To address this issue, Figure 3.6a defines
more precise type rules for λdb that additionally track the use of ambient values. Following
the original type-system of Koka (Leijen, 2014, 2017c), we annotate every function arrow with
an ambient row π. Like in Section 2.4, we introduce two typing judgments. The judgment
Γ v̀al v : τ to type values, and the judgment Γ èxp e : τ | π to type expressions, which can
use the ambients specified in row π.
To focus on the aspect of dynamic binding, and to allow a better comparison with the type

system of Kiselyov et al., our type system is monomorphic. Leijen (2005) shows how rows can

55

3. From Dynamic Binding to E�ect Handlers

be naturally extended with polymorphism while allowing full unification, making them well
suited to combine with Hindley-Milner (Milner, 1978; Hindley, 1969) style type inference. In
our implementation, we macro express ambient values, functions, and control in terms of effect
handlers (see Section 3.6). This way, we are able to reuse Koka’s support for type- and effect
polymorphism (Leijen, 2017c).

Tracking ambients in e�ect rows Following Leijen (2005), the ambient rows can contain multiple
occurrences of a name and are considered equal up to the order of the ambient names in the row
(see Section 2.4, Figure 2.6). As Leijen points out, allowing duplicates in rows is important for
typing ambient bindings that refer themselves to the same ambient name. For example, consider
typing (λx . with val p = x in { e })(p):

. . .

Γ èxp λx .with val p = x in { e } : τ1 → 〈p|π〉 τ | 〈p|π〉
[lam]

Σ(p) = val τ1
Γ èxp p : τ1 | 〈p|π〉

[dval]

Γ èxp (λx .with val p = x in { e })(p) : τ | 〈p|π〉
[app]

which means that the first premise is typed as:

Σ(p) = val τ1 Γ, x : τ1 èxp x : τ1 | 〈p|π〉 Γ èxp e : τ | 〈p|〈p|π〉〉
Γ, x : τ1 èxp with val p = x in { e } : τ | 〈p|π〉

[wval]

This leads to typing e with two occurrences of p in the ambient row. Having duplicates keeps
the system simple and avoids the need for row constraints (Rémy, 1994).

Conservative Extension
Our type system is a conservative extension of the original type system by Kiselyov et al. (2006).
If we define a simple erasure function ·̂ : τimp → τdb as

ĉ = c
̂(τ1 → π τ2)= τ̂1 → τ̂2

and extend it over type environments, we can then state the following lemma:

Lemma 6. (Conservative Extension)
If Γ èxp e : τ | π then Γ̂ d̀b e : τ̂ .

Immediate by erasing ambient rows from the derivation and removing identity (val) derivations.

3.4.2 E�ect Safety for Ambient Functions and Control
Figure 3.6b extends the type system of the base language λdb (Figure 3.6a) with rules for
ambient functions and ambient control. The ambient signatures Σ are extended with new
forms fun τ1 → τ2 and control τ1 → τ2 for ambient function declarations and ambient control
declarations, correspondingly. As mentioned above, we require that bindings are globally unique.
That is, for a given ambient name p, from the signature environment we can uniquely determine
whether it is an ambient value, function, or control.

56

3.4. Type-Safety of Ambient Values

Syntax of Types:

Types τ ::= unit | bool | . . . builtin types
| τ→ π τ effectful functions

Ambient Row π ::= 〈 〉 empty row
| 〈p | π〉 row extension

Ambient Names p ::= width | next | fail | . . .

Type Environment Γ ::= ∅ | Γ, x : τ
Ambient Signatures Σ ::= ∅ | Σ, p : val τ

Type Rules:

Γ(x) = τ

Γ v̀al x : τ
[var]

Γ v̀al v : τ

Γ èxp v : τ | π
[val]

Σ(p) = val τ

Γ èxp p : τ | 〈p|π〉
[dval]

Γ, x : τ1 èxp e : τ2 | π
Γ v̀al λx .e : τ1 → π τ2

[lam]
Γ èxp e1 : τ1 → π τ2 | π Γ èxp e2 : τ2 | π

Γ èxp e1(e2) : τ2 | π
[app]

Σ(p) = val τ1 Γ v̀al v : τ1 Γ èxp e : τ2 | 〈p|π〉
Γ èxp with val p = v in { e } : τ2 | π

[wval]

(a) Improved type rules for λdb . We add ambient rows to ensure all ambient values are bound.

Extended Syntax of Types:

Ambient Signature Σ ::= . . . | Σ, p : fun τ1 → τ2 | Σ, p : control τ1 → τ2

Extended Type Rules:

Σ(p) = fun τ1 → τ2 Γ v̀al v : τ1

Γ èxp p(v) : τ2 | 〈p|π〉
[dfun]

Σ(p) = control τ1 → τ2 Γ v̀al v : τ1

Γ èxp p(v) : τ2 | 〈p|π〉
[dctl]

Σ(p) = fun τ1 → τ2 Γ, x : τ1 èxp e1 : τ2 | π Γ èxp e2 : τ | 〈p|π〉
Γ èxp with fun p(x) { e1 } in { e2 } : τ | π

[wfun]

Σ(p) = control τ1 → τ2 Γ, x : τ1, k : τ2 → π τ èxp e1 : τ | π Γ èxp e2 : τ | 〈p|π〉
Γ èxp with control p(x , k) { e1 } in { e2 } : τ | π

[wctl]

(b) Extending the typing rules of Figure 3.6a to ambient functions and control.

Figure 3.6. Effect safety for ambient values, functions, and control. Ambient rows π are considered
equivalent up to the order of the names in the row.

57

3. From Dynamic Binding to E�ect Handlers

Translation of Terms:

J x K = x
J λx .e K= λx . J e K

J e(e ′) K = J e K(J e ′ K)
J p K = p(()) with p : val τ ∈ Σ

J p(v) K = p(J v K) with p : fun τ→ τ ′ ∈ Σ or p : control τ→ τ ′ ∈ Σ
J with bp in { e } K= with J bp K in { J e K }

Translation of Binders:

J val p = v K = control p((), k) { k(J v K) } with k 6∈ fv(v)

J fun p(x) { e } K = control p(x , k) { k(J e K) } with k 6∈ fv(e) and k 6= x

J control p(x , k) { e } K = control p(x , k) { J e K } K

Translation of Evaluation Contexts:

J �K = �
J E(e) K = J E K(J e K)
J v(E) K = J v K(J E K)
J with bp in { E } K = with J bp K in { J E K }

Translation of Signatures:

J ∅K = ∅
J Σ, p : val τK = J Σ K, p : control unit → τ

J Σ, p : fun τ→ τ ′ K = J Σ K, p : control τ→ τ ′

J Σ, p : control τ→ τ ′ K= J Σ K, p : control τ→ τ ′

Figure 3.7. Translating ambient values and ambient functions to ambient control. The translation
is homomorphic except for the highlighted cases.

We also extend the type rules with two new rules for checking ambient functions (wfun)
and control (wctl) binders. The rules are similar to the wval rule in Figure 3.6a where the
ambient name p is discharged from the ambient row. The type of the resumption function k in
the type rule for control is interesting: it gets an argument of type τ2 (the result type of the
ambient p) and returns a value of τ , (the result type of the body e2). Since the body of the
continuation is evaluated under a with binding (see (dctl)), the ambient row is just π without p.

To show semantic soundness of the (extended) system, we perform two steps. Firstly, we show
that ambient values and ambient functions are expressible in terms of ambient control. The
translation is type and semantics preserving. Some minor syntactic differences notwithstanding,
the target language with ambient control λdbc and its type system is identical to λdch (Section 2.4).
Semantic soundness of λdbc and its type system follows as a corollary.

58

3.5. Ambient Values and Ambient Functions as Ambient Control

3.5 Ambient Values and Ambient Functions as Ambient Control
In this chapter, we performed two steps of generalization. First from ambient values to ambient
functions, second from ambient functions to ambient control. Ambient control truly generalizes
the two other features: ambient values and ambient functions are expressible (in the sense of
Felleisen (1990)) in terms of ambient control. Additionally, as we will see in the next section,
our language of ambient control is identical to our typed language with effect handlers λdch

(Section 2.4). Maybe unsurprisingly, the generalization from ambient values to ambient control
has lead us to effect handlers – a fact that we use as an implementation strategy for ambients in
Koka. The strong theoretical foundation and expressiveness of algebraic effect handlers make
this an excellent target – and not without precedent, as Kammar and Pretnar (2017) already
show how to translate mutable dynamic binding to algebraic effects.

3.5.1 Translation to Ambient Control
Figure 3.7 defines a translation function J · K from λdbc (a language with ambient values,
functions, and control) to a subset that only uses ambient control. We translate values,
expressions, evaluation contexts, and signatures. We do not translate types and ambient rows,
since they do not distinguish between values, functions, and control.

Translating ambient values As can be seen from the translation of signatures, we translate
ambient values to ambient control operations taking an argument of type unit . Binders for
ambient values immediately resume with the bound value:

J with val p = v in { e } K = with control p((), k) { k(J v K) } in { J e K }

Accordingly, the lookup of an ambient value p is translated to a ambient call p(()). A very
similar translation has previously been given by Kiselyov et al. (2006, Fig. 3), who show how to
express dynamic binding in terms of (multi-prompt) delimited control, and by Kammar and
Pretnar (2017, Fig. 7) who show that effect handlers can express dynamically bound state.

Translating ambient functions Similar to ambient values, ambient function binders translate to
control binders that resume after evaluating the function body:

J with fun p(x) { e1 } in { e2 } K = with control p(x , k) { k(J e1 K) } in { J e2 K }

Ambient function calls translate to ambient control calls. All other language constructs, including
ambient control are translated unchanged.

3.5.2 Type Preservation
The translation preserves types:

Theorem 4. (Type Preservation)
If Γ èxp e : τ | π, then J Γ K èxp J e K : J τK | J π K.

59

3. From Dynamic Binding to E�ect Handlers

Proof. Induction over the type rules of λdbc . We only list the two relevant cases of translating
ambient values and functions.

casewfun
We type Γ èxp with fun p(x) { e1 } in { e2 } : τ | π. By induction, we can assume

– J Σ K(p) = control τ1 → τ2 (1),
– Γ, x : τ1 èxp J e1 K : τ2 | π (2), and
– Γ èxp J e2 K : τ | 〈p|π〉 (3).

We need to verify now that we can check Γ èxp Jwith fun p(x) { e1 } in { e2 } K : τ | π
which equals Γ èxp with control p(x , k) { k(J e1 K) } in { J e2 K } : τ | π, with k 6∈ fv(e1)
and k 6= x . To use rule wctl, we can immediately satisfy two of its premises with (1) and
(3). That leaves us to derive Γ, x : τ1, k : τ2 → π τ èxp k(J e1 K) : τ | π. We can use rule
app to check Γ, x : τ1, k : τ2 → π τ èxp J e1 K : τ2 | π. Since k 6∈ fv(e1), we can apply
weakening and it suffices to show Γ, x : τ1 èxp J e1 K : τ2 | π, which holds by (2).

casewval
Similar to the previous case. We type Γ èxp with val p = v in { e } : τ2 | π.
Again, by induction, we can assume
J Σ K(p) = control unit → τ1 (1), Γ v̀al J v K : τ1 (2), and Γ èxp J e K : τ2 | 〈p|π〉
(3).
We need to derive Γ èxp with control p((), k) { k(J v K) } in { J e K } : τ2 | π, with k 6∈ fv(v)
We can again satisfy two premises of wctl with (1) and (3). This leaves us to show
Γ, k : τ1 → π τ2 èxp k(J v K) : τ2 | π. Using rule app, leaves us to check the type of the
argument to the continuation Γ, k : τ1 → π τ2 èxp J v K : τ1 | π. Again, since k 6∈ fv(v),
we can check Γ èxp J v K : τ1 | π, which holds by rule val and (2).

The cases for dval and dfun follow immediately from the induction hypothesis. �

3.5.3 Preservation of Semantics
This brings us to our theorem that the translation preserves semantics:

Theorem 5. (Semantic Soundness)
If e 7−→ e ′ then J e K 7−→∗ J e ′ K

To prove this, we need the following lemmas about the translation:

Lemma 7. (Translation preserves free variables)
fv(e) = fv(J e K)

Proof by induction over the structure of expressions. Translating ambient values and function
binders introduces a variable k . The side conditions k 6∈ fv(v) and k 6∈ fv(e) prevent capture.

Lemma 8. (Translation preserves contexts)
J E[e] K = J E K[J e K]

Proof by induction over evaluation contexts.

Lemma 9. (Translation preserves bound ambients)
J Hp [e] K = J Hp K[J e K]

60

3.5. Ambient Values and Ambient Functions as Ambient Control

Proof by induction over the grammar of capture contexts Hp . Informally, only the kind of binder
changes, not the name of the ambient.

Lemma 10. (Translation is substitution safe)
J e[x 7→v] K = J e K[x 7→J v K]

Proof by induction over the size of the expression.

Proof. (Of Theorem 5) The proof proceeds by induction over the reduction rules of λdbc .

case (dfun) – with fun p(x) { e } in { Hp [p(v)] } −→ (λy . with fun p(x) { e } in { Hp [y] })(e[x 7→v])
Applying the translation, we derive:
J with fun p(x) { e } in { Hp [p(v)] } K

= { definition of J · K with k 6∈ fv(e) (1) }
with control p(x , k) { k(J e K) } in { J Hp [p(v)] K }

= { Lemma 8, Lemma 9 }
with control p(x , k) { k(J e K) } in { J Hp K[J p(v) K] }
−→ { definition of J · K }

with control p(x , k) { k(J e K) } in { J Hp K[p(J v K)] }
−→ { definition of (dctl) }

(k(J e K)[x 7→ J v K, k 7→ λy . with control p(x , k) { k(J e K) } in { J Hp K[y] }]
= { substitute }

(λy . with control p(x , k) { k(J e K) } in { J Hp K[y] })(J e K[x 7→ J v K, k 7→ . . .])
= { (1) and Lemma 7 }

(λy . with control p(x , k) { k(J e K) } in { J Hp K[y] })(J e K[x 7→ J v K])
= { Lemma 10 }

(λy . with control p(x , k) { k(J e K) } in { J Hp K[y] })(J e[x 7→ v] K)
= { (1) and definition of J · K }

J (λy . with fun p(x) { e } in { Hp [y] })(e[x 7→ v]) K

case (dval) – with val x = v in { Hp [p] } −→ with val x = v in { Hp [v] }
Structurally similar to the previous case, but requires an additional application of rule (β).
J with val x = v in { Hp [p] } K
. . .

(λy .with control p(x , k) { k(J v K) } in { J Hp K[y] })(J v K)
= { definition of (β) and substitution }

with control p(x , k) { k(J v K) } in { J Hp K[J v K] }
= { definition of J · K }

J with val p = v in { Hp [v] } K

�

The proof for case (dval) explains why Theorem 5 maps one step in the source program to
potentially multiple reduction steps in the translated program. In particular, we could phrase
the theorem more precisely: When the source program takes one reduction step, the translated
program takes either one or two reduction steps.

61

3. From Dynamic Binding to E�ect Handlers

d·e : λdbc → λdch

dxe = x
dλx .ee = λx .dee

de(e ′)e = dee(de ′e)
dp(v)e = dop(dve)
dwith control p(x , k) { e1 } in { e2 }e= handlep (x , k) ⇒ de1e in { de2e }

d·e : Σdbc → Σdch

d∅e = ∅
dΣ, p : control τ→ τ ′e = dΣe, p : τ→ τ ′

d·e : Edbc → Edch

d�e = �
dE(e)e = dEe(dee)
dv(E)e = dve(dEe)
dcontrol p(x , k) { bec in { E }e = handlep { (x , k) ⇒ e } in { dEe }

(a) Translating ambient control (λdbc) to delimited control with handlers (λdch).

b·c : λdch → λdbc

bxc = x
bλx .ec = λx .bec

be(e ′)c = bec(be ′c)
bdop(v)c = p(bvc)
bhandlep { (x , k) ⇒ e1 } in { e2 }c= with control p(x , k) { be1c } in { be2c }

b·c : Σdch → Σdbc

b∅c = ∅
bΣ, p : τ→ τ ′c = bΣc, p : control τ→ τ ′

b·c : Edch → Edbc

b�c = �
bE(e)c = bEc(bec)
bv(E)c = bvc(bEc)
bhandlep { (x , k) ⇒ e } in { E }c = with control p(x , k) { bec } in { bEc }

(b) Translating delimited control with handlers (λdch) to ambient control (λdbc).

Figure 3.8. Translating the language of ambient control (λdbc) to delimited control with handlers
(λdch) and back. Both translations are fully homomorphic.

62

3.6. Translating to E�ect Handlers and Back

3.6 Translating to E�ect Handlers and Back
We have seen that ambient values and ambient functions can be macro expressed in terms of
ambient control. The translation is type- and semantics preserving. Comparing the language
with only ambient control (λdbc) with the language of effect handlers in Section 2.4, we find that
they only differ in surface syntax. To recall, for the type system of λdbc we assumed semantics
−do+, a globally static set of prompts, and corresponding signatures. Both, operational semantics
and the type system are equivalent up to syntax.

Theorem 6. (Macro Equivalence)
The effect-safe calculus λdbc (with ambient control) and effect-safe λdch (in variant −do+) are
macro equivalent.

To capture the relation between the two calculi formally, Figure 3.8 defines translations from
ambient control to effect handlers (Figure 3.8a) and back (Figure 3.8b). Both translations are
fully homomorphic and only map effect handlers to ambient control, and back. The translations
are inverse to each other, as can be easily seen from the translation rules. Every ambient binder
for p corresponds to a handler for a given prompt. Since prompts (p) coincide with ambient
names, and effect rows ε with ambient rows π – we do not need to translate types besides
renaming meta-variables for effect rows.

The translation is type and semantics preserving as can be verified by comparing the respective
rules. For easier comparison, here we repeat the relevant reduction rules:

(dctl) with bp in { Hp [p(v)] } −→ e[x 7→ v , k 7→ λy . with control p(x , k) { e } in { Hp [y] }]
where bp = control p(x , k) { e }

(−do+) handlep h in { Hp [dop(v)] } −→ e[x 7→ v , k 7→ λy . handlep h in { Hp [y] }]
where h = { (x , k) ⇒ e }

We also repeat the typing judgements for ambient control and effect handlers:

Σ(p) = control τ1 → τ2 Γ èxp e2 : τ | 〈p|π〉 Γ, x : τ1, k : τ2 → π τ èxp e1 : τ | π
Γ èxp with control p(x , k) { e1 } in { e2 } : τ | π

[wctl]

Σ(p) = τ1 → τ2 Γ d̀ch e2 : τ | 〈p|ε〉 Γ, x : τ1, k : τ2 → ε τ d̀ch e1 : τ | ε
Γ d̀ch handlep { (x , k) ⇒ e1 } in { e2 } : τ | ε

[handle]

Comparing the rules, it becomes evident that they only differ in surface syntax. Having
established the equivalence between the calculi, semantics soundness of λdbc follows as corollary.

Corollary. (Semantic Soundness)
If ∅ èxp e : τ | 〈 〉 then either e diverges, or evaluates to a value e 7−→∗ v where ∅ v̀al v : τ .

This immediately follows from the fact that typed λdbc is equivalent to typed λdch (Theorem 6)
together with semantic soundness of λdch (Theorem 1).

63

3. From Dynamic Binding to E�ect Handlers

3.7 Related Work and Chapter Conclusion
We briefly review work related to dynamic binding and effect handlers.

Implicit parameters Ambient values are perhaps most closely related to implicit parameters as
described by Lewis, Launchbury, Meijer, and Shields (2000). In particular, implicit parameters
are immutable, named, and statically typed. In contrast to our approach, implicit parameters
do not need to be declared and can be used and bound at any type. This is flexible, but can lead
to large types (as shown in Section 3.2.3). It also delays possible type errors to the binding site.
Lewis et al. (2000) show how implicit parameters can be elegantly implemented using regular
parameter passing. This is similar to the dictionary passing translation of type classes (Wadler
and Blott, 1989; Jones, 1992). Such translation could possibly be applied to ambient values as
well, turning every member p in an ambient row into an additional parameter. In the second
part of this thesis, we use the similar technique of explicit capability passing to implement effect
handlers in object-oriented programming languages (Chapters 4 to 6).

Dynamic binding and delimited control In an untyped setting, dynamic binding first appeared
in McCarthy Lisp (as a bug) (McCarthy, 1960). Modern dialects have lexical scoping but still
provide dynamic binding: in Common Lisp one can use the special declaration (Steele Jr., 1990),
and MIT Scheme has fluid-let bindings (Hanson, 1991). The semantics of dynamic binding
was formalized by Moreau (1998). Later, Kiselyov et al. (2006) extend upon that work by
giving a translation into delimited control, providing a unified framework for control effects and
dynamic binding. Later, Kammar and Pretnar (2017) perform a similar translation and show
how (mutable) dynamic variables can be expressed in terms of algebraic effect handlers – our
translation of local mutable variables in Section 3.3.4 is based on this. Forster, Kammar, Lindley,
and Pretnar (2017) show that in a untyped setting, algebraic effect handlers, delimited control,
and monads, can all express each other through a local macro-translation (Felleisen, 1990) and
thus all can express dynamic binding. Piróg et al. (2019) extend the results to the typed setting,
which requires some form of type-polymorphism.

Resolution by type Instead of binding ambient values by name, an alternative is to resolve
dynamic bindings implicitly based on their type. Implicit parameters in Scala (Oliveira and
Gibbons, 2010; Odersky, 2019a; Odersky et al., 2017) are probably the most common example.
Implicit parameters are declared on a method signature but provided automatically at the call
site based on their type. Siek and Lumsdaine (2005) introduce system FG, which uses type
based resolution for concept-based generic programming. Haskell type classes (Wadler and
Blott, 1989; Jones, 1992; Kiselyov and Shan, 2004) are another instance where dictionaries
are passed implicitly, based on their type. Oliveira et al. (2012) formalize a notion of implicit
parameters, which are resolved based on their type, in the implicit calculus. The implicit calculus
is interesting since implicit values are not only resolved by their type, but also referred to by
their type. For example,

implicit 1 in implicit True in (even(?int) && ?bool)

evaluates to False where ?τ is used to implicitly look up a value of type τ . Resolving by type
leads to issues with coherence, and stability under type substitution, as well as problems when
combined with polymorphism (Schrijvers et al., 2019). Ambient values in contrast, are resolved

64

3.7. Related Work and Chapter Conclusion

by name, globally declared, and have an untyped operational semantics. This way, ambient
values are naturally stable under type substitution.

3.7.1 Discussion: Ambient Values and Ambient Functions
In this chapter, we introduced effect handlers by step-wise generalizing dynamic binding (that
is, ambient values). We discovered ambient functions as a new language feature that resides
between ambient values and ambient control. Ambient functions are a small extension to
ambient values, but create new opportunities for abstraction, while avoiding the need for full
generality of continuation capture. Both features, ambient values and ambient functions, are
macro expressible in terms of ambient control. So, why should we consider them separately? As
mentioned in the beginning of this chapter, distinguishing between ambient values, function and
control has several advantages.

Learnability of concepts Users can incrementally understand the generalizations from ambient
values, via ambient functions, to ambient control. In this chapter we followed these developments
to open up a new perspective on effect handlers as generalization of dynamic binding. Studying
the difference between lambdas bound to ambient values and ambient functions shows how effect
handlers can serve as abstraction barrier, even if they do not use delimited control themselves.

Reasoning about programs A program only using ambient values and ambient functions does
not alter the control flow. From the type of our example function pretty (Section 3.1), we can
immediately see that it only uses ambient values. The following code example uses this:

val f = open("output.txt");

val res = pretty(doc);

try-write(f, res);

close(f)

The effect row of pretty only mentions the ambient width. Since pretty only uses ambient
values, it cannot alter the control flow and thus will exactly return once with a string value.
Assuming that the function try-write also does not have control effects, cannot raise exceptions,
and does not diverge9, we can be sure that the file handle f will be closed. This would still be
true if pretty would use ambient functions, as long as the binders of those ambient functions do
not use control-flow altering effects themselves.

E�cient implementation Compilers can use the additional information to generate code special-
ized to the more limited control flow. For ambient values and ambient functions we know that
the continuation will be used in a tail-position (also called tail resumptive by Leijen (2017b)).
In this case, we do not need to capture the continuation at all, which can lead to performance
improvements (Leijen, 2017b). Koka previously already performed similar optimizations (Lei-
jen, 2018a, Sec. 5) but needed to infer this information from the handler definitions. With
ambient values and functions this information is readily present in the ambient declarations.
The optimization thus applies naturally to our implementation of ambient values and ambient
functions in Koka, as well.
9Divergence is conservatively approximated by the Koka effect system (Leijen, 2014). If it cannot determine
that a recursive function is structurally recursive, it adds the div effect to the function’s effect row.

65

3. From Dynamic Binding to E�ect Handlers

3.7.2 Conclusion
In this chapter, we step-wise generalized ambient values. Each generalization illustrated an
important aspect of effect handlers. Starting from ambient values, we revisited existing work
on dynamic binding. The operational semantics of λdb (Figure 3.1) and its simple type system
(Figure 3.5), are based on the DB calculus by Kiselyov et al. (2006). Ambient values emphasize
the fact that the implementation of an effect operation is dynamically bound .
In a second step, we generalized ambient values to the novel feature of ambient functions,

which in turn distils yet another aspect of effect handlers: the implementation of an effect
operation is dynamically bound, but statically evaluated in the context of its binding. The
expressiveness of ambient functions resides between ambient values and ambient control (that
is, effect handlers). Unlike ambient control, ambient functions do not obtain access to the
continuation. In consequence, they cannot alter the control flow. However, like effect handlers,
ambient functions encapsulate implementation effects at the definition site. Ambient functions
thus support abstraction similar to effect handlers, without the conceptually challenging aspect
of delimited control.

The third and last generalization, ambient control, is equivalent to effect handlers as presented
in the previous chapter (Section 3.6). We gave a translation of ambient values and ambient
functions to ambient control (Section 3.5). By macro expressing ambient values and ambient
functions in terms of ambient control, we were able to reuse the soundness proof of Section 2.4.1,
which in turn is an adaption of the proof for Koka by Leijen (2017c). The fact, that delimited
control can express dynamic binding is not new (Kiselyov et al., 2006), the same holds for effect
handlers (Kammar et al., 2013). To implement ambients in the Koka language, we use a similar
translation from ambient values to effect handlers.
In the second part of this thesis, we explore an alternative to dynamic binding of effect

operations: we employ explicit capability passing to embed effect handlers in object-oriented
programming languages. That is, instead of dynamically searching for the respective handler in
the evaluation context, user programs are required to explicitly pass handler instances.

66

Part II.

E�ect Handlers and Object-Oriented
Programming

67

Chapter 4

E�ekt – A Library Design
Effect handlers are a program-structuring paradigm with rising popularity in the functional
programming language community and can express many advanced control flow abstractions.
In this chapter, we present E�ekt: the first design of effect handlers that revolves around
object-oriented programming. Our design maps effect handler abstractions to key abstraction
of object-oriented programming languages.

Different to most other existing languages with effect handlers, E�ekt is centered on (explicit)
capability-passing style as an alternative to dynamic binding. Capability-passing style
integrates well with the paradigm of object-oriented programming.

We explore the combination of effect handlers and object-oriented programming and describe
new potential to structure effectful programs and effect handlers, enabled by reusing existing
abstraction. We capture the different dimensions of extensibility in a variant of Wadler’s
expression problem (Wadler, 1998), which we call the effect expression problem.

Effect handlers, as introduced in the first part of this thesis, have been conceived in the
setting of functional programming languages. Given this heritage, it is not surprising that
effect handlers have been implemented as libraries for functional programming languages like
Haskell (Kammar et al., 2013; Kiselyov et al., 2013; Wu and Schrijvers, 2015), Idris (Brady, 2013),
or OCaml (Kammar et al., 2013; Kiselyov and Sivaramakrishnan, 2016). Similarly, most
standalone languages that support effect handlers are following the functional programming
paradigm. Examples include Eff (Bauer and Pretnar, 2015), Koka (Leijen, 2014), Frank (Lindley
et al., 2017), Links (Hillerström et al., 2017), and Helium (Biernacki et al., 2019).

Implementations in the realm of object-oriented programming (OOP) are much more difficult
to find. No implementation, that we are aware of, explicitly uses OOP features in its API
(see discussion of related work in Section 4.7.3). Instead, library implementations like Eff in
Scala (Torreborre, 2016) often re-implement the work by Kiselyov and Ishii (2015) and neglect the
object-oriented nature of their host language. In this chapter, we present E�ekt – the first design
for effect handlers that revolves around object-oriented programming. In particular, we directly

Some contents of this chapter first appeared in the following publication: Jonathan Immanuel Brachthäuser
and Philipp Schuster. 2017. “Effekt: Extensible Algebraic Effects in Scala (Short Paper)”. In Proceedings of
the 8th ACM SIGPLAN International Symposium on Scala (SCALA 2017). ACM, New York, NY, USA,
67-72. DOI: https://doi.org/10.1145/3136000.3136007.
This chapter is based on an extended version that appeared in the Journal of Functional Programming:
Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. “Effekt: Capability-passing
Style for Type- and Effect-safe, Extensible Effect Handlers in Scala”. Journal of Functional Programming, 30,
E8 . DOI: https://doi.org/10.1017/S0956796820000027
It is also contains contents of the following publication: Jonathan Immanuel Brachthäuser, Philipp Schuster,
and Klaus Ostermann. 2018. “Effect Handlers for the Masses”. Proc. ACM Program. Lang., 2 (OOPSLA):
111:1–111:27. DOI: https://doi.org/10.1145/3276481.

69

https://doi.org/10.1145/3136000.3136007
https://doi.org/10.1017/S0956796820000027
https://doi.org/10.1145/3276481

4. E�ekt – A Library Design

map the abstractions of effect handlers to key abstractions in object-oriented programming,
establishing the mantra of our design:

Programming with effect handlers in E�ekt is object-oriented programming.

In particular, effect signatures are interfaces declaring the effect operations, effect handlers
are classes implementing those interfaces and effectful programs are methods written against
the abstraction of the interface (Figure 4.1). While in this chapter we present E�ekt as a Scala
library, the high-level concepts are independent of Scala and applicable to every object-oriented
programming language with interfaces, classes, and simple generics. In the next chapter, we
present an implementation of E�ekt in the language Java.
Directly mapping effect handlers to OOP features has several advantages:

Economy of concepts
Reusing existing concepts to structure effect handlers and effectful programs lets users
focus on what is new with effect handlers. At the same time users can immediately apply
their knowledge and intuition about interfaces and classes to structure effect signatures and
handlers, correspondingly.

Reuse of abstractions
As we will see, reusing existing abstractions from OOP allows users to combine the advantages
of those abstractions with the abstraction of effect handlers. The combination of effect
handlers with object-oriented features enables novel modularization strategies, both for
effectful programs and for effect handler implementations. For instance, with our design,
users can use standard OOP techniques like inheritance, subtyping, private state, dynamic
dispatch, and others to structure and implement effect handlers. By embedding handlers
in a language like Scala, users can additionally use more advanced features (like mixin
composition or abstract type members) to modularily describe effects and handlers.

Ease of implementation
Language implementers benefit from reusing existing abstractions since this removes the
burden of re-implementing very similar abstractions all over again. Having fewer features
also potentially reduces the risk of bad feature interaction. For library implementers, reuse
is even more essential since it simply might not be possible to add new abstractions to a
language without modifying its syntax and semantics. Our design allowed us to implement
effect handlers as libraries for Scala (this chapter and Chapter 6) and Java (Chapter 5)
without modifications to the languages.

To get a first impression of E�ekt, consider the following piece of code written in Scala and using
our library. As before in Section 2.1.1, we use the effect operation flip to nondeterministically
determine whether the gambler is too drunk to catch the coin (Kammar et al., 2013). In this
case, we use the effect operation raise to raise an exception. Otherwise, we return the result of
a second coin toss as a string.

def drunkFlip(

Capability-Passing Style︷ ︸︸ ︷
amb: Amb, exc: Exc):

Monad for Delimited Control︷ ︸︸ ︷
Control[String] = for {

caught ← amb.flip()

heads ← if (caught) amb.flip() else exc.raise("We dropped the coin.")

} yield if (heads) "Heads" else "Tails"

The two effect operations flip and raise are methods declared in corresponding interfaces

70

E�ect Handlers Object-Oriented Programming
Effect Signatures Interfaces
Effect Operation Method
Effect Handlers Implementations (Classes)
Effectful Programs Interface Users
Effect Capability Instances / Objects

Figure 4.1. Mapping concepts from effect handlers to object-oriented programming.

modeling effect signatures Amb (for ambiguity) and Exc (for exceptions). We will see the
declarations of the effect signatures in the next section.

In the first part of this thesis, we revisited two important aspects of effect handlers: dynamic
binding and delimited control. Both aspects can already be identified in the type signature of
the method drunkFlip. In particular, our library design incorporates these two aspects in the
following ways:

Dynamic binding
In contrast to most other implementations (and our presentation in Chapters 2 and 3), we
do not perform a search for the implementation of effect operations at runtime. Instead,
effect operations are methods on effect instances amb and exc, which drunkFlip receives as
arguments. We refer to this alternative to dynamic binding as capability-passing style. The
terminology of capability (Dennis and Van Horn, 1966) suggests that they entitle the holder
to use the effect.

Delimited control
The result type of the program suggests that it does not simply compute a string, but
uses control effects to do so (hence the name of the type constructor Control). We base
our Scala library on a monadic implementation of multi-prompt delimited control (Dybvig
et al., 2007) with semantics −shift+ (Section 2.1.1). This is also reflected in the use of Scala’s
for-comprehensions (Odersky et al., 2006) to sequence effectful expressions. While having to
write programs in monadic style might not seem very object-oriented, it is not essential to
our library design and does not prevent us from using OOP features for other aspects of the
library. Chapter 5 explores an alternative implementation strategy of delimited control that
lifts this limitation and enables writing programs in direct style.

Our library design revolves around the concept of capability passing . As we will see in the
remainder of this chapter, capabilities in E�ekt encapsulate three different aspects:

Capabilities contain e�ect implementations They give semantics to effect operations (Section 4.1).
In the example program drunkFlip, we call effect operations as methods on the capabilities amb
and exc.

Capabilities contain prompt markers Effect operations can capture the continuation, which is
delimited by the corresponding handler (Chapter 2). Programs written with our library have
type Control (Section 4.2), a monadic implementation of delimited control with first-class
prompts (Dybvig et al., 2007). Our capabilities contain such a prompt marker as a value
member.

71

4. E�ekt – A Library Design

Capabilities grant privileges Capabilities can be seen as constructive legitimization that the
holder is entitled to use a particular effect (Dennis and Van Horn, 1966; Miller, 2006). While
passing capabilities encourages developers to mention effects in the method signature, this is
not enough to statically guarantee effect safety. In particular, capabilities can leak, potentially
resulting in runtime errors (Osvald et al., 2016). Chapter 6 shows how we can use Scala’s advanced
type system features of path-dependent types and intersection types to encode regions (Moggi
and Sabry, 2001) and obtain effect safety.
In summary, the contributions of this chapter are:

– We present a library design to embed effect handlers in object-oriented programming
languages. While we use Scala for our presentation, the idea of mapping effect handlers to
OOP concepts is independent of Scala as a host language (Section 4.1).

– We introduce capability-passing style as an alternative to dynamically binding effect
handlers. While the translation of dynamic binding to dictionary passing is not new (Lewis
et al., 2000; Kammar et al., 2013), we embrace explicit passing of capabilities as part of
the user facing syntax. As we will see in Chapter 6, capability passing is essential to our
approach of establishing effect safety.

– We study the modularization potential newly gained by combining effect handlers and
object-oriented programming. We show how reusing existing abstractions opens up new
and interesting ways to modularize effect handlers. Section 4.4 relates effect handlers to
the expression problem, explores several dimensions of extensibility, and shows how E�ekt
supports them.

– We present a novel design for stateful handlers to guarantee well-behaved interaction with
continuation capture (Section 4.3). Our design is an OOP alternative to parameterized
handlers that can be found in functional programming languages like Koka (Leijen, 2017c).

– We hide most of the syntactic overhead of capability passing (Section 4.6.1) by making
it implicit using the Scala features of implicit parameters (Odersky, 2019a) and implicit
function types (Odersky et al., 2017).

While the general design of E�ekt is independent of a concrete object-oriented language, for the
presentation in this thesis, we choose the programming language Dotty (in version 0.19) – a
version of the Scala language that will eventually become Scala 3 (Odersky, 2018). We explain
necessary Scala specifics on first encounter.

4.1 Programming with E�ect Handlers in E�ekt
To get a first impression of how to program with effect handlers in E�ekt, and to illustrate how
effect handler concepts map to object-oriented programming, let’s again look at our running
example of drunkFlip.

4.1.1 E�ect Signatures are Interfaces
The implementation of drunkFlip uses capabilities amb and exc, which are instances of effect
signatures Amb and Exc, correspondingly. We sometimes interchangeably use the terminology

72

4.1. Programming with E�ect Handlers in E�ekt

trait Control[+A] {

def map[B](f: A ⇒ B): Control[B]

def flatMap[B](f: A ⇒ Control[B]): Control[B]

def andThen[B](c: Control[B]): Control[B]

}

def pure[A](a: ⇒ A): Control[A]

def run[A](ca: Control[A]): A

Figure 4.2. The control interface – a monad for multi-prompt delimited control.

capability and handler instance. While “capability” (Dennis and Van Horn, 1966) puts a focus
on the concept of entitling the holder to use an effect, “handler instance” highlights the fact that
handlers are implementations of effect signatures. Following our mapping of concepts from the
introduction, we define effect signatures as interfaces:

trait Exc {

def raise[A](msg: String): Control[A]

}

trait Amb {

def flip(): Control[Boolean]

}

For the purpose of this section, it is enough to understand Scala traits as the equivalent to
interfaces in languages like Java. The methods raise and flip model effect operations. Their
return type Control[A] (and Control[Boolean], correspondingly) suggests that they are effectful ,
that is, they can have control effects.
The concrete implementation of Control is not essential to the design of E�ekt. For now, it

suffices to understand it as some monadic type constructor with the operations summarized in
Figure 4.2. In the following Section 4.2, we will go into more detail on our implementation of
multi-prompt delimited control and relate it to our presentation of Chapter 2.

The methods to sequence programs without control effects (i.e. map) and with control effects
(i.e. flatMap) enable us to write effectful programs in an imperative style via Scala’s for-
comprehensions10. The function pure corresponds to monadic return (Wadler, 1995) and lifts
a Scala expression without control effects into a computation. While the expression is free
of control effects, it can have other side effects such as I/O. Since Scala is call-by-value, we
mark the parameter (i.e., ⇒ A) as being by-name (Odersky et al., 2006) to defer those side
effects to the point of running the computation by means of run. Using run, we can execute a
program with control effects that computes a value of type A to eventually obtain that value.
While we can already understand map as the constructive proof that Control is covariant in
the type parameter A – we additionally prefix the type parameter with + to inform the type
checker about the covariance and establish subtyping of Control[A] <: Control[B], whenever
A <: B (Odersky et al., 2006).

4.1.2 E�ect Handlers are Implementations
The method drunkFlip does not rely on any concrete implementation of the effect operations
raise and flip. It merely uses the interfaces Amb and Exc in its signature. The caller is free to
pick any implementations of Amb and Exc, determining the semantics of the effect operations. For

10Similar to Haskell’s do-notation, for-comprehensions in Scala syntactically simplify writ-
ing monadic code. In general, for { x1 ← e1; x2 ← e2; ... xn ← en } yield e desugars to
e1.flatMap { x1 ⇒ e2.flatMap { x2 ⇒ ... en.map { xn ⇒ e }}} (Odersky et al., 2006).

73

4. E�ekt – A Library Design

example, we can ignore control effects altogether and use native side effects to implement Amb
and Exc. For flip we use a random number generator and for raise we use native exceptions11.

class NativeExceptions extends Exc {

def raise[A](msg: String): Control[A] = pure { throw new RuntimeException(msg) }

}

class RandomFlip extends Amb {

def flip(): Control[Boolean] = pure { Math.random() < 0.5 }

}

To run our example program, we simply pass instances of NativeExceptions and RandomFlip to
drunkFlip, which will randomly result in either a runtime exception or one of the two possible
string values.

run { drunkFlip(new RandomFlip(), new NativeExceptions()) }

Following our mapping of concepts, the classes NativeExceptions and RandomFlip are effect
handlers: they provide semantics to the effect operations by implementing the effect signatures.
However, to do so, they immediately return a pure expression without any control effects. Again,
for our purposes, pure expressions do not have control-effects – they can have other side effects.

In the remainder of this section, we will pick up our handler implementations of Chapter 2 that
did use control effects. We will explore an interpretation of programs, which use Exc and compute
some result of type R, into programs that return an Option[R]. Calling raise will immediately
abort the program with None. We will also explore an interpretation of programs, which use
flip to compute a result of type R, into programs that return a List[R] by enumerating and
collecting all possible outcomes.

4.1.3 Handling with Control E�ects

We now show how to freely mix handlers if we implement them using our E�ekt library. This is
an example of the modularity benefits provided by effect handlers. The implementation of our
handlers will be given shortly. For now, let us assume the following definitions:

class Maybe[R] extends Exc with Handler[R, Option[R]] { ... }

class Collect[R] extends Amb with Handler[R, List[R]] { ... }

Like our first interpretation of Amb and Exc above, the classes Maybe and Collect again implement
the corresponding effect signatures. This time, however, the effect handlers also extend our
library trait Handler[R, E] (defined in Figure 4.3b). In general, every handler for an effect gives
semantics to the corresponding effect operations. To do so, it interprets an effectful program,
which would compute a result of type R (mnemonic for return type) into a new semantic domain
of type E, the effect domain. When implementing effect handlers, programmers choose the effect
domain to have enough structure to implement the effect operations.

11In Scala, methods with one argument can be called with braces (pure { expr }) instead of parenthesis
(pure(expr)). This is purely syntactical and does not lead to thunking of the expression (Odersky et al., 2006).

74

4.1. Programming with E�ect Handlers in E�ekt

Handlers introduce capabilities Before looking at the details of how the handlers are implemented,
it is instructive to understand how they can be used. Recall our notion of effect handlers in
Section 2.3:

handleamb { . . . } in {
handleexc { . . . } in {

drunkFlip()
}
}

In comparison, using E�ekt, handling effects Amb and Exc looks like12:

val res1: Control[List[Option[String]]] =

new Collect handle { amb ⇒
new Maybe handle { exc ⇒

drunkFlip(amb, exc)

}

}

The lambda, which is passed as body to the handler new Collect().handle(amb ⇒ ...), rep-
resents the dynamic scope in which the capability amb can be used. Besides delimiting the
dynamic scope, handle also passes the handler instance unmodified as argument to the body.
Thus, in our example the variable amb will be bound to the instance of Collect created on the
very same line. This is also reflected by our usage of the singleton type this.type (Odersky and
Zenger, 2005b) as type of the argument (see Figure 4.3b). We only use the singleton type for
better type inference, such that amb can be used as a capability of type Amb without requiring
manual type annotations.
Having handled both effects, running drunkFlip now yields for run { res1 }:

I List(Some("Heads"), Some("Tails"), None)

As in Section 2.2, we can easily swap the two handlers to obtain a different semantics where an
exception leads to a termination of the search.

val res2: Control[Option[List[String]]] =

new Maybe handle { exc ⇒
new Collect handle { amb ⇒
drunkFlip(amb, exc)

}

}

Since at least one of the control paths raises an exception, running drunkFlip with the effects
handled in the different order yields for run { res2 }:

I None

12Scala methods with only one argument can be used as an infix operators. Also type parameters can be omitted,
if they can be inferred. Hence, handling with the Maybe handler could also be written more explicitly as
new Maybe[String]().handle(exc ⇒ ...).

75

4. E�ekt – A Library Design

class Maybe[R] extends Exc with Handler[R, Option[R]] {

def unit(result: R) = Some(result)

def raise(msg: String) = use { resume ⇒ pure(None) }

}

class Collect[R] extends Amb with Handler[R, List[R]] {

def unit(result: R) = List(result)

def flip() = use { resume ⇒ for {

ts ← resume(true)

fs ← resume(false)

} yield ts ++ fs }

}

(a) The two effect handlers Maybe and AmbList utilizing use to capture the continuation.

trait Handler[R, E] {

// Subclasses need to specify how to convert a result into the effect domain

protected def unit(result: R): Control[E]

// Handler implementations can use this method to capture the continuation

protected def use[A](body: (A ⇒ Control[E]) ⇒ Control[E]): Control[A] = ...

// Handler users can use this method to delimit the scope of the continuation

def handle(prog: this.type ⇒ Control[R]): Control[E] = ...

}

(b) The handler interface – the essence of the effect handler library. Handlers interpret programs of
type R into an effect domain of type E. Implementations of use and handle given in Figure 4.8.

Figure 4.3. Implementation of effect handlers for Exc and Amb using the library class Handler.

This shows the power of effect handlers: effectful programs can be written fully agnostic of both
the semantic domain into which the effects will be interpreted, as well as the order in which the
effects will be handled. Importantly, changing the order of handlers changes of the result type.
A program that uses Exc returns an optional and a program that uses Amb returns a list. We did
not have to change the effectful program that uses the effects. Notably, both, its type and its
implementation can remain unchanged.

We could also implement the example without support for effect handlers. However, to
write programs that use both effects (like drunkFlip), we would need to decide and fix upfront
whether raising an exception terminates the search for possible outcomes and thus returns
Option[List[R]], or whether it only terminates one branch in our search and thus returns
List[Option[R]]. Revising decisions like this in retrospect can be costly, since they potentially
affect the whole codebase. Additionally, if we want to use programs, which use only one of Exc
and Amb, together with programs that use both, we have to manually lift (Liang et al., 1995) the
programs that use only one of the two effects. Effect handlers address these problems.

76

4.1. Programming with E�ect Handlers in E�ekt

4.1.4 Implementing E�ect Handlers
Having seen how effects can be handled, we will now take a closer look at how handlers are
implemented. In Figure 4.3a, we use the E�ekt library to give the implementation of the handlers
Maybe and Collect. The handlers extend the corresponding effect signatures (Exc and Amb), as
well as the library trait Handler (Figure 4.3b).

Every handler needs to implement the abstract method unit to specify how handled programs,
which do not use the corresponding effect, are lifted from R into the effect domain E. The
method unit is also known as the “return-clause” in the literature on effect handlers (Bauer
and Pretnar, 2015; Kammar et al., 2013). Additionally, a handler needs to implement all the
effect operations, which are specified in the effect signature. To implement the effect operations,
handlers are able to utilize the instance method use, as provided by the library trait Handler.
Specialized to the handler Maybe, the method use has type:

def use[A](body: (A ⇒ Control[Option[R]]) ⇒ Control[Option[R]]): Control[A]

// ^^^ the continuation ^^^

In our implementation of raise, calling use { resume ⇒ ... } captures the continuation and
binds it to the identifier resume in the provided body. To implement the expected semantics of
exceptions unwinding the stack, we discard the continuation and immediately return None.

The handler for ambiguity, in turn, captures the continuation and invokes it twice. Once with
true and once with false, each time yielding a list of possible results. Finally, it concatenates
the two lists. It is important to stress again that this is only possible, because the continuation
captured by use is delimited by the corresponding call to handle and the handler Collect defines
the effect domain to have the type List[R].
The methods unit and use of the handler interface are marked as protected to signal that

they are implementation details of the handler and should not be called from the outside.

4.1.5 Design of the E�ekt Library
We designed E�ekt as a library for object-oriented languages around object-oriented idioms. In
summary, the E�ekt library is based on the following design decisions.
Effect signatures are interfaces and handlers are classes implementing the interfaces. We

establish a capability-passing style where users explicitly pass handler instances to programs that
use effect operations. As we will discuss in Section 4.4, this corresponds to a shallow embedding
of effect operations and is similar to the use of type classes by Kammar et al. (2013).
Handler implementations capture the continuation by explicitly calling use. In E�ekt, tail

resumptive handler implementations, which exclusively invoke the continuation in tail position,
can be expressed as simple methods that do not capture the continuation at all.
E�ekt is a library and neither changes the language nor the type system. Handlers and the

operations use and handle are designed to not require an advanced type system. In particular,
different to approaches based on monad transformers (Liang et al., 1995; Jones, 1995), E�ekt
does not require type constructor polymorphism. The usage of the singleton type this.type

in the signature of handle is not essential and can be removed at the cost of type inference or
some more boilerplate.

The design of E�ekt, as presented in this chapter, does not establish an effect typing discipline.
Users need to make sure that an effect handler is only used in the dynamic extent of a
corresponding call to handle. Invoking use outside of the corresponding handler scope will result
in a runtime error. We address this issue in Chapter 6.

77

4. E�ekt – A Library Design

trait Prompt[Result] {}

def reset[R](prog: Prompt[R] ⇒ Control[R]): Control[R]

def shift[A, R](prompt: Prompt[R])(body: (A ⇒ Control[R]) ⇒ Control[R]): Control[A]

Figure 4.4. The prompt interface – control operators shift / reset and the marker trait Prompt.

4.2 Delimited Control
Our Scala implementation of E�ekt implements effect handlers in terms of a monad for multi-
prompt delimited control. In this section, we present a simplified version of our implementation
of this monad as a specialization of the one presented by Dybvig et al. (2007). The monad
Control[+A] is very close to the monad for multi-prompt delimited control by Dybvig et al. (2007),
but we specialize the exposed interface to better fit effect handlers. While Dybvig et al. present
a very general framework with semantics −shift− that allows for the implementation of different
control operators, we build on −shift+ as our control operator of choice. This means that the
body of the captured continuation is always delimited by a reset. As highlighted by Kammar
et al. (2013), −shift+ matches the semantics of deep handlers, where the same effect is already
handled in the continuation. It additionally avoids the problem of accumulating delimiters, as
observed by Dybvig et al. (2007). Section 4.7 offers a closer comparison of our implementation
with the one by Dybvig et al. (2007). The version of our monad for delimited control that we
introduce in this section is answer-type-safe, but it is not effect-safe. In Chapter 6, we show how
to establish effect safety.
We briefly repeat the developments of Chapter 2, this time in Scala and using our monad

Control. Consequently, the structure of the following sections is very similar: we first recapitulate
delimited control, generalize to families of control operators with multiple prompts, and finally
introduce the abstraction of effect handlers.

4.2.1 Delimiting Control
To recall, the following example program, which we adapt from Danvy and Filinski (1990), uses
the control operator shift and delimiter reset of Section 2.1.1 in variant −shift+:

1 + reset { 10 + shift { k ⇒ k(k(100)) } }

The control operator shift captures the continuation and binds it to k. The continuation is
delimited: only the evaluation context up to the enclosing reset is captured and thus the
continuation corresponds to 10 + �. This example reduces in the following steps:

1 + reset { 10 + shift { k ⇒k(k(100)) } }
1 + k(k(100)) where k = x ⇒ reset { 10 + x }
1 + k(reset { 10 + 100 })
1 + k(110)
1 + reset { 10 + 110 }
1 + 120
121

The continuation k does not contain the frame 1 + �, which is outside of the delimiting reset.
From the reduction steps, we can recognize the semantics −shift+: The body of the continuation
k is again delimited by reset, while the body of shift (i.e. k(k(100))) is not.

78

4.2. Delimited Control

Example 1
Using the Control monad, we can translate the above example to Scala:

val ex: Control[Int] = reset { p ⇒
shift(p) { k ⇒ k(100) flatMap { x ⇒ k(x) } } map { y ⇒ 10 + y }

} map { z ⇒ 1 + z }

Figure 4.2 already introduced the first part of the interface of the monad for delimited con-
trol. To actually capture continuations and delimit their scope, Figure 4.4 now additionally
introduces the type Prompt[Result] and two functions shift and reset. The delimiter function
reset { p ⇒ PROG } introduces a fresh prompt p and delimits the control effects for p in the
provided program PROG. Our control operator shift takes a prompt as a parameter. This allows
us to select which reset we want to shift to. It captures the current continuation up to the
corresponding reset and passes the continuation to the body. The current example only uses
one prompt p but we will shortly see how to utilize this additional expressivity.

4.2.2 Families of Delimited Control Operators
Every call to reset introduces a fresh prompt p, or in other words, each prompt p labels the
corresponding reset. This gives rise to a dynamic number (that is, a family) of control operators
shift(p), one for each prompt created by a reset. The following example illustrates the use of
multiple resets:

Example 2
We use reset twice, introducing two different prompts p1 and p2.

val ex2: Control[Int] = reset { p1 ⇒
reset { p2 ⇒

shift(p1) { k ⇒ pure(21) }

} map { if (_) 1 else 2 }

} map { 2 * _ }

The captured continuation k contains the program segment delimited by prompt p1. It corre-
sponds to the evaluation context if (resetp2 { � }) 1 else 2. In this example the body of shift
discards the continuation k and immediately returns 21. Hence, run { ex2 } evaluates to 42.

4.2.3 Answer Type Safety
Operationally, shift(p)(k ⇒ PROG) replaces the corresponding reset by the body PROG. To be
type safe, the return type of the body thus has to match the answer type at the reset. In
our setting of multiple first-class prompts, we guarantee this by following Dybvig et al. (2007)
(respectively Gunter et al. (1995)) and parameterize prompts over the answer type R. In Example
2, the two prompts have type p1: Prompt[Int] and p2: Prompt[Boolean].

Furthermore, the type of reset[R] requires three types to be R: the answer type of the created
prompt (i.e., Prompt[R]), the result of the given program (i.e., Control[R]), and the return type
of reset. Similarly, the type of shift uses the answer type of the given prompt and requires
that (a) the return type of the continuation and (b) the return type of the given body agree

79

4. E�ekt – A Library Design

resetp {
. . . shiftp { k ⇒ body } . . .
}

(a) Programming with
delimited control.

resetp {
def op(x) = shiftp { k ⇒ body };
. . . op() . . .
}

(b) Structured programming with
delimited control.

handlep { (x , k) ⇒ body } in {
. . . dop(arg) . . .
}

(c) Programming with effect
handlers.

Figure 4.5. Programming with effect handlers as structured programming with delimited control.

with (c) the answer type expected at the reset that introduced the prompt. Answer type safety
is especially important in the presence of multiple prompts. Each reset potentially introduces a
prompt with a different answer type. Shifting to a reset with the wrong type should be statically
rejected. For instance, shifting to p2 would render the example type incorrect, since this would
require the body of shift to return a computation of type Boolean, not Int.

4.2.4 Structured Programming with Delimited Control
Multi-prompt delimited continuations are implementation internals that E�ekt does not expose
to the user. However, to highlight the point of Chapter 2, that programming with effect
handlers is structured programming with delimited control (Kammar et al., 2013), we express
our running example in terms of the operators shift and reset. Figure 4.5 provides an overview
of the developments, where Figure 4.5c corresponds to programming with effect handlers and
Figure 4.5b depicts the style of structured programming, which we will employ in the rest of this
section. It is instructive to compare the different ways of implementing effects, since structured
programming with delimited control immediately gives rise to capability-passing style.

Example 3

Figure 4.6 translates the handlers of our running example to directly use control effects. Let us
assume the type aliases for effectful programs with the signatures of flip and raise (Figure 4.6a).
The user program from the introduction then carries over almost unchanged.

def drunkFlip(raise: Exc, flip: Amb): Control[String] = for {

caught ← flip()

heads ← if (caught) flip() else raise("We dropped the coin.")

} yield if (heads) "Heads" else "Tails"

The program drunkFlip now takes effectful functions raise and flip directly as parameters. The
effectful functions directly correspond to effect operations. While the program was previously
written in capability-passing style, it is now written in a very similar operation-passing style.

We implement what could be viewed as handlers for raise (Figure 4.6b) and flip (Figure 4.6c)
as higher order functions that construct implementations of effect operations and pass them
to the given program. We refer to those functions as handler functions. They also change the
result type R to the effect domain Option[R] and List[R] respectively, just as we have previously
seen. The pattern to directly implement effect handlers in terms of delimited control shows that
handler functions encapsulate three aspects of effect handling in one module:

80

4.2. Delimited Control

type Amb = () ⇒ Control[Boolean]

type Exc = String ⇒ Control[Nothing]

(a) Effect signatures for exception and ambiguity as type aliases for effectful functions.

def maybe[R](prog: Exc ⇒ Control[R]): Control[Option[R]] = reset { p ⇒
val raise: Exc = msg ⇒ shift(p) { resume ⇒ pure(None) }

prog(raise) map { x ⇒ Some(x) }

}

(b) Handler function for the exception effect.

def collect[R](prog: Amb ⇒ Control[R]): Control[List[R]] = reset { p ⇒
val flip: Amb = () ⇒ shift(p) { resume ⇒ for {

xs ← resume(true)

ys ← resume(false)

} yield xs ++ ys }

prog(flip) map { x ⇒ List(x) }

}

(c) Handler function for the ambiguity effect.

Figure 4.6. Using answer-type-safe delimited control to declare and handle exception and ambiguity
effects.

1. The handler function uses reset to delimit the scope of the captured continuation.
2. It locally uses the fresh prompt introduced by reset to implement the effect operations in

terms of shift. The effect operations close over the prompt and are thus the only way to
capture the continuation.

3. It finally lifts the return type of the handled function R into the effect domain, which
makes it the answer type of the reset.

Grouping these aspects of effect handling in one module, it is possible to locally reason about
type safety. The implementation of raise is only safe because we statically know from the type
of p: Prompt[Option[R]] that the answer type expected at the reset is Option[R]. Likewise, in
collect we use the fact that we statically know that the answer type in the body of shift(p) is
List[R] to safely concatenate the results of the two calls of the continuation resume.
As in the introduction, we can use both handler functions in a different order to run the

program, getting different results of different type.

val res1: List[Option[String]] = run {

collect { flip ⇒ maybe { raise ⇒ drunkFlip(raise, flip) }}

}

val res2: Option[List[String]] = run {

maybe { raise ⇒ collect { flip ⇒ drunkFlip(raise, flip) }}

}

The operations raise and flip are first-class functions and close over the fresh prompts p

that we introduced with reset. Writing effect handlers in this style, we can think of reset as
introducing a fresh shift that is only available in the lexical scope.

81

4. E�ekt – A Library Design

new Collect handle { amb ⇒
var x = 0

amb.flip() map { b ⇒
if (b) { x = 2 } else {}

x

}

}

I List(2, 2)

new Collect handle { amb ⇒ region { state ⇒
val x = state.Field(0)

amb.flip() flatMap { b ⇒
if (b) x.put(2) else pure(())

} andThen x.get()

}}

I List(2, 0)

(a) Example illustrating the difference between global (left) and local, backtrackable state (right).
Access to the state is highlighted.

trait State {

def Field[T](init: T): Field[T]

trait Field[T] {

def get(): Control[T]

def put(value: T): Control[Unit]

def update(f: T ⇒ T): Control[Unit] = get().map(f).flatMap(put)

}

}

def region[R](prog: (s: State) ⇒ Control[R]): Control[R] = ...

(b) Effect signature of the state effect and its built-in handler region.

Figure 4.7. The State effect: mutable state that interacts well with multiple resumptions.

82

4.3. Ambient State

4.3 Ambient State
Many practical handler implementations require some form of mutable state. Our host-language
Scala already supports mutable state and effect handlers can readily use it. However, combining
mutable state and delimited control can interact in unforeseen ways (Kiselyov et al., 2006;
Leijen, 2018b). This is illustrated by the example in Figure 4.7a. In the program on the left,
we introduce a local mutable variable x. Only if the flip operation returns true we modify it.
Still, running the example outputs List(2, 2). Surprisingly, the change to x is also visible in
the branch where flip returns false. Built-in mutable state is global and does not backtrack
across different resumptions.

However, for some effect handlers, we want local , backtrackable state. Running the example
program should yield List(2, 0), backtracking the local state when resuming for the second
time. Leijen (2017c) calls this form of state “ambient”. There are multiple ways to obtain
local, backtrackable state. As in Section 3.3.4, we could define a state effect in terms of control
effects. This technique has been presented by Kammar et al. (2013) for effect handlers and
by Kiselyov et al. (2006) for delimited control. Alternatively, we could also offer a generalized
form of effect handlers that support local state. For example, Koka chooses this solution and
supports “parameterized handlers”, which manually perform state-passing (Leijen, 2017c).
For our design of E�ekt, we decided to offer a built-in State effect that exhibits the correct

backtracking behavior when combined with our implementation of delimited control. Figure 4.7b
defines the interface of the effect signature State and the corresponding built-in handler region.
The effect signature State contains a nested type Field with the necessary operations to retrieve
(i.e., get) and update (i.e., put and update) the state. The use of the state effect is illustrated
in the right column of Figure 4.7a. Given a capability state we create a new field x with
val x = state.Field(...). To read and update the state, we use the effect operations get and
put on the field. In our design, state access is effectful and thus operations get and put return a
result in the Control monad.
Our implementation of Control is specialized to properly save and restore the fields for

each State effect. The region handler introduces a new mutable frame, which holds the
allocated fields on the stack that the implementation of Control is based on. Capturing the
continuation with shift will capture parts of the stack, shallowly copying the current values of
the fields. Calling the continuation restores the values. This implements dynamically scoped
state (Kiselyov et al., 2006) and allows constant time access and modification at the cost of
copying on continuation capture. If we would switch the order of the effect handlers to

region { state ⇒ new Collect handle { amb ⇒ ... }}

running the example would again yield List(2, 2). In this order, changes to the state are
persistent across multiple resumptions. In the next section, we will encounter a few examples
that use this state effect.

Note Our design for ambient state is only necessary, since continuations in E�ekt can be resumed
multiple times. Continuations in E�ekt are thus multi-shot (Hieb et al., 1990), while for instance
continuations in Multicore OCaml (Dolan et al., 2014) are one-shot13 (Dolan et al., 2015).
Restricting E�ekt to one-shot continuations, it would be safe to use native mutable state, since
we cannot observe the difference between local and global state anymore.

13Multicore OCaml offers support to manually clone continuations. This way, continuations can also be resumed
multiple times (Kiselyov and Sivaramakrishnan, 2018).

83

4. E�ekt – A Library Design

4.4 Composing E�ect Signatures
In the previous Section 4.2.4, we have seen how to program directly with multi-prompt delimited
control. Comparing the implementations of handler functions maybe and collect with the han-
dlers Maybe and Collect, we find that there is only a small difference between programming with
multi-prompt delimited control (Section 4.2) and programming with effect handlers (Section 4.1).
In the following sections, we introduce the missing interfaces to program with effect handlers.

We also give additional examples to evaluate the different dimensions of extensibility gained by
embedding E�ekt into Scala. Mapping effect signatures and handlers to existing features of object-
oriented programming allows us to reuse the abstractions those features offer. In particular, as
we will see, mapping signatures to Scala’s traits opens up interesting new modularity benefits.
With the advent of default methods (Gosling et al., 2015), many of those benefits also apply to
Java’s interfaces. Here, we revisit some of the abstractions and highlight the modularity benefits
newly gained by implementing effect handlers this way.
We will see how to compose effect signatures, effect handlers, and effectful programs.

4.4.1 Extending E�ect Signatures
Since signatures are traits (Odersky et al., 2006), we can extend them and add new operations.
Here we extend the Amb trait (Section 4.1) with an additional effect operation choose.

trait Choose extends Amb {

def choose[A](first: A, second: A): Control[A]

}

This introduces a subtyping relationship between Amb and Choose capabilities. A Choose handler
thus can also be used to handle Amb. This cannot be expressed in Koka, for example, where a
handler handles precisely the effects of a single given effect signature (Leijen, 2017c).

4.4.2 Default Methods: Primitive vs. Derived E�ect Operations
Traits in Scala cannot only contain abstract method declarations, but also concrete method
implementations. Similarly, our effect signatures cannot only contain abstract operations, but
also concrete effect operation implementations, as illustrated in the following example.

trait Fiber {

// primitive effect operations

def suspend(): Control[Unit]

def fork(): Control[Boolean]

def exit(): Control[Nothing]

// derived effect operations

def forked(p: Control[Unit]): Control[Unit] = for {

b ← fork()

r ← if (b) p andThen exit() else pure(())

} yield r

}

84

4.4. Composing E�ect Signatures

Here, the Fiber effect (Dolan et al., 2015) for cooperative multitasking has abstract effect
operations suspend, fork, and exit that need to be implemented by handlers. It additionally
contains a concrete effect operation forked, which is implemented in terms of fork and exit.
We refer to operations like suspend as primitive effect operation and to operations like forked

as derived effect operations . Of course, in other languages with effect handlers like Koka, forked
could be defined as a simple effectful program using the Fiber effect. In E�ekt, however, handlers
that implement the Fiber effect can choose to overwrite the forked implementation – for instance
for efficiency purposes.

The derived operation forked does not make any assumptions about the handler implementa-
tion. In particular, it does not explicitly capture the continuation with shift but only uses the
other effect operations of Fiber. This illustrates an important difference to languages like Koka,
where every effect operation always automatically captures the continuation (Leijen, 2017c). As
a result, in Koka, the effect operation call fork() would not refer to the same handler, but an
outer one. In our example, however, forked does not explicitly capture the continuation and it
is hence safe to call fork while referring to the same handler. For similar reasons, the following
implementation of forked could potentially result in a runtime error:

def forked[E](p: Control[Unit]) = use { resume ⇒ fork() flatMap resume } // BAD

In Section 6, we will see how to embed an effect system in Scala to statically reject implementa-
tions like the above.

4.4.3 Abstract Type Members: E�ect Signatures as Module Interfaces
Another particularly interesting example of abstraction reuse are Scala’s abstract type mem-
bers (Odersky and Zenger, 2005b). Mapping effect signatures to Scala traits, signatures cannot
only describe effect operations, but also have (abstract) type members. This opens up interesting
ways to structure effect signatures, illustrated by the signature for the async effect (Dolan
et al., 2017):

trait Async {

type Promise[T]

def async[T](prog: Control[T]): Control[Promise[T]]

def await[T](p: Promise[T]): Control[T]

}

The abstract type member Promise allows handler implementations to choose the representation
of promises. The effect signature declares two effect operations (async and await) that refer
to the abstract type. In a concrete capability of type Async, this choice of representation is
hidden existentially. Odersky and Zenger (2005b) show how to use abstract type members
and self-type annotations to express family polymorphism (Ernst, 2001): multiple (potentially
mutually recursive) types form a family. Family polymorphism requires that the involved types
can be covariantly refined together as a family, similar to open recursion on the level of types.
With E�ekt, the implementation strategy of using abstract type members to express family
polymorphism now can also be applied to effect signatures and effect handlers. In our example,
hiding the representation of promises behind an abstract type member ensures that promises
can only be awaited by the capability that instantiated them.

85

4. E�ekt – A Library Design

Example: Asynchronous Programming
Having declared the effect signatures for Async and Fiber we can write effectful programs using
these effects:

def asyncExample(f: Fiber, a: Async) = for {

p ← a.async { for {
_ ← log("Async 1")
_ ← f.suspend()
_ ← log("Async 2")
_ ← f.suspend()

} yield 42 }
_ ← log("Main")

r ← a.await(p)
_ ← log("Main with result " + r)

} yield ()

This example illustrates how two advanced control-flow structures, one for asynchronous pro-
gramming and one for cooperative multitasking, can naturally be used together. We will see
how to run this example after having defined the handlers for Fiber and Async.

4.4.4 Nested Traits: Families of E�ectful Types
Abstract type members like Promise are not the only way to express a family of effectful types.
Traits in Scala can also be nested, and we can refactor the effect signature Async to:

trait AsyncNested {

trait Promise[T] { def await: Control[T] }

def async[T](prog: Control[T]): Control[Promise[T]]

}

This is reminiscent of the State effect (Figure 4.7b), where the trait Field is expressed as nested
type.

4.4.5 Mixing E�ect Signatures
Scala supports mixin composition on traits (Odersky et al., 2006). This way, we can mix
independently declared effect signatures:

trait Nondet extends Amb with Exc

Furthermore, since traits can contain both abstract and concrete definitions, effect signatures
can be mixed to mutually implement primitive (i.e., abstract) effect operations in one signature
by derived (i.e., concrete) effect operations in another. This mutually recursive matching of
definitions works for both, abstract types and abstract methods (Odersky and Zenger, 2005b).

86

4.5. Composing E�ect Handlers

4.5 Composing E�ect Handlers
In this section, we introduce the missing interfaces to program with effect handlers.

4.5.1 From Delimited Control to E�ect Handlers
We purposefully presented programming with delimited control close to programming with effect
handlers to highlight one small, but important difference:

“the handling of the continuation takes place at the identical site as the creation of
the continuation” — Sitaram (1993, p. 148)

For the purpose of this section, we like to rephrase this quote to:

Effect handlers syntactically encapsulate the introduction of a prompt and its use.

Specifically, users do not manually pass prompts around, to then use them at arbitrary points
in the program and to capture the continuation. Instead, effect operations that use a prompt
are lexically related to the reset that introduced the prompt. As pointed out in Chapter 2,
we believe that this is one of the most important aspects that make programming with effect
handlers more approachable than programming with (multi-prompt) delimited control. Of
course, we can voluntarily restrict ourselves to this mode of use, as we did in Section 4.2.4.
While explicitly using reset and closing over prompts is a good way to understand the details
of delimited control, it surfaces too much technical detail. In the following, we focus on effect
operations and the high-level abstraction of handlers. In particular, each handler instance
contains exactly one prompt marker, which it only uses internally. It would be possible to use
the handler abstraction together with reset and have handlers close over prompts, as in:

reset { p ⇒ new Handler(p).handle(...) }

However, we want to fully hide prompts as a concept from users of E�ekt. To ease the instantia-
tion of handler, we thus include the following library-internal function, which corresponds to
pushPrompt by Dybvig et al. (2007).

def resetWith[R](prompt: Prompt[R])(prog: Control[R]): Control[R]

Of course, we can express reset in terms of resetWith:

def reset[R](prog: Prompt[R] ⇒ Control[R]): Control[R] = {

val p = new Prompt[R] {}; resetWith(p)(prog(p))

}

We are now finally ready to fully implement the Handler interface of Figure 4.3b. The expressive
power of effect handlers comes from the two operations handle and use, which are encapsulated
in the library trait Handler. Figure 4.8 shows the implementation of these two operations in
terms of delimited control. Handlers internally create a prompt marker of type Prompt[E] with
the effect domain E. The answer type of delimited continuations thus will be the effect domain E.
In the implementation of handle, we install the prompt marker as a delimiter before resuming
with prog. The handler thus delimits the extent of captured continuations. By running unit

87

4. E�ekt – A Library Design

trait Handler[R, E] {

protected def unit(result: R): Control[E]

// Each capability contains a unique prompt

private val prompt = new Prompt[E] {}

// Handlers encapsulate capturing ...

protected def use[A](body: (A ⇒ Control[E]) ⇒ Control[E]): Control[A] =

shift(prompt)(body)

// ... and delimiting the continuation in one interface

def handle(prog: this.type ⇒ Control[R]): Control[E] =

resetWith(prompt)(prog(this) flatMap unit)

}

Figure 4.8. The handler implementation – handlers contain a prompt marker, use captures the
continuation and handle delimits the scope.

after prog, programs that use no further effects will be lifted from R to E. The method use calls
shift with prompt as a prompt marker to capture the continuation up to the most recent call to
handle on this very handler instance. The method unit is still left abstract, as it needs to be
implemented by concrete handlers like Collect and Maybe.

Effect handlers in E�ekt are deep handlers (Kammar et al., 2013). That is, all effect operations
are recursively handled by the same handler. To implement deep handlers, we choose −shift+ as
underlying semantics of Control. This asserts that all subsequent calls to use on this handler
are again delimited by prompt. Our operations handle and use are thus conceptually very similar
to spawn and the corresponding controller by Hieb and Dybvig (1990).
Defining handlers as traits allows us to use mixin composition and thereby discover new

opportunities for extensible handler definitions, which we explore in the remainder of this section.

4.5.2 The E�ect Expression Problem
Many implementations of libraries and languages for (algebraic) effects and handlers are based
on a deep embedding (Boulton et al., 1992) of effect operations (Kiselyov and Ishii, 2015). They
reify effect operations as alternatives in a sum type and represent effectful computations as a
command-response tree. For instance, the flip effect operation would be reified as a constructor
of an algebraic data type Amb. Handlers fold over the tree of computation and use pattern
matching to interpret the reified effect operations (Leijen, 2017c; Hillerström et al., 2017; Bauer
and Pretnar, 2015; Kiselyov and Ishii, 2015; Kiselyov and Sivaramakrishnan, 2016). To mix
programs with different effects means to extend an open union type of reified effect operations.

In contrast, by performing capability passing and representing effect signatures as traits, E�ekt
builds on a shallow embedding (Hudak, 1998; Carette et al., 2007) of effect operations. Instead
of folding over the tree of computation, user programs directly call effect operations on the
handler. In a language with mixin composition, shallow embeddings can be structured in a
pleasingly extensible way (Oliveira and Cook, 2012). Thus, E�ekt has a solution to the expression
problem (Wadler, 1998) at its foundation, a property it shares with many other effect handler

88

4.5. Composing E�ect Handlers

implementations. For instance, languages like Koka (Leijen, 2014), Frank (Lindley et al., 2017),
and Links (Hillerström et al., 2017) are based on row polymorphism (Gaster and Jones, 1996)
and Extensible Effects (Kiselyov et al., 2013; Kiselyov and Ishii, 2015) are based on open unions
(Swierstra, 2008).

Viewing the tree of computation as a recursive data type, we can define the effect expression
problem as modularly and type safe being able

a. to implement new handlers for an effect operation – this corresponds to adding a new
function definition over the recursive data type in the original expression problem;

b. to add new effect operations – this corresponds to adding a new variant to the recursive
data type in the original expression problem.

The analogy to the expression problem (Wadler, 1998), however, is not perfect: Most descriptions
of the expression problem only consider a single algebra, whereas with effect handlers we typically
have more than one effect signature and the order of handling / folding over the operations
affects the semantics.

4.5.3 Dimensions of Extensibility
We can relate extensibility dimensions discussed in the literature on the expression problem to
the effect handler setting and show how E�ekt supports them. Importantly, by embedding effect
handlers into a general purpose programming language like Scala, the modularity features of
the host language become available to structure effectful programs and handlers.

Adding new Handlers for an E�ect

The first dimension of the effect expression problem. A central feature of every implementation
of effects and handlers is the ability to define a new handler for an existing effect. E�ekt supports
this feature: users can define a new trait or class that implements an existing effect signature.

Adding new Operations to an E�ect

The second dimension of the effect expression problem. We can distinguish between adding
an operation to an existing effect signature, and adding a new effect signature. E�ekt supports
modular extension of effect signatures as illustrated by the example trait Choose of Section 4.4.
Many other languages, like Koka, cannot extend or compose effect signatures. In those languages,
it is therefore also not necessary to extend or compose handler implementations. In contrast,
E�ekt allows the programmer to extend handler implementations modularly.

trait CollectChoose[R] extends Collect[R] with Choose {

def choose[A](first: A, second: A): Control[A] = for {

b ← flip()

} yield if (b) first else second

}

In this example, the handler for the extended effect signature Choose extends the existing Collect

handler and only implements the missing effect operation choose. The example also illustrates
that we can reuse the implementation of flip to implement choose.

89

4. E�ekt – A Library Design

trait Poll extends Async {

val state: State; val fiber: Fiber

type Promise[T] = state.Field[Option[T]]

def async[T](prog: Control[T]) = for {

p ← pure(state.Field[Option[T]](None))
_ ← fiber.forked { prog flatMap { r ⇒ p.put(Some(r)) }

} yield p

def await[T](p: Promise[T]) = p.get() flatMap {

case Some(r) ⇒ pure(r)

case None ⇒ fiber.suspend() andThen await(p)

}

}

Figure 4.9. Handler for the Async effect – using two effects State and Fiber.

4.5.4 Mixing Handlers – Horizontal Composition of Handlers
The description of the expression problem has seen many extensions and additional requirements.
One additional requirement, described by Odersky and Zenger (2005a), is that the programmer
should be able to combine independently developed extensions. For effect handlers this translates
to compose two existing effect handlers. This feature might seem unnecessary in the context of
effect handlers, where handler composition can already be expressed by nesting handlers (that is,
by function composition). However, by using trait mixin composition to combine two handlers,
the handler implementations can share implementation details like private methods, private
state, and dependencies on other internally used effects. As an example, we define another
handler for ambiguity that performs backtracking to compute only the first successful result:

trait Backtrack[R] extends Amb with Handler[R, Option[R]] {

def flip() = use { resume ⇒ for {

attempt ← resume(true)

res ← if (attempt.isDefined) pure(attempt) else resume(false)

} yield res }

}

We can implement the Nondet effect simply by mixing the handlers Backtrack and Maybe:

class FirstResult[R] extends Nondet with Maybe[R] with Backtrack[R]

The use of mixin composition is legal, since the two handlers assume the same effect domain.
In general, handler implementations should be defined as traits in order to enable this form of
composition. In languages like Java, using interfaces, a similar style of composition is possible
but comes with a list of restrictions. In Dotty however, most of those restrictions have been
lifted and traits can contain method implementations, fields, and receive constructor arguments.
Using the composed handler FirstResult, we can handle Exc and Amb simultaneously:

val res3: Option[String] = run { new FirstResult handle { n ⇒ drunkFlip(n, n) } }

I Some("Heads")

90

4.5. Composing E�ect Handlers

The example illustrates how handlers can be composed horizontally with mixin composition
under the condition that they interpret the effects into the same effect domain. Operationally,
they share the same prompt marker. By subtyping, the combined handler can be used to handle
both effects. In res3, the capability is passed down twice, once to handle the Amb effect and
once to handle the Exc effect. Every handler trait only implements one aspect of the overall
handler component, which is then created by mixin composition. Based on traits and mixin
composition, many OOP modularization strategies can now be applied to implement handlers:

– Programmers can use method overriding, super calls, and dynamic dispatch to model
effectful extension points as methods that can be overridden in subclassing handler traits.

– Programmers can use abstract methods to describe the required interfaces of a handler
trait and concrete method implementations to describe the provided interface. Mixin
composition then matches the abstract and concrete method implementations based on the
method signatures. This also allows expressing mutually recursive dependencies between
handler components (Odersky and Zenger, 2005b).

– Programmers can use visibility modifiers to control how effect operations can be accessed.
This way, helper effect operations can be restricted to be only locally accessible from the
current handler implementation.

4.5.5 Composition over Inheritance – Vertical Composition of Handlers
Effect handlers allow us to locally handle a subset of effects, used by a program. To do so,
handlers can again use effects in their implementation, which are then handled by other handlers.
That is, we can compose handlers vertically .

Different to most other formulations of effect handlers, handlers in E�ekt do not have to
capture and use the continuation and consequently do not have to inherit from the Handler

trait. It is up to the handler implementation to decide. Figure 4.9 presents an example of such
a handler that does not explicitly capture the continuation. Instead, it uses the effects State

and Fiber and therefore requires the capabilities state and fiber as abstract value members.
We define Promise to be type state.Field. That is, we store the result of the asynchronous
computation in a field provided by the state capability. The handler function poll takes the
two required capabilities to construct an instance of the handler trait Poll:

def poll[R](s: State, f: Fiber)(prog: Async ⇒ Control[R]): Control[R]

= prog(new Poll { val state = s; val fiber = f })

Compared to the expression problem literature, this forwarding to other handlers is reminiscent
of family self references (Oliveira et al., 2013) or base algebras (Hofer et al., 2008).

4.5.6 Vertical Composition and Continuation Capture
The Poll handler (Figure 4.9) uses two effects State and Fiber in its implementation, but does
not capture the continuation. All other effect handlers we have seen so far did inherit from
Handler to capture the continuation but did not use any other effects. However, there is another
way to use effects that we have not seen so far: First capture the continuation and then use
another effect. Figure 4.10 and uses this technique and adapts the handler implementation
by Dolan et al. (2015) to implement the Fiber effect as a round robin scheduler. In addition

91

4. E�ekt – A Library Design

trait Scheduler[R] extends Fiber with Handler[R, Unit] {

val state: State

def unit(r: R) = pure(())

type Queue = List[Control[Unit]]

lazy val queue = state.Field[Queue](Nil)

def exit() = use { resume ⇒ pure(()) }

def fork() = use { resume ⇒
queue.update { resume(true) :: resume(false) :: _ } andThen run

}

def suspend() = use { resume ⇒
queue.update { _ appended resume(()) } andThen run

}

private def run: Control[Unit] = queue.get() flatMap {

case Nil ⇒ pure(())

case p :: rest ⇒ queue.put(rest) andThen p andThen run

}

}

Figure 4.10. Handler for the Fiber effect – using the State effect after capturing the continuation.

to inheriting from Handler, it also requires the state capability. The difference now is in the
combined usage of continuation capture (via use) and the state capability. The implementation
of the effect operation exit is not interesting, as it simply discards the continuation. However,
the two remaining operations fork and suspend both capture the continuation to then use the
state within the body passed to use. As seen in Section 4.3, the interaction between state and
continuation capture can be subtle. For the Scheduler handler, the state should be persisted
across different fibers, forked by resuming once with true and once with false. That is, the
state effect is required to be the outer handler. This also becomes visible in the handler function,
which requires the state capability:

def scheduler(st: State)(prog: Fiber ⇒ Control[Unit]) =

new Scheduler { val state = st } handle { fiber ⇒ prog(fiber) }

Capturing the continuation to then use some other effect can easily lead to runtime error. This
is, for example, the case if the captured continuation contains the delimiter of the other effect.
Using the other effect, after capturing the delimiter in the continuation results in a runtime
error. In Section 6.1, we will see how statically reject those programs by embedding an effect
system. We then revisit the scheduler example, using the effect-safe variant of ScalaE�ekt (cf.
Figure 6.6b).

92

4.6. Composing E�ectful Programs

Example: Running Asynchronous Programs

Having defined handlers for the Fiber and Async effects, we can finally run the program
asyncExample, which results in the output on the right:

region { s ⇒
scheduler(s) { f ⇒

poll(s, f) { a ⇒
asyncExample(f, a)

}

}

}

Async 1

Main

Async 2

Main with result 42

4.6 Composing E�ectful Programs
By passing capabilities explicitly, in the presence of multiple instances of the same effect, we are
able to explicitly select which instance of an effect to use. For example, we can use multiple
instances of Fiber in one program to model different thread pools. At the same time, passing
capabilities explicitly can be a burden since it introduces manual boilerplate. We illustrate this
by reimplementing an example from Section 3.3: an effectful program that uses effects to express
a parser (Leijen, 2016):

// AB ::= a AB | b

def parseAsB(amb: Amb, exc: Exc, in: Input): Control[Int] = alternative(

accept(’a’)(in, exc) andThen parseAsB(amb, exc, in) map { _ + 1 },

accept(’b’)(in, exc) map { x ⇒ 0 })(amb)

def accept(exp: Char)(in: Input, exc: Exc) = in.read() flatMap { t ⇒
if (t == exp) pure(()) else exc.raise("Expected " + exp) }

def alternative[A](fst: Control[A], snd: Control[A])(amb: Amb) =

amb.flip() flatMap { b ⇒ if (b) fst else snd }

In the example, we use an Input effect that allows reading from an input stream.

trait Input extends Eff { def read(): Control[Char] }

Effect handlers allow us to choose between many different semantics without having to change
concrete parsers, like parseAsB. To implement breadth-first (Swierstra, 2009) parsing, we can
view alternatives in a grammar as cooperative (parsing) processes (using the Fiber effect) and
use effect handlers like Scheduler to schedule these processes (Dolan et al., 2017). Similarly, an
alternative handler implementation of Input could capture the continuation at the call to the
effect operation read(). This way, to implement online (or streaming) parsers (Swierstra, 2009),
we can then store the continuation until further input is available. The continuation of read()
can also be seen as the derivative of the parser (Kiselyov, 2007). Offering this derivative as
part of a parser combinator library to the grammar author, it is possible to express parsers for
two-dimensional layout in a modular way (Brachthäuser et al., 2016).

93

4. E�ekt – A Library Design

Composing effectful programs that use different effects, the programmer needs to manually
pass the capabilities to the respective function calls. In particular, a program (like parseAsB)
that uses other effectful programs (like accept and alternative) needs to take the union of all
capabilities, required by its dependencies. To call them, the programmer needs to select the
correct subset of capabilities and provide them along other arguments.

4.6.1 Implicits for Capability-Passing Style
While the overall design of E�ekt is largely independent of Scala, there are certain features that
ease the use of the library. One such feature is implicit parameters (Odersky, 2019a). Implicit
parameters (called “given-clauses” or “contextual parameters” in Scala 3 (Odersky, 2019c)) can
help to automatically pass function arguments based on their type (Odersky et al., 2017). This
makes implicits a perfect fit for the E�ekt library.

Implicit Parameters for E�ectful Functions
To implicitly lookup capabilities, for every effect signature we define functions like:

def Amb given (a: Amb) = a

Calling the nullary function Amb implicitly searches for a value of the equally named type in the
current scope and returns it. Using these helpers, we can now rewrite the above example to:

def parseAsB given Amb given Exc given Input: Control[Int] = alternative(

accept(’a’) andThen parseAsB map { _ + 1 },

accept(’b’) map { x ⇒ 0 })

def accept(exp: Char) given Input given Exc = Input.read() flatMap { t ⇒
if (t == exp) pure(()) else Exc.raise("Expected " + exp) }

def alternative[A](fst: Control[A], snd: Control[A]) given Amb =

Amb.flip() flatMap { b ⇒ if (b) fst else snd }

The signature of accept informs us that it relies on an instance of Input and an instance of Exc
being available in scope at the call site14. At the same time, it brings these two instances in
scope for the method body, so Input.read and Exc.raise will resolve to method calls on the
corresponding implicit argument. Note that Input is the nullary method call to a boilerplate
function as defined above. For the purpose of this chapter, it is enough to understand that
implicit search is performed at compile time, is lexically scoped, and type directed. Implicit
resolution results in a program very similar to the explicit capability passing variant above. We
can also choose to bind implicit parameters to explicit names.

def parseAsB given (a: Amb) given (e: Exc) given (i: Input): Control[Int]

Binding capabilities to names also enables us to fall back to passing them explicitly (e.g.,
accept(’a’) given a given e). This is important to resolve conflicts in case of ambiguous
implicits, which result in a compile time error.
14Since Scala 3, naming implicitly bound variables is optional (Odersky, 2019c). The signature thus roughly

corresponds to def accept(exp: Char)(implicit $1: Input, $2: Exc) in Scala 2.

94

4.6. Composing E�ectful Programs

4.6.2 Binding Implicit Parameters
Similarly, we can modify the signature of the handle method to accept an implicit function type,
or “contextual function” given A ⇒ B (Odersky et al., 2017). That is, a lambda that takes an
implicit parameter of type A to return a B:

def handle(prog: given this.type ⇒ Control[R]): Control[E]

Handlers thus introduce bindings for implicit parameters. Since the parameter to the lambda is
implicit, the compiler will perform automatic eta-expansion, based on the expected function
type. This allows us to rewrite the handler applications to hide capability passing altogether.
Assuming adapted versions of our previous examples, we can see how implicits

run { new Collect handle { new Maybe handle { drunkFlip } } }

further simplify the process of rearranging the handlers:

run { new Maybe handle { new Collect handle { drunkFlip } } }

Implicit parameters are thus a perfect fit for capability passing, removing most its syntactic
overhead.

4.6.3 Reducing the Overhead by Composition
Another strategy to reduce the burden of passing capabilities is by composition. We can define
a trait that contains the necessary capabilities as members:

class Parser(val amb: Amb, val exc: Exc, val input: Input)

Now all three methods can be refactored to only take one (potentially implicit) argument of
type Parser, manually projecting the fields where necessary.
Not only functions can obtain their arguments implicitly by type – the same also holds for

classes and their constructor arguments. We can rewrite the composed parser as follows:

class Parser given (val amb: Amb, val exc: Exc, val input: Input)

Like with implicit parameters, when creating an instance of Parser, the constructor arguments
can be omitted and will be filled in by the Scala compiler. Using the same technique, handlers
can mark the effects they are dependent on as implicit.

95

4. E�ekt – A Library Design

4.7 Related Work and Chapter Conclusion
In this section, we discuss closely related work. In particular, we compare our approach of
explicit capability passing to other implementations of effect handlers, put our implementation
of Control in perspective with freer monads (Kiselyov and Ishii, 2015), and relate our effect
handlers design for object-oriented languages to others.

4.7.1 Capability-Passing Style
We start by discussing some properties of explicit capability-passing style.

Shallow embedding of e�ect operations Many implementations of libraries and languages for
effect handlers are based on a deep embedding (Boulton et al., 1992) of effect operations. In
contrast, by performing capability passing, E�ekt builds on a shallow embedding (Hudak, 1998;
Carette et al., 2007) of effect operations. Interpretation of effect operations is moved from
(external) pattern matching to (internal) dynamic dispatch, which makes the shallow embedding
of effect operations a good fit for object-oriented programming languages. Similarly, Kammar
et al. (2013) base their library implementation of algebraic effect handlers on Haskell type classes,
effectively performing a shallow embedding. Using type classes and the associated dictionary
passing helps Kammar et al. (2013) to achieve good performance results since it prevents the
materialization of constructors for effect operations. It also avoids any search for the matching
handler implementation in some kind of handler stack, as it is done in Koka (Leijen, 2017c, 2017b).

Simpli�ed typing Another advantage of capability passing is that it simplifies typing. Combining
object-oriented programming with effect handlers, we define use as a method on Handler. As a
method, it naturally shares the type of the effect domain with its implementing class. We thus
use dynamic dispatch instead of implementing a pattern-matching interpreter. This helps us to
avoid advanced typing features, such as type constructor polymorphism (Kiselyov et al., 2013) or
generalized algebraic data types typically associated with interpreter based solutions (Kiselyov
and Ishii, 2015). In a previous presentation of E�ekt (Brachthäuser and Schuster, 2017), we
represented capabilities as a pair of a prompt marker and the handler implementation. To
hide answer types existentially in the user program, this required us to use type members and
path-dependent types. In contrast, E�ekt as presented in this chapter is designed to remove
requirements on the type system and to blend in with OOP paradigms. We immediately
represent capabilities as instances of type Exc and hide implementation details like answer types
by means of simple subtyping.

Manually selecting e�ects By performing capability passing, we require the user to explicitly
select the handler to use. In other libraries and languages for effect handlers, an effect operation
always resolves to the dynamically closest handler implementation. Explicitly calling methods
on handlers has the advantage that no confusion arises when multiple handlers for the same
effect are present. Other languages added features post hoc in order to allow programmers to
select effects more explicitly. Leijen (2018b) added inject to the Koka language, and Convent
et al. (2020) added mask and adaptors to Frank. Both inject and mask are conceptually similar
to the lift operation proposed by Biernacki et al. (2017), which allows to select effect handlers
in terms of the distance to the effect operation. For example, in Koka, flip() will be handled

96

4.7. Related Work and Chapter Conclusion

by the closest handler for ambiguity, whereas inject<amb>(fun{flip()}) will be handled by
the second closest handler, and so forth. This is reminiscent of programming with De Bruijn
indices (de Bruijn, 1972), where variables also refer to their binders by distance. In contrast,
with explicit capability passing different effects can be referred to by name.

E�ect polymorphism Since capabilities are first-class, functions (and objects) can close over
them. This allows users to express some form of effect polymorphism (Osvald et al., 2016). Take
the following effectful map function, adapted from Rytz et al. (2012), as an example:

def mapM[A, B](lst: List[A], f: A ⇒ Control[B]): Control[List[B]]

The signature of mapM only informs us that f has control effects, but is silent on the concrete
effects. Still, we can invoke map passing a lambda that uses an effect like Amb.

new Collect handle { amb ⇒ map(List(1,2,3), a ⇒ amb.flip()) }

The function passed as argument f simply closes over the capability. The use of the Amb effect
does not become visible in its type, which is Int ⇒ Control[Boolean]. The function mapM is
thus effect polymorphic.

E�ect safety Passing capabilities as evidence is not new. Osvald et al. (2016) also perform
capability passing in Scala. They present capability passing as an alternative approach to
traditional type and effect systems. A capability serves as a constructive proof, that the holder
is entitled to use the actions associated with the capability. To statically prevent the leaking of
capabilities, Osvald et al. introduce a new type system feature: arguments to functions can be
marked as second class (or “local”). Similar to region based memory management (Kiselyov and
Shan, 2008), the type checker then guarantees that the capability cannot leave the dynamic
scope of the function call. They show how second-class values can be used to model checked
exceptions, as in the following example, adopted from Osvald et al. (2016):

def Try[T](fn: (@local (Exception ⇒ Nothing)) ⇒ T): Option[T]

Try { throw ⇒ throw(new Exception) } // Safe usage of ‘throw‘

The function throw is introduced by the exception handler and marked as @local. This guarantees
that throw cannot escape the dynamic scope of the function fn. Much like effect handlers, try
thus introduces a capability. Liu (2016) presents a different approach to capability based effect
safety, by distinguishing between functions that can capture capabilities and others that cannot
(called “stoic”). In our design of E�ekt, we adopt the capability passing of Osvald et al. (2016)
and use it together with a monad for delimited control to generalize exception handlers to effect
handlers. While second-class values might be an interesting way to achieve effect safety, in
Chapter 6 we explore a different approach based on path-dependent types and intersection types.

Performance To implement important performance optimizations, Leijen (2017b) explicitly
tags each effect operation in a handler with information about how the continuation is used.
Similarly explicit, in E�ekt, handlers capture the continuation with use. Tail resumptive han-
dlers (Leijen, 2017b), i.e. handlers that only call the continuation in tail position, do not need
to capture the continuation and do not call use. Not having to capture the continuation is
only possible due to our combination of capability-passing style and multi-prompt delimited

97

4. E�ekt – A Library Design

reset { p1 ⇒
reset { p2 ⇒

action().flatMap(f5).flatMap(f4)

}.flatMap(f3).flatMap(f2).flatMap(f1)

}

(a) A monadic Scala program with multiple
prompts

[(p2, [f6, f5, f4]), (p1, [f3, f2, f1])]

(b) Representation of the stack as a
prompt-separated cons-list of frames.

action()

frame f5

frame f4

prompt p2

Segment 2

frame f3

frame f2

frame f1

prompt p1

Segment 1

(c) Visualization of the stack at the point of
evaluating action().

Figure 4.11. Representing stacks as prompt-separated list of frames.

continuations. As already mentioned in Section 2.3 and what is the essence of ambient functions
(Chapter 3), capturing the continuation also leads to a “shift in perspective”. That is, effects are
dynamically resolved at the handler site – as opposed to at the call site of the effect operation.
In E�ekt, we can avoid capturing the continuation altogether since we replace dynamic lookup of
effect handlers by explicit capability passing. Effect operations explicitly refer to capabilities at
handler site by closing over them.
Building on the insights of this thesis, in related work (Schuster and Brachthäuser, 2018; Schuster
et al., 2020), we started to explore strategies to pass capabilities at compile time. This way,
programs are always fully specialized to the handlers under which they are executed.

Deep handlers and shallow embeddings Due to our design decision of a shallow embedding of
effect operations, handlers in E�ekt are deep handlers (Kammar et al., 2013). That is, all effect
operations in the continuation captured by use will automatically be handled recursively by
the very same handler. However, if a shallow handler semantics is required, it can be achieved
by reifying the command-response trees of selected effect operations. A reifying effect handler
interprets a program of type R into a free-structure Free<R> (Kiselyov et al., 2013), which then
can be interpreted step-by-step. While this encoding is possible, it can lead to performance
problems and memory leaks. Hillerström and Lindley (2018) present an encoding of shallow
handlers in terms of deep handlers that does not suffer from these problems.

4.7.2 Implementing Monadic Delimited Control
Kiselyov and Sivaramakrishnan (2016) embed effect handlers into OCaml. They also build on
an implementation of multi-prompt delimited control (Kiselyov, 2012), which makes use of the
fact that OCaml includes bytecode instructions that support manipulation of the runtime stack.
Just like Kiselyov (2012), our implementation of delimited control presented in this chapter is

98

4.7. Related Work and Chapter Conclusion

based on the work by Dybvig et al. (2007). Since the JVM does not allow for stack manipulation,
however, we build on their monad CC for multi-prompt delimited control (Dybvig et al., 2007).
In particular, we choose to represent “continuations as sequences of frames” (Dybvig et al., 2007,
Section 7.3) – but make the following adjustments:

– Dybvig et al. choose the semantics −shift− for their control operator withSubCont. We
instead choose −shift+ as it is closer to deep effect handlers (Kammar et al., 2013) and
allows for a more uniform representation of stack segments, which are always delimited by
a prompt.

– Dybvig et al. (Section 7.3) represent continuations as a type-aligned sequence of frames.
As the authors remark, capturing the delimited continuation and searching for the prompt
is thus linear in the number of individual frames. We slightly refine the representation and
additionally group frames, which are not separated by prompts in a nested list (Figure 4.11).
Our continuation is thus a prompt separated list of frames. This representation and the
choice of −shift+ allows us to guarantee that prompt search, continuation capture, and
resumption is always at most linear in the number of prompts.

– Dybvig et al. index the CC monad by the final answer type and then use rank-2 types to
prevent mixing prompts between different “runs”. We choose to reduce the required type
system features at the cost of additional unsafety. However, much like our capabilities,
which can escape, Dybvig et al. (2007) also do not guarantee that every continuation
capture for a particular prompt will succeed. The continuation might not be delimited,
which results in a runtime error that the prompt cannot be found. Considering this,
mixing prompts between different runs seems like a minor additional unsafety compared
to this existing source of runtime errors. In Chapter 6, we develop an effect-safe variant of
multi-prompt delimited control that rules out both sources of unsafety.

– Dybvig et al. eventually perform all computation in a monad P, which is essentially a state
monad used to generate fresh prompts. Since the setting of our embedding is the JVM,
which does not support tail call elimination, but mutable state, we use object identity as
the source for prompts and instead instantiate P as a trampoline (Ganz et al., 1999).

4.7.3 E�ect Handlers and Object-Oriented Programming
As highlighted in Section 4.4, effect safe programming with effect handlers in a language with
objects comes with new opportunities for modularization. As we will see in Chapter 6, it also
comes with new challenges – mediating encapsulation and flexible use of objects. Not much
prior work exists that combines effect handlers and object-oriented programming.
Eff (Torreborre, 2016) is a translation of the work by Kiselyov and Ishii (2015) to Scala. It

almost exclusively targets the functional aspects of Scala and thus integrates well with other
popular libraries for functional programming in Scala.
A notable exception is JEff (Inostroza and van der Storm, 2018), which appeared after our

first presentation of E�ekt and simultaneously with our publication on JavaE�ekt (Brachthäuser
et al., 2018). Inostroza and van der Storm (2018) also combine effect handlers and object-
orientated programming in their language JEff. Similar to E�ekt, JEff maps effect signatures to
interfaces and handlers to classes implementing the interfaces. The following example, adapted
from Inostroza and van der Storm (2018), gives the effect signature for an exception effect and
the corresponding handler.

99

4. E�ekt – A Library Design

interface Exc { eff Nothing raise(String s) }

class Maybe<T>() implements Exc, Handler<Option<T>, T> {

Option<T> return(T t) = new Some(t)

eff Nothing raise(String s) = new None()

}

We take the striking similarities to E�ekt as empirical support for our design. Despite the
similarities in the combination of object-oriented programming and effect handlers, there are also
a few notable differences. JEff, as a calculus, performs dynamic lookup and continuation capture
similar to λdch . In contrast, as a library embedding in Scala, in E�ekt we perform capability
passing instead of dynamic binding and build on a monadic implementation of delimited control.
In JEff, the continuation takes an updated copy of the effect handler as additional argument.
This allows both to model stateful handlers and even to change the handler implementation for
the rest of the computation, similar to shallow handlers. In E�ekt, we added special support for
ambient state as a separate effect and handlers are deep. The design of E�ekt, presented in this
chapter is not effect-safe. In contrast, Inostroza and van der Storm (2018) describe an effect
system for their calculus. Their effect system does not feature effect polymorphism, which rules
out many important examples. In Chapter 6, we present an effect-safe variant of ScalaE�ekt that
also supports effect polymorphism.

4.7.4 Conclusion
In this chapter, we presented the design of E�ekt, a library integrating effect handlers with
object-oriented programming. We followed the mantra that programming with effect handlers in
E�ekt is object-oriented programming and mapped effect signatures to interfaces and handlers
to classes. We highlighted several dimensions of extensibility, which are supported by E�ekt and
showed modularization opportunities gained by combining effect handlers with object-oriented
programming. We explored capability passing as an alternative to the traditional dynamic
binding of effect handlers (cf. Chapter 3). While capability passing imposes some syntactic
overhead on the user, it offers new interesting perspectives on performance optimizations (such
as tail resumptions) and effect polymorphism. Most of the syntactic overhead associated with
capability passing can be reduced by using Scala’s implicits.

Despites the benefits, our implementation of E�ekt in Scala suffers from two drawbacks: user
programs have to be written in monadic style and capabilities can leave the dynamic scope of the
handler. We separately address the two issues in the following two chapters. Chapter 5 presents
JavaE�ekt, a direct-style implementation of effect handlers for Java. Chapter 6 reiterates the
design of ScalaE�ekt to add an effect system that statically prevents the usage leaked capabilities.

100

Chapter 5

Java E�ekt – E�ectful Programming in Di-
rect Style

In this chapter, we further evaluate our library design of E�ekt by implementing it in another
object-oriented language: Java.

The implementation of ScalaE�ekt is based on a monad for delimited control. While Scala
offers for-comprehensions to facilitate writing monadic code, there is no such support in Java.
Writing monadic code in Java is non-idiomatic and verbose. In this chapter, we overcome
this limitation and allow user programs to be written in direct style. To achieve this, we
present a framework that consists of three core components: A type selective continuation-
passing-style (CPS) transformation on the level of Java Virtual Machine (JVM) bytecode,
an implementation of delimited continuations on top of the bytecode transformation, and
finally a library for effect handlers in terms of delimited continuations.

We evaluate and compare the performance of our bytecode-transformation-based imple-
mentation against other bytecode transformations that allow continuation capture. The
measurements indicate that the performance of our library is competitive with other existing
transformations.

The programming language Java lacks a general mechanism to express advanced control flow. In
consequence, many control-flow abstractions like generators16, asynchronous programming with
async/await 17, the coroutine programming model18, and fibers 19, that is lightweight user-level
threads, are currently implemented by custom source-to-source or bytecode transformations.
Since each extension makes different assumptions about the generated code, combining the
different concepts in a single project ranges from non-trivial to impossible. As has been shown
in the literature, effect handlers can express many of these control-flow abstractions as simple
libraries (Dolan et al., 2015, 2017; Leijen, 2017a). Having support for effect handlers thus would
naturally allow a combined usage of those features. We will revisit some examples of those
control-flow abstractions in the context of Java in Section 5.3.
In this chapter, we present an implementation of the E�ekt design in Java, which we call

JavaE�ekt. As in the previous chapter, we follow our mantra that programming with effect handlers
in JavaE�ekt is object-oriented programming. Hence, effect signatures are Java interfaces, effect

This chapter is closely based on the following publication: Jonathan Immanuel Brachthäuser, Philipp Schuster,
and Klaus Ostermann. 2018. “Effect Handlers for the Masses”. Proc. ACM Program. Lang., 2 (OOPSLA):
111:1–111:27. DOI: https://doi.org/10.1145/3276481

16https://github.com/peichhorn/lombok-pg/wiki/Yield
17https://github.com/electronicarts/ea-async
18https://github.com/offbynull/coroutines
19https://github.com/puniverse/quasar

101

https://doi.org/10.1145/3276481
https://github.com/peichhorn/lombok-pg/wiki/Yield
https://github.com/electronicarts/ea-async
https://github.com/offbynull/coroutines
https://github.com/puniverse/quasar

5. Java E�ekt – E�ectful Programming in Direct Style

Source
.class

Target
.class

Stack
Interface

Delimited
Control

Handler
Interface

E�ect
Handlers

E�ectful
Program

Bytecode Instrumentation User Code

CPS Translation
(Sections 5.2.1 and 5.4)

E�ect Handlers as a Library
(Section 5.2)

Using E�ect Handlers
(Section 5.1 and 5.3)

translates to uses implements uses usesuses

Figure 5.1. Structure of the JavaE�ekt framework. Directed, solid arrows express dependencies.

handlers are Java classes that implement those interfaces, capabilities are instances of handlers,
and effectful functions are Java functions that use capabilities.

In contrast to the previous chapter, user programs in this chapter can be written in direct-style.
Importantly, this way programmers can use effects and handlers together with existing control-
flow mechanisms like branching (i.e., if and switch), loops (i.e., while), and exceptions. Also,
in contrast to our implementation in Scala, in JavaE�ekt, local variables (but not heap-allocated
fields) show the correct backtracking behavior. To enable this, our implementation consists
of three components: A type-selective CPS transformation of bytecode, an implementation of
delimited continuations on top of the bytecode transformation, and a library for effect handlers
in terms of delimited continuations. While all three components are designed in concert to
implement the effect handler library, they can be used and understood individually. The bytecode
transformation is performed independent of Java as the source language and could potentially
be reused with other JVM languages such as Scala, Kotlin, JRuby, Clojure, and others.
In short, the contributions of this chapter are:

– The first library design for programming with effect handlers in Java.
– An implementation of multi-prompt delimited continuations in Java. It uses trampolining

and avoids the typical linear overhead of restoring the stack upon resumption common to
all continuation libraries in Java that we are aware of.

– A type-selective, signature preserving CPS transformation of JVM bytecode. We use
closures introduced in Java 1.8 (Gosling et al., 2015) to create specialized instances of
continuation frames. The general idea is applicable to any VM-based language that
supports closure creation.

– A performance evaluation, comparing JavaE�ekt with other libraries that perform bytecode
instrumentation to allow continuation capture. The measurements confirm the asymptotic
improvement that we obtain by trampolining. We also compare the performance of
JavaE�ekt with our implementation ScalaE�ekt and another monadic library in Scala.

Overview
The chapter structure follows the structure of our framework which is presented in Figure 5.1.

User code We show how to program with effect handlers in Java using our library. Section 5.1
briefly presents the library design of JavaE�ekt by means of our standard running example;
Section 5.3 illustrates the expressiveness of JavaE�ekt with several more complex examples.

102

5.1. Programming with E�ect Handlers in JavaE�ekt

String drunkFlip(Amb amb, Exc exc) throws Effects {

boolean caught = amb.flip();

if (!caught) {

return exc.raise("We dropped the coin.");

} else {

return amb.flip() ? "Heads" : "Tails";

}

}

(a) Our running example, translated to JavaE�ekt.

interface Exc {

<A> A raise(String msg) throws Effects;

}

interface Amb {

boolean flip() throws Effects;

}

(b) Effect signatures for Exc and Amb.

Figure 5.2. Example of using two effects in an effectful program.

Bytecode instrumentation Section 5.2.1 illustrates the CPS translation by applying it to the
running example and Section 5.4 describes the implementation of the translation in more detail.

Delimited control Section 5.2.2 describes the implementation of multi-prompt delimited con-
tinuations (Dybvig et al., 2007) in Java. It interfaces with the instrumented bytecode by
implementing the Stack interface that the instrumented bytecode uses. This means that the
bytecode instrumentation component can potentially be used as a backend for applications other
than our implementation of delimited continuations. At the same time, our instrumentation
could be exchanged by another backend that implements the Stack interface.

E�ect handlers as a library Section 5.2.3 shows the implementation of our effect handler library
in terms of multi-prompt delimited continuations (analogous to Section 4.4). The effect handler
library is independent of our concrete implementation of DelimitedControl. It could for instance
be used together with a modified JVM runtime that directly supports delimited continuations.

After presenting our framework, Section 5.5 discusses our approach in the context of related
work. We evaluate the performance overhead induced by our translation and compare the
performance of JavaE�ekt to other continuation libraries in Java (Section 5.6.1), as well as to our
implementation of ScalaE�ekt and an existing functional effect library in Scala (Section 5.6.2).

5.1 Programming with E�ect Handlers in JavaE�ekt
The design of JavaE�ekt follows the design principles of E�ekt. In this Section, we briefly review
our running example to highlight similarities and point out differences.

Figure 5.2a uses JavaE�ekt to express our running example. As before, the two effect operations
flip and raise are declared in corresponding effect signatures Amb (for ambiguity) and Exc

(for exceptions) in Figure 5.2b. The biggest difference compared to the implementation in
Scala (Chapter 4) is that the program now is written in direct style. This is also visible in
the type signature of drunkFlip: Previously, we used the monadic type constructor Control

to signal that the program might use control effects and used for-comprehensions to sequence
effectful programs. In contrast, effectful programs now are declared as such by adding the

103

5. Java E�ekt – E�ectful Programming in Direct Style

checked exception Effects to their throws clause. Like other bytecode instrumentation such as
“Quasar” (Parallel Universe Software Co., 2013), we use checked exceptions as a course grained
effect system (Section 5.5 provides a comparison of JavaE�ekt with Quasar). This allows us
to distinguish pure programs (that do not use control-effects) from effectful programs. This
information is important to guide our bytecode instrumentation. For our CPS translation to be
sound, the Effects exception should never be handled in user code.

5.1.1 Handling E�ects
Analogous to the previous chapter, we first review how effects are handled before we give the
full implementation of the involved handlers.

class Maybe<R> extends Handler<R, Optional<R>> implements Exc { ... }

class Collect<R> extends Handler<R, List<R>> implements Amb { ... }

As before, the handlers extend our library interface Handler<R, E> to express that they represent
effect handlers20. In JavaE�ekt, using the handlers to handle effects Amb and Exc looks like:

List<Optional<String>> res1 =

Handler.handle(new Collect<Optional<String>>(), amb →
Handler.handle(new Maybe<String>(), exc → drunkFlip(amb, exc)));

Due to the lack of singleton types in Java, the method handle(h, body) is now a static method
on Handler. Compared to the Scala implementation of E�ekt, this is the only superficial difference.
Running drunkFlip with both effects handled yields for res1:

I [Optional["Heads"], Optional["Tails"], Optional.empty]

5.1.2 Implementing E�ect Handlers
We will now revisit how handlers are implemented. Figure 5.3b shows the Handler interface, which
is relevant for implementing effect handlers. It also shows the type of effectful functions Eff<S, T>,
which is just like the Java function interface Function<S, T>, but with its single abstract method
being marked as throwing Effects. The interface Eff<S, T> is thus the Java equivalent of a
function S ⇒ Control[T] in Scala. Similarly, interface CPS<A, E> corresponds to the nested
effectful function type Eff<Eff<A, E>, E> (that is, (A ⇒ Control[E]) ⇒ Control[E]).
Like in our Scala implementation, both handlers Maybe and Collect implement their ef-

fect operations in terms of use (Figure 5.3a). To implement the raise effect, the handler
Maybe captures the continuation and deliberately discards it. The handler for ambiguity,
in turn, captures the continuation and invokes it twice, each time yielding a list of possi-
ble results. Specialized to the Collect handler, the type of the captured continuation is
Eff<Boolean, List<R>>. Hence, it is safe to finally concatenate the two resulting lists21. Sim-
ilarly, in raise it is safe to discard the continuation and immediately return Optional.empty

because the caller of handle(new Maybe<String,Optional<String>>(), ...) expects a value of
type Optional<String>.

20Optional<A> is an interface for optional values of type A, introduced in Java 1.8.
21For this example, we assume lists to be immutable and only be constructed by singleton and concat.

104

5.1. Programming with E�ect Handlers in JavaE�ekt

class Maybe<R> extends Handler<R, Optional<R>> implements Exc {

Optional<R> unit(R r) { return Optional.of(r); }

<A> A raise(String msg) throws Effects {

return use(k → Optional.empty());

}

}

class Collect<R> extends Handler<R, List<R>> implements Amb {

List<R> unit(R r) { return Lists.singleton(r); }

boolean flip() throws Effects {

return use(k → Lists.concat(k.resume(true), k.resume(false)));

}

}

(a) The two effect handlers Maybe and Collect utilizing use to capture the continuation.

abstract class Handler<R, E> {

E unit(R r) throws Effects;

<A> A use(CPS<A, E> body) throws Effects { ... }

static <R, E, H extends Handler<R, E>> E handle(H h, Eff<H, R> p) throws Effects {

...

}

}

interface Eff<S, T> { T resume(S value) throws Effects; }

interface CPS<A, E> { E apply(Eff<A, E> k) throws Effects; }

(b) Interface of the library class Handler and the necessary functional interfaces.

Figure 5.3. Implementation of effect handlers for Exc and Amb using the library class Handler.

105

5. Java E�ekt – E�ectful Programming in Direct Style

5.2 Implementing E�ect Handlers for Java in three Steps
As can be seen from our running example, programming with effect handlers in JavaE�ekt is
almost just standard Java programming. Only the control operator use and its counterpart
handle make the difference in expressivity. This section describes how these control operators
can be implemented, bottom up. We start with a CPS translation, that rewrites all methods
annotated with throws Effects, build a library for delimited continuations upon the translation,
and finally implement effect handlers in terms of delimited continuations.

5.2.1 Step 1: Type Selective CPS Transformation by Example
To support accessing the continuation with use, the JavaE�ekt framework performs a type selective
CPS transformation by instrumenting (that is, rewriting) JVM bytecode. This can either be
achieved by hooking into the class loading mechanisms of Java and transforming a classfile at
runtime when it is loaded, or “ahead of time” by a separate pre-processing phase that rewrites
the class files once (Binder et al., 2007); our implementation supports both. Implementing the
transformation on the level of JVM bytecode opens up the opportunity of reuse for other JVM
languages. While the implementation of JavaE�ekt rewrites JVM bytecode, for easier accessibility
this section presents the CPS transformation as a semantically equivalent22 source-to-source
rewriting of the example program drunkFlip. This section provides an overview, Section 5.4
formally describes the bytecode transformation and explains how we treat control flow and
exceptions.

E�ect calls and entrypoints Figures 5.4b and 5.4c show the result of transforming the method
drunkFlip. We instrument only effectful methods and identify those by means of the checked
exception Effects. Using Reynolds (1972) terminology we only consider methods marked
with throws Effects to be “serious”. All other functions are “trivial” and do not require any
instrumentation. Consequently, we also only instrument call sites of effectful methods (effect
calls). In drunkFlip, there are three such effect calls, two to flip and one to raise. We exclude
tail effect calls from the translation, that is, effect calls immediately followed by a return. For
drunkFlip, this means that we instrument the two flip calls, since the call to raise is in tail
position. We call the code immediately following an effect call an entrypoint . We also treat the
initial entrypoint of a function as an entrypoint in this sense. Similar to Prokopec and Liu (2018),
for each entrypoint in an effectful method, we generate a separate entrypoint method . For our
example, these are the methods drunkFlip0 (the initial entrypoint method), drunkFlip1 and
drunkFlip2 (corresponding to the two invocations of flip). Importantly, entrypoint methods
take the function local state as arguments. That is, all values on the operand stack and all local
variables that are needed to resume the function execution after the effect call would return.

The stack interface and continuation frames Similar to how the JVM pushes a stack frame before
it enters a method call (Lindholm et al., 2015), we rewrite every effect call to push a continuation
frame. By calling Effekt.push, the continuation frame is pushed to a global, user-level stack.
Class Effekt has a global, static field Effekt.stack that implements the interface Stack shown
in Figure 5.5. The interface Stack contains all necessary methods used by the instrumented

22For the example in this section, we manually verified that the bytecode of the source-to-source transformation
is equivalent to the result of the bytecode transformation (modulo some superfluous register stores/loads).

106

5.2. Implementing E�ect Handlers for Java in three Steps

String drunkFlip(Amb amb, Exc exc) throws Effects {

boolean caught = amb.flip();

if (!caught) {

return exc.raise("We dropped the coin.");

} else {

return amb.flip() ? "Heads" : "Tails";

}

}

(a) Source method with highlighted effect calls.

String drunkFlip(Amb amb, Exc exc) throws Effects {

Effekt.push(() → drunkFlip0(amb, exc));

return null;

}

(b) Method stub, only pushing the initial entrypoint.

static void drunkFlip0(Amb amb, Exc exc) {

Effekt.push(() → drunkFlip1(amb, exc));

amb.flip();

}

static void drunkFlip1(Amb amb, Exc exc) {

boolean caught = Effekt.result();

if (!caught) {

exc.raise("We dropped the coin.");

} else {

Effekt.push(() →
drunkFlip2(amb, exc, caught));

amb.flip();

}

}

static void drunkFlip2(Amb amb, Exc exc,

boolean caught) {

boolean res1 = Effekt.result();

Effekt.returnWith(res1?"Heads":"Tails");

}

(c) Entrypoints as separate, static methods.

Figure 5.4. CPS translation of the example in Figure 5.4a, presented as a source-to-source
transformation.

bytecode. We assume that all methods on Stack are available as static methods on Effekt

and write Effekt.push instead of Effekt.stack.push. In the presence of multiple threads, we
would store the current stack in a thread local variable, such that each thread maintains its
own stack, but refrain from doing so for simplicity. A continuation frame is an instance of the
Frame interface, also shown in Figure 5.5. We use Java 8 lambdas (Gosling et al., 2015) to
create instances of the Frame interface. The lambdas close over the function local state. When
invoked with enter, they pass the state to the entrypoint methods. Conceptually, we represent
continuation frames as instances of classes that have one field for each local variable they store.
After pushing the continuation frame, the entrypoint methods call the effectful method and
immediately return. Thus, all effect calls become tail calls in the translated program.

Custom calling convention Instrumented effectful methods use a special calling convention:
We rewrite all returns to Effekt.returnWith calls. Correspondingly, entrypoint methods use
Effekt.result to obtain the result of the previous effect call. We transform the original method
drunkFlip to a stub (Figure 5.4b) that pushes a continuation frame for the initial entrypoint
and immediately returns a dummy value. Callers of drunkFlip have to use Effekt.result to
eventually get the actual return value. Our entrypoints follow the same calling convention
for consistency, as we can observe in drunkFlip2. The calling convention is motivated by
the goal to maximize interoperability with other Java features with as little specialization of
the transformation as possible. The most important consequence of this design goal is that
our translation preserves method signatures. It thus does only translate terms, not types or
signatures. A standard CPS translation changes the type of a computation that returns A to a
function type (A → R) → R for some answer type R (Meyer and Wand, 1985). However, this

107

5. Java E�ekt – E�ectful Programming in Direct Style

interface Stack {

// special calling convention

void returnWith(Object r);

void unwindWith(Throwable t);

<A> A result() throws Throwable;

// stack of frames

void push(Frame frame);

Frame pop();

boolean isEmpty();

void trampoline();

}

interface Frame {

void enter();

}

abstract class RTStack implements Stack {

Object res; Throwable exc;

void returnWith(Object r) { res = r; exc = null; }

void unwindWith(Throwable t) { res = null; exc = t; }

<A> A result() throws Throwable {

if (exc != null) throw exc;

return (A) res;

}

void trampoline() {

while (!isEmpty())

try { pop().enter(); }

catch (Throwable t) { unwindWith(t); }

}

}

Figure 5.5. Interface and example implementation of the user-level stack. Implementations of
stack operations (push, pop and isEmpty) are left abstract.

change is precluded by our decision of not changing method signatures. Instead, the continuation
A → R is obtained via the global instance of Stack, as we will see in the next subsection. Still,
the return type of an effectful computation changes from A to R. To accommodate for the change
in return type, we make effectful methods use our own custom calling convention.

Implementing the stack interface Instead of using the JVM stack for continuation frames, we
use a separate user-level stack. A canonical implementation of Stack recovering the expected
runtime behavior of the JVM stack is sketched as class RTStack in Figure 5.5. Only the methods
implementing our calling convention are provided. The straightforward stack operations push,
pop, and isEmpty are left abstract. Our stack implementation performs trampolining (Ganz
et al., 1999). To run an instrumented program23, we first invoke it to push a frame that
corresponds to its initial entrypoint onto Effekt.stack:

static <A> A run(Eff<Void, A> prog) {

prog.resume();

Effekt.trampoline();

return Effekt.result();

}

Effekt.run(() →
Handler.handle(new AmbList<>(), amb →

Handler.handle(new Maybe<>(), exc →
drunkFlip(amb, exc))));

To actually start execution, we call Effekt.trampoline, which will continue to pop and enter
frames until the stack is empty. If an exception is raised, the trampoline will unwind the
user-level stack frame by frame. Each frame starts with a call to result, re-raising the exception
after restoring the method state. Section 5.4 shows more details on how we deal with exceptions.

23When effectful programs do not require an argument we will use Eff<Void, A>. To avoid materializing instances
of Void and binding them, we write f.resume() as a short hand for f.resume(null) and (() → ...) instead of
(unusedVoid → ...). Effectful programs of type Eff<Void, A> corresponds to values of type Control[A] in our
Scala implementation.

108

5.2. Implementing E�ect Handlers for Java in three Steps

interface Prompt<E> {}

(a) Interface Prompt, used to mark positions on the stack.

class SeqStack extends RTStack {

Seq<Frame> s = Seq.empty();

void push(Frame frame) { s = s.push(frame); }

Frame pop() { Frame f = s.head(); s = s.tail(); return f; }

boolean isEmpty() { return s.isEmpty(); }

}

(b) Implementation of Stack, forwarding to an immutable stack Seq.

class DelimCC extends SeqStack implements DelimitedControl {

<E> E resetWith(Prompt<E> p, Eff<Void, E> prog)

throws Effects {

s = s.mark(p); return prog.resume();

}

<A, E> A shift(Prompt<E> p, CPS<A, E> body)

throws Effects {

Seq<Frame> init = s.before(p); s = s.after(p);

Eff<A, E> k = (A value) → {

s = init.prependTo(s); return (E) value; }

return (A) body.apply(k);

}

}

(c) Implementation of delimited control in terms of Seq.

interface Seq<A> {

boolean isEmpty();

A head();

Seq<A> tail();

Seq<A> before(PromptEx p);

Seq<A> after(PromptEx p);

Seq<A> push(A element);

Seq<A> mark(PromptEx p);

Seq<A> prependTo(Seq<A> init);

static <A> Seq<A> empty() {...}

}

(d) Immutable, splittable stack.

Figure 5.6. Implementation of control operators. Usage of the splittable stack implementation
Seq is highlighted.

5.2.2 Step 2: Delimited Continuations
A program that has been transformed with our CPS translation still uses the JVM stack for non-
effectful calls but uses our user-level stack for effectful method calls. Different implementations
of the interface Stack give rise to different additional operations that exploit the corresponding
stack representation. In consequence, effectful programs that are executed against a particular
stack implementation can make use of those additional operations. In this section, we will
develop one particular implementation of Stack that implements additional operations to capture
delimited continuations. All code in the rest of this chapter is subject to the CPS bytecode
transformation and all methods annotated with throws Effects will be instrumented.

The Interface of Delimited Control
As already shown in Section 4.2, the effect handler library can be implemented as a very thin layer
on top of multi-prompt delimited continuations. Again, our implementation of multi-prompt
delimited continuations is similar to the one presented in Chapter 4. However, we translate it
to Java and adapt it to our setting of bytecode instrumentation. We extend the above Stack

implementation with the following interface DelimitedControl.

109

5. Java E�ekt – E�ectful Programming in Direct Style

interface DelimitedControl {

<E> E resetWith(Prompt<E> p, Eff<Void, E> prog) throws Effects;

<A, E> A shift(Prompt<E> p, CPS<A, E> body) throws Effects;

default <E> E reset(Eff<Prompt<E>, E> prog) throws Effects { ... }

}

Instances of Prompt<E> (Figure 5.6a) are used to mark positions on the stack. The type of an
effectful function Eff and of effectful programs that use an effectful continuation CPS, have been
defined in Figure 5.3b. The type parameter E of Prompt unifies with the type of the computation
that we delimit with resetWith. Capturing a continuation with shift, the return type of the
continuation and of the body have to match the type of the prompt E. The implementation of
reset in terms of resetWith directly follows the one from Section 4.4.

Using Delimited Continuations
Assuming the global stack instance supports the methods from DelimitedControl, we can
reimplement the examples of Section 4.2, this time in direct style.

1 + Effekt.reset(p1 → 10 + Effekt.shift(p1, k → k.resume(k.resume(100))));

I 1 + (10 + (10 + 100)) = 121

The second example illustrates the use of multiple prompts.

2 * Effekt.reset(p1 → Effekt.reset(p2 → Effekt.shift(p1, k → 21)) ? 1 : 2);

I 2 * 21 = 42

The captured continuation k contains the program segment marked by prompt p1. We discard
the continuation and replace it by the value 21.

A Splittable Stack Implementation
Figure 5.6b implements Stack by storing a list of frames in a field s. It implements all abstract
operations of Stack by forwarding to this list s. For now, let’s assume Seq is an immutable
implementation of a stack data structure with elements of type A. While very simple, running a
program with this stack implementation already has the benefit that it performs trampolining
and thus reduces JVM stack usage, which might avoid stack overflows. However, the real
power of the translation comes from the fact that Stack implementations can add new methods,
which expose additional (control) operators. Following Dybvig et al. (2007), to implement the
additional control operators resetWith and shift, we need to mark positions on the runtime stack
(mark), slice the stack at given positions (before, after), and prepend whole stack segments
(prependTo). The stack data structure Seq (Figure 5.6d) that we already used above offers
exactly these operations. As presented in Figure 4.11, Seq<A> is a prompt-separated cons-list of
elements of type A. Calling s.before(p) returns the initial segment up to (and including) the
first occurrence of the marker p. This segment contains all the recently pushed elements (frames
and prompts) after p has been pushed. Calling s.after(p) returns the remainder of the stack.
This segment contains all elements, which have been pushed before marker p has been pushed.

As mentioned before, effect handlers in E�ekt are deep handlers (Kammar et al., 2013) and
our implementation of delimited control has semantics −shift+. Consequently, the stack segment
obtained by seq .before(p) is delimited by the prompt marker p, while seq .after(p) is not.

110

5.2. Implementing E�ect Handlers for Java in three Steps

Pushing a Prompt

Figure 5.6c shows the implementation of the DelimitedControl interface, using Seq. To implement
resetWith, we mark the stack using the provided prompt p and update the mutable reference s

with the now marked stack. We then resume with the effectful program prog. Being effectful,
the program prog pushes additional frames onto the stack. We can capture those frames later
by slicing the stack at the position of the installed marker p.

Capturing a Continuation

The control operator shift(p, body) captures the continuation k up to the next dynamically
enclosing resetWith(p, ...) and conceptually replaces the call to resetWith with a call to
body.apply(k). Its implementation in Figure 5.6c stores all frames that have been pushed after
p in a local variable init. This segment corresponds to the delimited continuation from type
A to type E. That is, the top most frame expects Effekt.result to return a value of type A.
The initial segment and the prompt marker are then removed from the stack by mutating it
with s = s.after(p). This leaves a segment on the stack, which expects a value of type E

to continue program execution. The continuation k implements the functional interface Eff

with method resume() throws Effects. It closes over the initial stack segment init and, when
invoked, prepends it to the stack s. This implements the desired semantics of resuming the
delimited continuation: The runtime system will first run the initial stack segment init before
it eventually continues at the call site of resume within body.

There are two casts involved that require some explanation. Both shift and the continuation
k are effectful. Thus, the respective caller will be instrumented. However, by mutating field
s and modifying the stack, we change the execution context. In shift we remove the initial
segment of the stack and thus the new caller expects a value of type E not A. In the continuation
we prepend the initial segment and thus the caller now expects an A not E. The Java type checker
is unaware of our transformation and the modifications to our own call stack. Hence the casts24.

5.2.3 Step 3: Implementation of the JavaE�ekt Library
In the previous subsections, we have seen how programs, which contain throws Effects anno-
tations, are CPS translated. To support multi-prompt delimited continuations, we extended
the runtime environment in which those translated programs are executed. Equipped with
multi-prompt delimited continuations, we are now ready to implement the effect handler library.

The expressive power of effect handlers comes from the two operations handle and use, which
are encapsulated in the library class Handler. Figure 5.7 shows the implementation of these
two operations in terms of delimited continuations. As in the Scala implementation, handlers
contain an instance of a prompt marker Prompt<E> as a field. The answer type of delimited
continuations thus will be the effect domain E. In the implementation of handle, we push the
prompt before resuming with prog. The pushed prompt will delimit the extent of continuations
captured by that handler. By calling h.unit after resuming, programs that use no effects will
be lifted from R to E. The method use simply forwards to shift. It again uses the prompt to
capture the continuation up to the most recent call to handle for this handler instance.

24Since A and E are generic type parameters, they will be erased and the program can safely be executed.

111

5. Java E�ekt – E�ectful Programming in Direct Style

abstract class Handler<R, E> {

E unit(R r) throws Effects;

private Prompt<E> prompt = new Prompt<E>() {};

<A> A use(CPS<A, E> body) throws Effects {

return Effekt.shift(prompt, body);

}

static <R, E, H extends Handler<R,E>> E handle(H h, Eff<H,R> prog) throws Effects {

return Effekt.resetWith(h.prompt, () → h.unit(prog.resume(h)));

}

}

Figure 5.7. The essence of the effect handler library: The Handler class.

5.3 Use Cases

Having implemented effect handlers as a library for Java, programmers can now freely com-
bine object-oriented Java programming with effect handlers. We revisit selected examples of
Section 4.4 to show how they can be expressed in JavaE�ekt. Two differences to ScalaE�ekt are
particularly interesting. Firstly, in JavaE�ekt, control-flow structures like conditionals and while

loops can immediately be used in direct style. In ScalaE�ekt, control flow needs to be lifted into
the Control monad. Secondly, function-local (mutable) state (i.e., local variables) can be used
and has the correct backtracking behavior in presence of multiple resumptions.

5.3.1 Handling Multiple E�ects in one Handler

All handlers we have seen in this chapter so far only implemented a single effect signature.
However, sometimes it is necessary to group the implementation of multiple effect signatures in
a single handler. Since effect signatures are interfaces and handlers are classes implementing
those interfaces, this is straightforward. Like with ScalaE�ekt, effect implementations grouped in
a single handler share the same effect domain E, share the private state of the handler and they
can be implemented in terms of each other. In particular, sharing the effect domain is important
if the handler wants to express interaction between different effect operations. Two examples
combining Amb and Exc in one handler to share the effect domain are:

class Nondet<R> extends Collect<R> implements Exc {

<A> A raise(String msg) throws Effects {

return use(k → Lists.empty());

}

}

112

5.3. Use Cases

class Backtrack<R> extends Maybe<R> implements Amb {

boolean flip() throws Effects {

return use(k → {

Optional<R> res = k.resume(true);

return res.isPresent() ? res : k.resume(false); });

}

}

Handler Nondet extends AmbList and only provides the definition for raise. It shares the
effect domain List<R> with AmbList. Similarly, handler Backtrack extends Maybe and adds the
implementation for flip. It shares the effect domain Optional<R> with Maybe. By subtyping,
the combined handlers can still be used as handlers for the individual effects Amb or Exc:

Handler.handle(new Nondet, nd → drunkFlip(nd, nd))

I ["Heads", "Tails"]

Handler.handle(new Backtrack, bt → drunkFlip(bt, bt))

I Optional["Heads"]

This also illustrates reuse of handler implementations by inheritance. We only needed to provide
the missing definitions; all other implementations of effect operations are inherited.

5.3.2 Alternatives to Capability Passing
In previous examples, effectful methods were written in capability-passing style. They thus
expressed their use of effects by expecting handler instances (capabilities) as arguments. In an
object-oriented programming language like Java, it is natural to explore other means to get
access to a handler instance. Capabilities can be passed to constructors and stored in fields.
Take the following implementation of a reader effect (specialized to characters) as an example:

interface Input { char read() throws Effects; }

The following handler StringInput uses an instance of an Exc-capability to raise the end-of-stream
exception. The capability is passed on construction and stored in the field exc.

class StringInput<R> extends Handler<R, R> implements Input {

final Exc exc; final String input; int pos = 0;

StringInput(String s, Exc e) { this.input = s; this.exc = e; }

public char read() throws Effects {

return if (pos ≥ input.length()) exc.raise("EOS");

else input.charAt(pos++);

}

}

Methods of StringInput, which use the Exc effect, can only be safely executed in the corre-
sponding dynamic scope of the Exc-handler. In JavaE�ekt this is up to the user of StringInput
to ensure. The next chapter revises our Scala library to statically guarantee effect safety.

113

5. Java E�ekt – E�ectful Programming in Direct Style

5.3.3 Ambient State and Parametrized Handlers
Our bytecode transformation only saves and restores function local state, that is, mutable local
variables. It does not deep-copy heap-allocated state and nothing prevents the user from using
mutable fields in the implementation of handlers. The handler StringInput is an example since
it mutates the field pos. However, as demonstrated in Section 4.3, heap-allocated state and
delimited continuations can interact in unforeseen ways. In JavaE�ekt, we support ambient state
as follows: Handler implementations, like StringInput, can just use mutable fields. To turn the
handler state into ambient state, a handler needs to implement the Stateful<S> interface below.

interface Stateful<S> { S exportState(); void importState(S state); }

class StringInput2<R> extends StringInput<R> implements Stateful<Integer> {

Integer exportState() { return pos; }

void importState(Integer state) { pos = state; }

}

Our delimited control implementation is extended to export the handler state when the continu-
ation is captured and to restore it on resumption. It is up to the user to identify and potentially
deep-copy all relevant aspects of the handler state.

5.3.4 Case Study: Parsing
Equipped with nondeterministic choice, exceptions and reader we can implement parsers (Lei-
jen, 2016). For convenience, we group Amb, Exc, and Input into one effect signature for parsers.

interface Parser extends Amb, Exc, Input {}

int digit(Parser p) throws Effects {

char t = p.read();

return isDigit(t)

? getNumericValue(t)

: p.raise("Not a digit: " + t);

}

int number(Parser p) throws Effects {

int res = digit(p);

while (true)

if (p.flip()) {

res = res * 10 + digit(p);

} else { return res; }

}

While we already presented a similar example in Section 4.6, implementing it again in JavaE�ekt
is interesting for two reasons. Firstly, it demonstrates that programs, now written in direct
style, can also use Java’s control-flow constructs like while and conditionals. In the monadic
counterpart of E�ekt, those control-flow constructs need to be lifted into the monad. Secondly, it
also illustrates that effectful programs can use mutable, function local state. To parse a number,
every time after reading a digit, we mutate the local variable res to update the result. Our
byte code transformation makes sure that this function local state will be saved on continuation
capture, allowing a well-defined interaction with multiple resumptions and backtracking.
To parse the string "123" with the number parser, we use the ParserForward handler. The

handler stores capabilities for Amb, Exc in Input in fields and implements the corresponding
effect operations by forwarding. We can handle effect operations flip and raise with either the
Nondet handler to get a list of all possible parses

Handler.handle(new Nondet<>(), nd →
Handler.handle(new StringInput2<>("123", nd), r →

number(new ParserForward(nd, nd, r))));

I ["123", "12", "1"]

114

5.3. Use Cases

or with the Backtrack handler to only obtain the first successful parse, if it exists:

Handler.handle(new Backtrack<>(), bt →
Handler.handle(new StringInput2<>("123", bt), r →

number(new ParserForward(bt, bt, r))));

I Optional["123"]

Note, that the parsers can now be written in direct style. At the same time, handlers (like Nondet)
can still transparently access the continuation in their implementation of effect operations.

5.3.5 Case Study: Generators
In the programming language Python, the built-in control operation yield can be used to
describe a stream of values also known as generators (Politz et al., 2013). While generators are
built into Python, with effect handlers we can implement them as a library.

interface Writer<A> { void write(A value) throws Effects; }

void numbers(int to, Writer<Integer> w) throws Effects {

int n = 0; while (n ≤ to) { w.write(n++); }

}

The method numbers describes a generator that yields integers up to a given value using the
Writer effect. Again, it uses a mutable variable n together with native control-flow structures
(i.e., while). We can handle the writer effect with the Iterate handler. To suspend the generator
until the next value is requested, the hander captures and stores the continuation on every write.

class Iterate<A, R> extends Handler<R, IteratorEff<A>> implements Writer<A> {...}

interface IteratorEff<A> {

boolean hasNext() throws Effects;

A next() throws Effects;

}

IteratorEff<Integer> it = Handler.handle(new Iterate()<>, w → numbers(10, w));

while (it.hasNext()) { println(it.next()); }

Since the iterator is effectful, we cannot reuse the Java interface Iterator. Instead, the interface
IteratorEff duplicates the interface and adds the throws Effects annotations. As a consequence,
this prevents users from using Java’s for (A a : iterator) syntax (Gosling et al., 2015), since
it requires iterator to implement the “pure” iterator interface.

5.3.6 Case Study: Cooperative Multitasking
Like generators, cooperative multitasking and async/await can be implemented as a library (Dolan
et al., 2017; Leijen, 2017a). Programs can use the Fiber effect (cf. Section 4.4) to fork and
suspend processes. A process is an effectful program Eff<Void, Void>. Like in our implemen-
tation in Section 4.4, the Fiber effect makes use of Java’s default methods to implement the
derived effect operation forked. The Scheduler handler in Figure 5.8 implements a round-robin
scheduler that keeps a queue of all running processes in its mutable handler state. Suspending
is implemented by enqueueing the continuation of the process and immediately returning. The
handler will then pick the next process to execute.

115

5. Java E�ekt – E�ectful Programming in Direct Style

interface Fiber {

void suspend() throws Effects;

boolean fork() throws Effects;

void exit() throws Effects;

default void forked(Eff<Void, Void> p) throws Effects {

if (fork()) { p.resume(); exit(); }

}

}

(a) The Fiber effect signature.

Handler.handle(new Scheduler(), f → {

f.fork(() → {

println("world");

});

println("hello");

f.suspend();

});

(b) User program using the Fiber effect.

class Scheduler extends Handler<Void, Void> implements Fiber {

void suspend() throws Effects { use(k → { queue.add(k); run(); }); }

void exit() throws Effects { use(k → null); }

boolean fork() throws Effects { return use(k → {

queue.add(() → k.resume(true));

queue.add(() → k.resume(false));

run();

})}

private Queue<Eff<Void, Void>> queue = new LinkedList<>();

private void run() throws Effects {

while (!queue.isEmpty()) queue.remove().resume();

}

}

(c) A round robin handler for the Fiber effect.

Figure 5.8. Effect signature Fiber with operations for cooperative multitasking and a round-robin
scheduler implemented as handler Scheduler.

116

5.4. Implementation of the Type Selective CPS Transformation

5.4 Implementation of the Type Selective CPS Transformation
Section 5.2.1 illustrated the type-selective CPS translation by example as a source-to-source
transformation. In the current section, we now present the implementation of the translation on
the level of bytecode and show how we handle control-flow constructs like jumps and exceptions.
The translation is interesting in that it uses Java 8 closures to create continuations. This
is different to other bytecode translations, which we will compare with in Section 5.5.1. We
implemented the described transformation described using the OPAL framework by Eichberg
and Hermann (2014) for static analysis and synthesis of JVM bytecode. Our implementation of
the CPS transformation as well as all other components of JavaE�ekt can be found online:

http://github.com/b-studios/java-effekt

We minimize the presentation to a relevant core set of language features and leave out details
that distract from the essence of the transformation: Storing all necessary function-local state in
closures and inserting calls to the API as described in Section 5.2. We model the JVM (Lindholm
et al., 2015) and assume an abstract machine with registers (also referred to as locals , since they
are function local), an operand stack (also referred to as operands, again function-local) and
a frame stack (commonly referred to as stack). We use the term function-local state to refer
to the values stored in locals and operands at a given time in the execution of a method. We
adopt the JVM calling convention: function arguments are pushed on the operand stack by the
caller, but accessible as locals by the callee, starting from register index 0. We assume every
bytecode instruction is labeled, but omit labels that we never refer to. In our description of
bytecode, labels are drawn from the set L. We use sans-serif font to refer to object-language
labels (e.g., init, or loop) and italic font for meta-language variables ranging over labels (e.g.,
label , or eff). Similarly, we use serif font to refer to method names, types etc. (e.g., doLoop, or
MyExc) and italic font for meta-language variables ranging over names (e.g., name, or exc).

5.4.1 An Example with Jumps and Exceptions
We explain the transformation on an example method doLoop with the following Java source:

boolean doLoop() throws Effects {

Input r = Inputs.getInput(); // static method

loop: try { while (’\n’ != r.read()) {} }

catch (MyExc e) { return false; }

exit: return true;

}

The bytecode of the method doLoop is shown in Figure 5.9a. The method doLoop performs effect
calls to r.read() until the result is either a newline or r.read() raises a native exception. The
example includes exception handling to illustrate, in detail, how the bytecode instrumentation
interacts with native exceptions. As in the JVM, exception handling is modeled external to the
list of bytecode instructions of a method and exception handlers are given in the form of regions:

excregion tryStartLabel tryEndLabel catchLabel exceptionType

In our example, let us assume an exception region excregion loop break catch MyExc is in place.
That is, if an exception with a type name MyExc is raised in the dynamic region between the
labels loop and break execution will be continued at label catch.

117

http://github.com/b-studios/java-effekt

5. Java E�ekt – E�ectful Programming in Direct Style

method doLoop 1 throws Effects {
init : invoke Inputs.getInput 0

store 1
loop : const ′\n′

load 1 // load Input from local 1
op : invoke Input.read 1

ifeq exit
break : goto loop
catch : const false

return
exit : const true

return
}
excregion loop break catchMyExc

(a) Bytecode of method doLoop.

SJ doLoop K = method doLoop 1 throws Effects {
load 0 // load ’this’
closure Frame.enter doLoopinit 1
const false // load dummy value
return
}

EJ doLoop Kinit = method doLoopinit 1 {
goto init
...
}

EJ doLoop Kop = method doLoopop 2 {
goto ep$op
...
}

(b) Generated methods – method bodies in Fig. 5.9d.

effCalls(doLoop) = [init, op] operands(init) = 0 locals(init) = [0] ep(init) = init
tmpLocal(doLoop) = 2 operands(op) = 1 locals(op) = [1] ep(op) = ep$op

(c) Meta information as obtained by static analysis.

init : invoke Inputs.getInput 0
store 1

loop : const ′\n′
load 1

op : store 2 // save call operands
load 1 // load live locals
closure Frame.enter doLoopop 2 // close over two values
invoke Effekt.push 1 // push closure to stack
load 2 // restore call operands
invoke Input.read 1
returnvoid

ep$op : load 0 // load arguments
load 1
store 1 // restore locals
invoke Effekt.result 0 // get results
ifeq exit

break : goto loop
catch : const false

invoke Effekt.returnWith 1 // store results
returnvoid

exit : const true
invoke Effekt.returnWith 1 // store results
returnvoid

(d) Result of translating the instructions of method doLoop.

Figure 5.9. Example of translating a method doLoop

118

5.4. Implementation of the Type Selective CPS Transformation

The syntax of the term-language is summarized in Figure 5.10a. For simplicity of the
presentation, we do not concern ourselves with types and thus choose a uni-typed term-language.
The translation does not distinguish instance methods and static methods. Hence, we only
include a single method definition that consists of a name, a list of potentially raised exceptions
and a list of labeled instructions. We omit the list of exception handler regions (the exception
table) since it does not require any modification. The syntax of bytecode instructions Instr
in Figure 5.10a includes instructions to load constant values (const v) to the operand stack,
instructions to load from and store into function-local registers (load index , store index) and
control-flow instructions (return, throws, ifeq25 and goto). Finally, as with method declarations,
we only include a single form of method invocation (invoke name arity) that subsumes static
and virtual method calls. Virtual method calls take the receiver as the first argument and thus
always have an arity greater than or equal to one. The syntax of instructions also includes an
instruction closure, which we discuss in Section 5.4.3.

5.4.2 Translation of Methods
Only effectful methods that are marked as throwing Effects exceptions are translated. All other
methods of a class are copied unchanged.

As can be seen in the source-to-source transformation in Figure 5.4, for one effectful method
m, we generate multiple methods: a single method stub, using the translation function SJ·K and
one entrypoint method for each effect call at label eff using the translation function EJ·Keff (both
translation functions are defined in Figure 5.10b). Every effect call (eff : invoke name arity)
inside a given method m gives rise to an entrypoint uniquely identified by the label eff . The
entrypoint itself is labeled ep(eff) and represents the continuation of the method m after the
effect call returned. For consistency, we also treat the initial entrypoint at label init as effect
call. The special entrypoint ep(init) = init refers to the label of the first original instruction
of the method. By explicitly pushing the initial entrypoint, we perform trampolining for each
effect call. For the example method doLoop, we thus generate three methods: the method stub
doLoop and the two entrypoint methods doLoopinit and doLoopop (Figure 5.9b).

Rule T-Stub generates the method stub that first saves the local state and then immediately
returns a dummy value. At that point, the local state only consists of the arguments supplied to
the function call. As we will see shortly, saveState thus pushes a closure that closes over the call
arguments. When invoked, it resumes with the method corresponding to the initial entrypoint.
For our example, this initial entrypoint method is doLoopinit. The returned result of the stub
method will never be used; hence loadDummyResult can load any constant value.

Rule T-Entrypoint takes a method m and a label eff to generate a new method corresponding
to the entrypoint at eff . For our example, we generate two static entrypoint methods doLoopinit
and doLoopop. The entrypoint methods use the same exception table as the original method
doLoop. After the initial goto instruction, the bodies of the generated methods are identical.
For our example, the common part is given in Figure 5.9d. The only difference between the
two generated methods is the initial jump. Since generating almost identical methods for each
entrypoint leads to unnecessary growth of the class file, in our implementation of JavaE�ekt, we
perform dead code elimination after generating the bytecode. Using closures to save state, only
saving live variables, and performing dead code elimination ultimately results in code, which (in
spirit) is very close to handwritten code in continuation-passing style (as in Figure 5.4c).

25For our example, we assume ifeq label pops two values and jumps to the given label if the two values are equal.

119

5. Java E�ekt – E�ectful Programming in Direct Style

instr ∈ Instr ::= const Value | load N | store N
| return | throw | goto L
| invoke Name N
| closure Name Name N

m ∈ Method ::=

method Name N throws Name { L : Instr }
label , eff , ... ∈ L := init | loop | op | ...
name, exc, ... ∈ Name := doLoop | Effekt.push | ...

(a) Syntax of methods and bytecode instructions.

(T-Stub)

SJ·K : Method →Method

SJmethod name arity throws exc { instr } K =

method name arity throws exc {
saveState(name, init)

loadDummyResult

return
}

(T-Entrypoint)

EJ·K(·) : Method → L→Method

EJ method name arity throws exc { instr } Keff =

method ep(name, eff) epArity(eff) throws ∅ {
goto ep(eff)

IJ instr Km

}
(b) Transformation of effectful methods.

(T-Invoke-Eff)

IJ·K(·) : (L : Instr)→Method → L : Instr

IJ eff : invoke name arityKm if effectful (name) =

eff : saveCallOperands(tmpLocal(m), arity)

saveState(methodName(m), eff)

restoreCallOperands(tmpLocal(m), arity)

invoke name arity

returnvoid
ep(eff) : restoreState(eff)

invoke Effekt.result 0

(T-Return)

IJ label : returnKm =

label : invoke Effekt.returnWith 1

returnvoid

(T-Other)

IJ label : instrKm = label : instr

(c) Transformation of bytecode instructions.

saveCallOperands : N × N→ L : Instr

saveCallOperands(first , n) =

storeLocals(first .. (first + n − 1))

restoreCallOperands : N × N→ L : Instr

restoreCallOperands(first , n) =

loadLocals((first + n − 1) .. first)

saveState : Name × L→ L : Instr

saveState(name, eff) =

loadLocals(locals(eff))

closure Frame.enter ep(name, eff) epArity(eff)

invoke Effekt.push 1

restoreState : L→ L : Instr

restoreState(eff) =

loadLocals(0 .. (epArity(eff) − 1))

storeLocals(reverse(locals(eff)))

(d) Helper functions used to manage function local state.

Figure 5.10. Type selective CPS translation via bytecode transformation.

120

5.4. Implementation of the Type Selective CPS Transformation

5.4.3 Saving Function Local State
To generate state saving and restoring code, we use the following information about a method
m, which we obtain by static analysis of the bytecode:

effCalls : Method → L
the set of labels that mark effect calls, including the label ep init = init but no effect tail calls,

tmpLocal : Method → N
the index of the first free register, not used by the original instructions of the given method.

Likewise, for each effect call eff ∈ L in a method m, the transformation uses the following
information, which we again obtain by static analysis:

operands : L→ N
the number of operands on the operand stack after the effect call (not including the result),

locals : L→ N
the list of indices of local registers, which are live after the effect call,

ep : L→ L
a unique label representing the entrypoint to jump to on resumption,

ep : Name × L→Name

for each pair of original method name and label – a unique method name for the corresponding
entrypoint method.

We also define epArity(eff) to equal operands(eff) + |locals(eff)|, referring to the total number
of values that need to be stored in the closure. That is, all operands and the number of locals,
which are live after the effect call. The static information for doLoop is given in Figure 5.9c.

To actually save the state, the meta-function saveState generates code that stores those parts
of the function-local state, which are necessary to resume the execution of the function. This
includes all operands (after the effect call) and the contents of all registers, which correspond to
live local variables. In the code generated by saveState(doLoop, op),

load 1 // load live locals
closure Frame.enter doLoopop 2 // close over two values
invoke Effekt.push 1 // push closure to stack

we can see that saving the state is achieved in three steps:

1. all live local variables are loaded to the operand stack; the operands do not need to be
loaded since they are already on the operand stack

2. a new instance of a Frame is created as a lambda; the lambda uses the given method
ep(name, eff) to implement the interface Frame.enter and closes over epArity(eff)-many
values on the operand stack;

3. finally, the newly created frame is pushed using Effekt.push.

121

5. Java E�ekt – E�ectful Programming in Direct Style

In JVM bytecode, closures are created by issuing a specific invokedynamic call to a lambda
metafactory26. We refer to this call only in its specialized form as

closure interface name arity

The call to closure is provided with name of a functional interface (Gosling et al., 2015)
interface ∈ Name27 (i.e., an interface with a single abstract method), a method name ∈ Name,
which serves as the implementation of the interface, and an arity ∈ N that specifies the number
of values the lambda should close over. The JVM runtime passes the closed-over values as
additional arguments to the implementing method when the closure is applied.

5.4.4 Translation of Instructions
To generate the bodies of entrypoint methods, Figure 5.10c defines the translation function
IJ label : instr Km . It specifies how a single labeled instruction is translated within a method
m. The result of translating the body of doLoop can be found in Figure 5.9d.

Figure 5.10d gives the implementation of some of the helper functions that expand at translation
time to generated code. Given a list of register indices, the unlisted functions loadLocals and
storeLocals generate bytecode that loads from (respectively stores to) all given locals. We use
the notation x .. y to denote a range of indexes from x to y , both ends inclusive.

The translation of bytecode instructions behaves as identity (Rule T-Other) except for effect
calls (Rule T-Invoke-Eff) and returns (Rule T-Return). To stress, non-effectful calls require
no modification. To translate effect calls, rule T-Invoke-Eff saves the function-local state,
performs the effect call, and suspends the method by returning to the trampoline (returnvoid). In
the translated program, all jumps to the effect call within m should point to the instrumented call
instead. Therefore, we change label eff to point to the first instruction of the state saving code.
This also affects exception regions that mention eff , which do not require further modification.
As in our doLoop example, the effect call might require arguments that reside on the operand
stack at the time of state saving. To account for this, we use temporary locals (which will not
be stored in the closure) to set the call operands temporarily aside.

The remainder of the function after the effect call is labeled with ep(eff). Since it immediately
follows a return, this part of the code is only reachable by the goto ep(eff) in the corresponding
entrypoint method. At that time, all function state necessary for resumption has been passed as
arguments and is thus stored in first epArity(eff)-many registers. For our example of doLoop,
the code at label ep(op) = ep$op assumes that one operand (the constant ’\backslash{}n’)
and one local (an instance of type Input) have been passed as arguments and are thus available
via registers 0 and 1. Before the function can be resumed, its state needs to be restored to where
it has been left off. The meta-function restoreState loads all saved operands and locals (in this
order) to the operand stack. It then writes the locals to the original registers (in reverse order).
The result of the previous effect call is obtained by Effekt.result.

If the previous effect call exited abnormally by throwing an exception, Effekt.result as
implemented in Figure 5.5, will re-raise this exception. Since we already restored all operands
and locals, the exception will be raised in the correct context and trigger the correct exception
handlers. Being defined in terms of labels, our translation does not need to modify the exception
table. The rule T-Return replaces every return with a call to Effekt.returnWith to install the
second half of the special calling convention.
26https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/LambdaMetafactory.html
27For the translation, interface will always be Frame.enter.

122

https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/LambdaMetafactory.html

5.5. Discussion and Related Work

5.5 Discussion and Related Work
We discuss design decisions and related work. Existing implementations of libraries and
languages for (algebraic) effect handlers are either translations to a high-level language or
involve a custom runtime implementation. High-level implementations translate effect handlers
into delimited continuations (Kammar et al., 2013; Kiselyov and Sivaramakrishnan, 2016),
free monads (Kiselyov and Ishii, 2015) or perform a CPS translation into another high-level
language (Leijen, 2017c; Hillerström et al., 2017). Other implementations require a custom
runtime that supports stack manipulation (Bauer and Pretnar, 2015; Dolan et al., 2017) or
setjump / longjump (Leijen, 2017b). In this chapter, we explored a new implementation
technique for effect handlers in terms of a CPS transformation of bytecode. Similarly, the
discussion focuses on other bytecode transformation.

5.5.1 Continuations on the Java Virtual Machine
We review related work on (delimited) continuations and CPS transformations in the context of
the Java virtual machine. Experimental implementations that modify the JVM exist (Dragos
et al., 2007; Stadler et al., 2009) or are under development (Pressler, 2017). While those
specialized runtimes could potentially be used as backend for our effect handler library, here
we will focus on library solutions. We compare our CPS transformation with three other Java
projects that perform bytecode instrumentation. A library for fibers “Quasar” (Parallel Universe
Software Co., 2013), a library for one-shot continuations “JavaFlow”28 (Silaev, 2015), and a
library for coroutines “Coroutines” (Faghihi, 2015).

Continuation instantiation Approaches to capture the continuation can be characterized by the
point-in-time the continuation is materialized. CPS transformations create the continuation
before the execution of an effectful call. This is how we implemented JavaE�ekt. It is also
the case for implementations of effect handlers that rely on CPS (Hillerström et al., 2017)
and corresponding monadic implementations in eager languages like ScalaE�ekt. Quasar also
explicitly stores all function state, before entering an effect call. Another approach is to
instantiate the continuation only when it is needed. Effectful functions can also use a special
exception at runtime to signal that the continuation needs to be captured (Sekiguchi et al., 2001;
Pettyjohn et al., 2005; Loitsch, 2007). Other alternatives to signal continuation capture are sum
types (Kiselyov and Sivaramakrishnan, 2016) or global flags (JavaFlow, Coroutines).

Stack restoration All bytecode continuation libraries in Java that we are aware of resume a
continuation by replaying all function calls. This way, the JVM stack is restored before the
execution of the program continues. Similarly, Koppel et al. (2018) showed recently how delimited
continuations can be expressed with exceptions and state by replaying all effectful function calls
on resumption. This implementation technique simplifies integration with exceptions, stack
traces, and debuggers. It also is a technical consequence of not having a first class representation
of continuation frames. However, restoring the stack is linear in the depth of the stack since all
function calls need to be replayed.29 In contrast, in JavaE�ekt we explicitly reify each continuation
frame as a closure. Upon resumption, we just enter the first frame without restoring the full
28We compare JavaE�ekt with a recently maintained fork of the equally named Apache Commons project. The

original project is located at: https://commons.apache.org/sandbox/commons-javaflow
29For Quasar, this observation has been made by Aleksandar Prokopec (Oracle Labs) – personal communication.

123

https://commons.apache.org/sandbox/commons-javaflow

5. Java E�ekt – E�ectful Programming in Direct Style

Java stack. While this helps to reduce the asymptotic complexity from quadratic to linear, stack
traces in JavaE�ekt only show very few frames, which can impede debugging.

Function state representation The state, necessary to later resume a suspended function, consists
of the function-local state and an entrypoint label. It can be represented and stored in different
ways. The entrypoint label can be encoded as a number that will be dispatched upon with a switch
statement at the beginning of the method. This is commonly combined with storing the function
local data in a stack like data structure (Quasar, JavaFlow, Sekiguchi et al. (2001), Bierman
et al. (2012)). An alternative is to replace the switch by dynamic dispatch and to store the
function data in a closure (Pettyjohn et al., 2005). This is how JavaE�ekt is implemented.

Multiple resumptions We designed JavaE�ekt in a way that continuations can naturally be
resumed multiple times. In implementations supporting only one-shot continuations, state
update can be destructive, which makes it easier to implement continuations efficiently (Dolan
et al., 2015). While JavaE�ekt maintains one global immutable runtime stack (as in Figure 5.5),
Quasar and JavaFlow maintain one mutable stack per delimited continuation / fiber. In such a
setting, multiple resumptions are implemented by deeply cloning the corresponding stack and all
nested stacks before resuming. In JavaE�ekt, function-local state is copied into immutable frames.
In addition, stack segments are immutable and can be shared across multiple resumptions.

Marking e�ectful functions E�ekt uses Java’s checked exception mechanism as a (coarse grained)
effect type system. Thus, all effect operations and consequently all effectful functions that
transitively use effect operations are required to be marked as throwing a special Effects

exception. The exception is only used as a marker to distinguish pure from effectful methods.
It will never be thrown at runtime. JavaFlow requires the user to annotate methods with a
@continuable annotation. Java Coroutines only treats those methods as effectful that take a
value of type Continuation as an argument. Quasar offers the user the choice between checked
exceptions and Java annotations.

5.6 Performance of E�ekt
We report on some preliminary performance results. The evaluation of performance is split into
two parts: A part on the CPS transformation and a part on E�ekt as a library for programming
with effect handlers. All benchmarks were executed on a 2.5 GHz Intel Core i7 with 16GB of
memory using ScalaMeter (Prokopec, 2012), a state of the art JVM benchmarking library. Each
benchmark consisted of 50 runs, executed in a warmed up JVM instance (JDK version 1.8.0181).

The implementation of JavaE�ekt slightly deviates from the formal presentation in Section 5.4.
To avoid push-pop-enter cycles, the initial entrypoint is not explicitly pushed but inlined. We also
show the performance results for a variant of JavaE�ekt that implements several optimizations:
Similar to the approach by Pettyjohn et al. (2005), our alternative implementation does not
materialize continuation frames upfront, but only when needed. In addition, only methods that
contain at least one non-tail effect call are instrumented. Like in our formal presentation, the
alternative implementation also materializes continuation frames by creating closures. We refer
to this variant as JavaE�ektopt. The user programs using JavaE�ekt do not need to be changed.

124

5.6. Performance of E�ekt

0

50

100

150

200

0 250k 500k 750k 1,000k

loop length

tim
e

(m
s)

Loop

0

50

100

150

200

0 250k 500k 750k 1,000k

loop length

Loop*

0

1

2

3

0 500 1,000 1,500 2,000

recursion depth

tim
e

(m
s)

Recursive

0

100

200

300

0 500 1,000 1,500 2,000

recursion depth

Recursive*

0

25

50

75

2 4 16 256

fanout

tim
e

(m
s)

Skynet

0

25

50

75

2 4 16 256

fanout

Skynet*

Time in ms (Confidence Interval)

Benchmark Baseline JavaE�ekt JavaE�ektopt Coroutines Quasar JavaFlow
Loop (1M) 1.6 ±0.1 28.5 ±0.7 1.6 ±0.0 5.4 ±0.3 62.0 ±1.2 11.2 ±0.3
Loop*(1M) 1.6 ±0.1 118.2 ±3.1 47.1 ±1.5 45.7 ±1.6 200.2 ±2.8 172.5 ±2.2
Recursive (1K) 0.0 ±0.0 0.2 ±0.0 0.1 ±0.0 0.1 ±0.1 0.7 ±0.5 0.1 ±0.0
Recursive*(1K) 0.0 ±0.0 0.3 ±0.0 0.2 ±0.0 9.7 ±0.9 64.0 ±0.6 24.9 ±0.9
Skynet (2) 0.5 ±0.0 33.5 ±10.5 10.0 ±3.4 5.8 ±2.1 45.4 ±1.0 43.3 ±9.3
Skynet*(2) 0.5 ±0.1 48.3 ±1.1 43.4 ±13.2 6.4 ±2.4 70.8 ±1.3 30.4 ±0.7

* Variants that perform regular suspend and resume.

Figure 5.11. Performance of bytecode instrumentation libraries. Runtime in ms, lower is better.

125

5. Java E�ekt – E�ectful Programming in Direct Style

5.6.1 Performance of the Bytecode Instrumentation

We evaluate the performance of our CPS transformation comparing with Quasar in version
0.7.9 (Parallel Universe Software Co., 2013), JavaFlow in version 2.6.0 (Silaev, 2015), and
Coroutines in version 1.4.2 (Faghihi, 2015). We also measure the overhead compared to a
baseline that does not capture continuations. All libraries perform some sort of bytecode
transformation to support capturing the continuation. Since each of the libraries targets a
particular domain (coroutines / fibers), capturing the continuation also involves additional
overhead specific to the target application. Where possible, we reduced this overhead by disabling
features – focusing on the continuation capturing aspect, only. As an example, the measurements
for the Quasar library where executed using a trivial single threaded scheduler. The results of
the measurements can be found in Figure 5.11.

To assess the instrumentation overhead, the Loop benchmark counts down from a given number
to zero, performing some computation work at each step but not capturing the continuation. We
can see that most of the overhead of creating continuation frames is eliminated in the alternative
JavaE�ektopt. Java Coroutines save the function local state in arrays before entering a potentially
suspending function call. This is unnecessary for the Loop benchmark, which does not suspend.
The Loop* variant captures and immediately resumes the continuation at each step of counting
down. Here the cost of storing the function state pays off for Java Coroutines, which now aligns
with JavaE�ektopt. The baseline for Loop* does not suspend and is thus the same as for Loop.

To measure performance of capturing the continuation, the Recursive and Recursive* bench-
marks also count down, but as recursive functions. For Recursive, we suspend the computation
once before returning the result (at stack-depth n); correspondingly, for Recursive* we sus-
pend once at every recursive call. Resuming continuations is linear in stack depth for all
implementations but the two JavaE�ekt implementations. In consequence, for the other imple-
mentations, Recursive* has a running time that is quadratic in n while it is linear for JavaE�ekt
and JavaE�ektopt. Resuming in our implementations is linear in the number intermediate prompts,
while the other implementations are linear in the number of individual frames.

To measure the overhead of delimiting continuations, the Skynet benchmark30 recursively
spawns n fibers until m = 216 fibers are created at the leafs. In total, n logn (m) + 1 − 1

n − 1 fibers
are created. We also refer to n as the fanout. Each fiber recursively spawns fibers, performs
some computation, and finally aggregates the results. One fiber corresponds to one delimited
continuation. The Skynet variant never suspends, but just creates the fibers which immediately
return. The Skynet* variant in contrast suspends each fiber once before returning, resulting in
a continuation capture and resumption per fiber. Quasar and JavaFlow maintain one stack per
delimited continuation / fiber, each pre-allocating memory to store the function state. JavaFlow
additionally maintains one stack per primitive type and copies the stack on every resumption.
This leads to hundred thousands of arrays copies31. The Coroutines library is optimized for
one-shot continuations and large parts of the library are inlined in the generated bytecode. It
also does not suffer from its linear stack restoration in the Skynet benchmark since the stack
size of each fiber on suspension is at most one.

30https://github.com/atemerev/skynet
31In reaction to the first publication of our results (Brachthäuser et al., 2018), the authors of JavaFlow significantly

improved the performance of their library in general, and one-shot continuations in particular. We report the
updated results here.

126

https://github.com/atemerev/skynet

5.6. Performance of E�ekt

0

10

20

30

40

0 2500 5000 7500 10000

loop length

tim
e

(m
s)

Stateloop

0

10

20

30

40

2 4 6 8

layers of state

Countdown Flip

0.01

0.1

1

10

100

1,000

0 2 4 6 8 10 12

number of queens

NQueens

Time in ms (Confidence Interval)

Benchmark Baseline JavaE�ekt JavaE�ektopt ScalaE�ekt Scala E�
Stateloop (10k) 0.07 ±0.0 3.62 ±0.24 1.94 ±0.08 4.0 ±0.27 30.56 ±0.9
CountdownFlip (8) 0.03 ±0.0 4.02 ±0.1 3.73 ±0.17 2.72 ±0.14 37.73 ±1.0
NQueens (12) 121.83 ±0.98 936.17 ±13.44 935.81 ±29.65 1350.58 ±211.64 1933.68 ±32.18

Figure 5.12. Performance of effect libraries. Runtime in ms, lower is better.

5.6.2 Performance of the E�ect Library
To evaluate the performance of the overall framework, we compare our Java implementation
of JavaE�ekt with our implementation in Scala (ScalaE�ekt, Chapter 4), and the effect library
“Eff” (Torreborre, 2016), which we refer to as “Scala Eff” to avoid confusion with the language
Eff by Bauer and Pretnar (2015). Scala Eff is a library for functional programming with effects,
based on extensible effects and freer monads (Kiselyov and Ishii, 2015). The results of the
measurements can be found in Figure 5.12.

The Stateloop Benchmark uses a state effect to count down from a given number n. To allow
a better comparison with Scala Eff, both of our library implementations use the functional
state translation of Kammar et al. (2013) instead of our Stateful interface. The baseline
implementation directly uses mutable state.

The CountdownFlip benchmark layers one ambiguity effect over eight state effects (Kiselyov
and Ishii, 2015). It uses the state to count down from 1, 000 and flips once before returning.
The baseline does not model ambiguity but always returns true for flip.

NQueens is an effect library benchmark from the literature (Kammar et al., 2013). For the
baseline, we adopted a Java implementation found online32. The baseline makes use of mutable
state and arrays, whereas the other four implementations use control effects and immutable lists.
In both state benchmarks, Stateloop and CountdownFlip, our implementations use the

functional state translation. Of course we could also use our specialized state interface of
Section 5.3.3 instead. Using the Stateful interface in the CountdownFlip benchmark, for
JavaE�ekt and eight layers, the measured run time goes down to 0.22ms ± 0.02ms. Similarly,
for JavaE�ektopt, we measured 0.08ms ± 0.01ms – a speed up of about 46x compared to using
functional state.
32https://rosettacode.org/wiki/N-queens_problem

127

https://rosettacode.org/wiki/N-queens_problem

5. Java E�ekt – E�ectful Programming in Direct Style

The benchmarks indicate that the Java implementations of JavaE�ekt are on par with ScalaE�ekt.
Compared to Scala Eff, our implementations offer speed ups of 1.4-16x using functional state
and of 470x using our specialized state interface. Besides specializing state, we account the
biggest performance over Scala Eff, that tail resumptive operations can be dynamic method
calls in E�ekt. A similar finding has been reported by Leijen (2017b). Compared to ScalaE�ekt,
performance improvements might be related to inlining the monadic Scala code by bytecode
instrumentation and only capturing the continuation on demand (JavaE�ektopt).

5.7 Chapter Conclusion
We presented the first library for programming with effect handlers in direct style in Java.
We showed how such a library can be implemented in terms of a continuation-passing style
transformation and multi-prompt delimited continuations. Our continuation-passing style
transformation allows trampolining, multiple resumptions and is competitive in its performance.

128

Chapter 6

Scala E�ekt – E�ect Safety through Re-
gions

The implementations of E�ekt, as presented in the previous chapters, do not guarantee effect
safety. Capabilities can leak, which in turn leads to runtime errors.

In this chapter, we improve the involved (effect) types and present a variant of ScalaE�ekt
that supports effect safety and effect polymorphism. Our effect system guarantees that all
effects are eventually handled and runtime errors caused by leaked capabilities are statically
ruled out.

To the best of our knowledge, E�ekt, as presented in this chapter, is the first library
implementation of effect handlers that supports effect safety and effect polymorphism,
without resorting to type-level programming. We describe a novel way of achieving effect
safety in a library embedding by using intersection types and path-dependent types. The
effect system of our library design fits fits well into the programming paradigm of capability
passing and is inspired by the effect system of Zhang and Myers (2019). Capabilities carry
an abstract type member, which represents an individual effect type and reflects the use of
the capability on the type level. Handlers introduce capabilities and remove components of
the intersection type. Reusing the existing type system of Scala, we get effect subtyping
and effect polymorphism for free.

Let us recall our running example using our ScalaE�ekt library, presented in Chapter 4:

def drunkFlip(amb: Amb, exc: Exc) = for {

caught ← amb.flip()

heads ← if (caught) amb.flip() else exc.raise("Too drunk")

} yield if (heads) "Heads" else "Tails"

As before, effectful methods mention the effects they use as additional arguments (i.e., capabili-
ties). Handlers introduce a dynamic scope in which the corresponding capability can be used
– the handler region. However, it is not guaranteed that methods only acquire capabilities by
means of capability passing. For example, capabilities can be stored in references to be used

The contents of this chapter first appeared in: Jonathan Immanuel Brachthäuser and Philipp Schuster. 2017.
“Effekt: Extensible Algebraic Effects in Scala (Short Paper)”. In Proceedings of the 8th ACM SIGPLAN
International Symposium on Scala (SCALA 2017). ACM, New York, NY, USA, 67-72. DOI: https://doi.
org/10.1145/3136000.3136007

This chapter is closely based on an extended version that appeared in the Journal of Functional Programming:
Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. “Effekt: Capability-passing
Style for Type- and Effect-safe, Extensible Effect Handlers in Scala”. Journal of Functional Programming, 30,
E8 . DOI: https://doi.org/10.1017/S0956796820000027

129

https://doi.org/10.1145/3136000.3136007
https://doi.org/10.1145/3136000.3136007
https://doi.org/10.1017/S0956796820000027

6. Scala E�ekt – E�ect Safety through Regions

later – even outside of the handler region. This can lead to runtime exceptions and is a source
of unsafety.

In this chapter, we solve the problem of effect safety and present a variant of ScalaE�ekt that
statically prevents programs from using leaked capabilities outside of the handler region. We
repeat user programs of Chapter 4 and change their types, which are more precise now. This
also becomes visible in the inferred type of drunkFlip:

Result Type︷ ︸︸ ︷ Effect Typing︷ ︸︸ ︷
def drunkFlip(amb: Amb, exc: Exc): Control[String, amb.effect & exc.effect]

We describe a novel way of achieving effect safety in a library embedding by using intersection
types and path-dependent types (Odersky et al., 2006). The effect system of our library design
fits well into the programming paradigm of capability passing and is inspired by the effect system
of the λ -calculus by Zhang and Myers (2019). As we will see in Section 6.1, we represent
effect rows as the contravariant intersection of effect types, where an individual effect of a
capability (like amb) is represented by the abstract type member amb.effect33. Handlers remove
components of the intersection type. By reusing the existing type system of Scala, we get effect
subtyping and effect polymorphism for free.
By the nature of an embedding into a practical, but unsound host language (Amin and

Tate, 2016), type- and effect-safety of our library can only be guaranteed up to soundness of the
host language. Furthermore, we do not present formal proofs of soundness and safety, but the
design for a library implementation as an embedding into an existing, mainstream programming
language. Our effect system is based on λ – but we leave a formal treatment and corresponding
soundness proofs to future work. To enable a more direct comparison, Section 6.6.1 presents
a library embedding of the λ -calculus (Zhang and Myers, 2019) into Scala. While we do
not present formal proofs, from our experience of working with the library embedding, we are
confident it inherits the following properties from λ :

E�ect safety We embed an effect system, which makes sure that attempting to run a program
with unhandled effects lead to Scala type error. For example, we can only call run on a program
when all effects are handled and we reject programs like run { amb.flip() }. Like with systems
based on monadic regions (Launchbury and Sabry, 1997; Moggi and Sabry, 2001; Kiselyov and
Shan, 2008), capabilities can leave their defining handler scope. Our effect system only ensures
that they cannot be used outside their defining handler scope.

E�ect subtyping We use Scala’s support for subtyping of intersection types to implement effect
subtyping. A program with type Control[Int, exc.effect] can be used where a program of
type Control[Int, exc.effect & amb.effect] is expected.

E�ect polymorphism We use Scala’s support for polymorphism to express effect polymorphic
functions like, such as the following function adapted from Rytz et al. (2012):

def mapM[A, B, E](ls: List[A], f: A ⇒ Control[B, E]): Control[List[B], E]

Here, mapM is polymorphic in the effects E used by function f.

33Despite being written lowercase, effect is not different from other type members. We just render it as a
keyword to highlight its importance for our approach.

130

Existing implementations of languages with effect handlers either completely lack a static effect
system – this includes Multicore OCaml (Dolan et al., 2014), Eff (Bauer and Pretnar, 2015),
embeddings of Eff in OCaml (Kiselyov and Sivaramakrishnan, 2016), and previous versions of
E�ekt in Scala (Chapter 4) and Java (Chapter 5) – or they do not have sufficient support for
effect polymorphism (Kammar et al., 2013; Inostroza and van der Storm, 2018). Languages and
libraries with effect systems like Extensible Effects (Kiselyov et al., 2013), Koka (Leijen, 2017c),
Links (Hillerström et al., 2017), Frank (Lindley et al., 2017), and Helium (Biernacki et al., 2019)
require explicit lifting annotations to encapsulate effects in effectful higher order functions, like
the function mapM above. Without such manual liftings, the implementation detail of effects used
within mapM would leak into its type signature. In contrast, our effect safe version of ScalaE�ekt
requires no such manual lifting.
In summary, the contributions of this chapter are:

– For our implementation, we build on the operational semantics of Dybvig et al. (2007).
We achieve effect safety by generalizing techniques of Launchbury and Sabry (1997) to
nested regions (Kiselyov and Shan, 2008), and we use intersection types of abstract type
members (Parreaux et al., 2017) to express nesting of regions. Our effect system rules out
some use cases of multi-prompt delimited control (Kobori et al., 2016), but can express
many interesting use cases of effect handlers.

– We implement ScalaE�ekt as a thin layer on top of multi-prompt delimited continuations.
Importantly, we demonstrate how effect safety for effects and handlers follows from the
newly gained effect safety of our implementation of multi-prompt delimited continuations.

– We evaluate desirable properties like effect safety and effect parametricity of our library
embedding. We discuss limitations and potential solutions.

– To evaluate the expressive power of our effect system, we revisit examples of Chapter 4.
We show how they can safely be expressed. The programs do not have to change, only the
(effect) types are more precise now.

– We discuss interesting opportunities to explore type- and effect-safe modularization of
effectful programs, opened up by embedding E�ekt into Scala.

The remainder of this chapter is structured as follows. Section 6.1 identifies multiple sources
of unsafety. It then shows how to add effect safety to the implementation of delimited control
as presented in Section 4.2. Section 6.2 presents an effect-safe variant of our interface for
ambient state. In Section 6.3, we repeat the developments of previous chapters and express effect
handlers as a thin library on top of (now effect-safe) delimited control. We revisit examples
from previous chapters and show how to make them effect-safe. We discuss desirable properties
of our effect-system and potential threats in Section 6.5. Section 6.4 discusses the combination
of object-oriented programming and effect-safe handlers. Effect safety surfaces interesting new
encapsulation challenges. Section 6.6 discusses related work and concludes.

131

6. Scala E�ekt – E�ect Safety through Regions

6.1 E�ect-Safe Delimited Control
In Section 4.2, we have seen a version of Control that has one type parameter Result. By
also indexing the type Prompt with a type parameter Result, we statically track answer types
and guarantee that capturing and calling the continuation is type-safe (Gunter et al., 1995).
However, this version of Control is not effect-safe: capabilities can leave their handler region.
In particular, capabilities can close over prompts. Using a prompt outside of the dynamic scope
of the corresponding reset leads to a runtime error. We identify two ways to leave the scope of
reset.

1) Leaving the scope by returning We can leave the scope of reset by returning from it Osvald
et al. (2016). In this case it is possible to leak the prompt either through the heap

var p: Prompt[Unit] = null

val problem1 = run {

for {
_ ← reset { prompt ⇒ p = prompt; pure(()) }
_ ← shift(p) { resume ⇒ pure(()) } // Exception: Prompt not found

} yield ()

}

or by simply returning it as a result:

val problem2 = run {

for {

p ← reset { p ⇒ pure(p) }
_ ← shift(p) { resume ⇒ pure(()) } // Exception: Prompt not found

} yield ()

}

As observed by Osvald et al. (2016), both sources of leakage can also occur indirectly through
functions or objects that close over the prompt. Prompts might even leave the scope of the
enclosing run to then be used in the scope of a different run. Dybvig et al. (2007) use rank-2
types to prevent this particular source of error, but leave others to future work.

2) Leaving the scope by shifting We can also leave the scope of reset by means of control effects.

val problem3 = run {

reset { p ⇒
shift(p) { resume ⇒

shift(p) { resume ⇒ pure(()) } // Exception: Prompt not found

}

}

}

Due to our choice of −shift+, shifting to a prompt removes the enclosing reset. Consequently,
shifting a second time inside the body of shift results in a runtime error. The evaluation
context of the second call to shift is run { �} and does not contain any delimiters. Danvy

132

6.1. E�ect-Safe Delimited Control

and Filinski (1990) operationally prevent this kind of runtime error by leaving the outer reset
behind. However, in the setting of multiple prompts this is not sufficient. The delimiter can
also be removed by shifting to a different prompt:

val problem4 = run {

reset { p1 ⇒ reset { p2 ⇒
shift(p1) { resume ⇒

shift(p2) { resume ⇒ pure(()) } // Exception: Prompt not found

}

}}

}

We now introduce our implementation of an effect system that rules out the above four prob-
lematic programs, prevents the use of escaped capabilities, and guarantees effect safety. The
underlying problem our effect system solves is a general one: we need to restrict the lifetime of
a resource (capabilities in our case) to a certain dynamic region (the call to reset in our case).
This problem also occurs in the domain of region based resource management (Kiselyov and
Shan, 2008), object capabilities (Haller and Loiko, 2016), delimited control (Dybvig et al., 2007),
scope safety in type-safe meta programming (Parreaux et al., 2017), as well as with prompt
based implementations of effect handlers (as in Chapters 4 and 5). Our effect system is inspired
by the λ calculus (Zhang and Myers, 2019), which uses dependent types to track the set of
used labels (i.e., prompts and capabilities) in the effect type. In Section 6.5, we discuss some
properties of our effect system embedding, but leave formal proofs of safety and soundness to
future work. For a better comparison, Section 6.6.1 gives a more immediate embedding of λ
into Scala.

6.1.1 Tracking and Delimiting Prompt Usage
Following Zhang and Myers (2019), our effect system builds on the idea of tracking the set
of prompts that a program uses in its type. We represent prompts on the type level by their
singleton type (p.type, for some prompt p).

In Scala, a singleton type is only inhabited by that very value it refers to. Two (path-dependent)
singleton types (p1.type and p2.type) are equal, if and only if, their prefix paths (p1 and p2)
are stable and can be unified (Odersky et al., 2003; Odersky and Zenger, 2005b). That is, the
type checker treats p1.type and p2.type as equal types, if and only if, it can show that p1 and
p2 refer to the same immutable binding. This way, we prevent leakage via mutable references as
in problem1.

We use Scala’s intersection types to describe a set of prompts. For example, we would model
the term level set of prompts

val ps = Set(p1, p2, p3) by the type type Ps = p1.type & p2.type & p3.type

Term-level set union is represented as type-level intersection. We call programs that use prompts
effectful and consequently refer to types like Ps as “effect types” or simply as “effects”. As we
will see, effectful programs are contravariant in their effect type. The top of Scala’s subtyping
lattice (Any) describes the empty set. To emphasize this, we define the type alias

type Pure = Any

133

6. Scala E�ekt – E�ect Safety through Regions

trait Control[+A, -Effects] {

def map[B](f: A ⇒ B): Control[B, Effects]

def flatMap[B, FX](f: A ⇒ Control[B, FX]): Control[B, FX & Effects]

def andThen[B, FX](c: Control[B, FX]: Control[B, FX & Effects]

}

def pure[A](value: ⇒ A): Control[A, Pure]

def run[A](c: Control[A, Pure]): A

Figure 6.1. The effect-safe control interface – changes compared to Figure 4.2 are highlighted.
Type alias Pure defined in text.

and pure programs thus have an effect type Pure. Again, it is important to point out that the
purity only refers to delimited control. Programs with a pure effect row still can use side effects
like writing to files or accessing the network. The intersection of singleton types might not be
inhabited, but this is irrelevant for our use case. We only use the intersection type as a phantom
type to track used effects.

The Control Interface

To enable tracking of prompts (and effects in extension), Figure 6.1 revises the type Control and
adds a second type parameter Effects. As before, the type Control[+A, -Effects] is marked as
covariant in its first type parameter A. It is also marked as contravariant (Odersky et al., 2006)
in its second type parameter Effects to obtain the correct subtyping relation between effectful
programs. This also aligns well with our view that capabilities are obligations to the caller. By
contravariance, pure programs (that do not use any prompts) are a subtype of effectful programs
(that do use a non-empty intersection of prompt types). As an example, assuming prompts p1,
p2, and p3, we write the type of the effectful program that uses prompts p1 and p2 to compute
an integer as:

val prog1: Control[Int, p1.type & p2.type]

By (effect) subtyping, the effect type can be weakened

p1.type & p2.type & p3.type <: p1.type & p2.type

and thus the following assignment is valid:

val prog2: Control[Int, p1.type & p2.type & p3.type] = prog1

The type of Control.map shows that mapping pure functions does not add any new effects
to the set of effects. In contrast, the function passed to Control.flatMap can have additional
effects FX to produce a value of type B. The effects are aggregated using the intersection type
FX & Effects. Lifting computation into the control monad with pure has no control effects.
Dually, only programs without any unhandled control effects can be executed using run.

134

6.1. E�ect-Safe Delimited Control

trait Prompt[Result, Effects] {}

def reset[R, FX](prog: (p: Prompt[R, FX]) ⇒ Control[R, p.type & FX]): Control[R, FX]

def shift[A, R, FX](p: Prompt[R, FX])(

body: (A ⇒ Control[R, FX]) ⇒ Control[R, FX]

): Control[A, p.type]

Figure 6.2. The effect-safe prompt interface – changes compared to Figure 4.4 are highlighted.

6.1.2 The Prompt Interface – From Answer Type Safety to E�ect Safety
In the previous variant of Control (Chapter 4), prompts carried the answer type Result to
ensure that using control effects is type-safe (Gunter et al., 1995). To also make them effect-safe
and prevent programs like problem4 from type checking, the type Prompt (Figure 6.2) now
additionally contains a type parameter Effects.

trait Prompt[Result, Effects]

As before, prompts are introduced by reset.

def reset[R, FX](prog: (p: Prompt[R, FX]) ⇒ Control[R, p.type & FX]): Control[R, FX]

There are a few important aspects of our embedded effect system that become visible in this
type signature:

Ambient e�ects
The type parameter FX describes the set of ambient effects, which are available at the call
site to reset. Not surprisingly, the return type of the delimited program prog also signals
that the program can use these effects. Prompts now track both, the expected return type
Result and the set of ambient effects Effects available at the corresponding reset.

Prompt usage and intersection types
The type of prog is a dependent function type (Odersky, 2019b). As before in Section 4.2,
the program receives the fresh prompt as argument, which it may use in its body. However,
this fact is now also expressed in the program’s return type Control[R, p.type & FX].

Path dependency and safety
To guarantee safety, we have to make sure that the only way to remove a prompt type from
the intersection type is by delimiting the program with reset. To achieve this, the set of
effects of the program prog refers to p.type, a path-dependent singleton type (Odersky and
Zenger, 2005b). Different calls to reset lead to different singleton types that cannot be
unified on the type level (even if it would be the same object at runtime). Hence, only the
very call to reset that introduced a prompt can remove the prompt’s singleton type from
the effect type.

The return type of the control operator shift expresses the use of the prompt on the type level:

shift(p)(...): Control[A, p.type]

Tainting the set of effects with the singleton type rules out problematic programs program1 and
program2. In case of the first program, the prompt is stored in a mutable reference and used

135

6. Scala E�ekt – E�ect Safety through Regions

outside of the corresponding reset. In Scala, two (path-dependent) types are equal if and only
if their prefix paths are stable and they can be unified (Odersky and Zenger, 2005b). Informally,
a path is stable if it does not contain a mutable component. This way we prevent leakage via
mutable references as in problem1. The second program is also statically ruled out, since run

requires the set of effects to be empty. Furthermore, all attempts to delimit a program that uses
the prompt will fail: The singleton type of the prompt will not unify with the new delimiter.

As mentioned in Section 2.3, the body of a shift is conceptually evaluated at the position of
the corresponding reset. This is now reflected in its type, which is:

body: (A ⇒ Control[R, FX]) ⇒ Control[R, FX]

Both, the answer type R and the effects FX have to match with the ones at the corresponding
reset[R, FX]. Thus, capability-passing style is not only essential for operationally delimiting
control effects but also necessary to carry both the expected answer type as well as the available
effects from the reset to the shift that uses the prompt. Since the body of shift has to return
Control[R, FX], it cannot shift to the same prompt (as in problem3). This would require a type
of Control[R, p.type & FX]. The problematic program problem4 is ruled out too, since p1 has
type Prompt[Int, Pure]. The body of the first shift needs to be pure and cannot use p2.

To emphasize, we do not prevent leakage of prompts. Instead, we taint the effect type whenever
we perform shift on a prompt. This is reflected in the return type of shift (Figure 6.2). The
type Control[A, p.type] indicates the use of the prompt p on the type level. While we do not
prevent leakage, the type of run asserts that only pure programs can be executed. That is,
all prompts have to be delimited and the intersection has to be empty (Pure). The way we
achieve safety is similar to how rank-2 types can be used to enable type-safe monadic regions in
Haskell (Launchbury and Sabry, 1997; Moggi and Sabry, 2001; Kiselyov and Shan, 2008). In
those approaches, resources are indexed by a type parameter. To handle programs that use
resources, the state handler runST then requires that the type index can be quantified over
universally. Every user of a resource is “infected with the type of that state thread” (Launchbury
and Sabry, 1997, p. 229). Similarly, using a prompt p taints the effect row with the prompt’s
singleton type. By building on path-dependent types, we move the universal quantification from
the type level to the term level.

6.1.3 Structured Programming with E�ect-Safe Delimited Control
Equipped with our enhanced implementation of Control, we are now ready to revisit the
examples from Section 4.2 and assign effect types.

Example 1 - E�ect Typed
The first example (Danvy and Filinski, 1990) does not need to change. Only the type is a bit
more precise:

val ex: Control[Int, Pure] = reset { p: Prompt[Int, Pure] ⇒
shift(p) { k ⇒ k(100) flatMap { x ⇒ k(x) } } map { y ⇒ 10 + y }

} map { z ⇒ 1 + z }

It is now clear from the effect type that, after resetting, there are no more control effects left to
delimit. We can thus safely run ex.

136

6.1. E�ect-Safe Delimited Control

Example 2 - E�ect Typed
The second example illustrates how each reset removes its prompt from the set of effects.

val ex2: Control[Int, Pure] = reset { p1: Prompt[Int, Pure] ⇒
reset { p2: Prompt[Boolean, p1.type] ⇒
shift(p1) { k ⇒ pure(21) } // Control[Int, p2.type & p1.type]

} map { x ⇒ if (x) 1 else 2 } // Control[Int, p1.type]

} map { y ⇒ 2 * y } // Control[Int, Pure]

The body of the second reset has type Control[Int, p1.type & p2.type]. By effect subtyping,
we can use shift(p1) { ... }, which has type Control[Int, p1.type].

This example also highlights another important aspect of our effect-safe control operator:
prompts track the available effects at the definition site, not the use site. For instance, the
type of p2 informs us that within a body of shift(s2) { ... } the s1 prompt could be used. In
this case, the return type of shift(s2) would only mention s2.type, not s1.type. The potential
usage of s1 within the body is an implementation detail that is encapsulated at the definition
site. It does not leak to the use site of shift(s2).

Example 3 - E�ect Typed
Adding effect types to the third example is a bit more involved. In Section 4.2, we defined the
following type aliases (Figure 4.6a):

type Amb = () ⇒ Control[Boolean]

type Exc = String ⇒ Control[Nothing]

Without effect safety, it was sufficient to say that flip and raise use any control effects by
making them return for example Control[Boolean]. To establish effect safety, we now have to
be more specific. Figure 6.3a defines the effect signatures Amb and Exc as traits. Comparing the
traits to the equally named type aliases, we see a few differences:

1. Effect signatures inherit from the library trait Eff.
2. Effect operations are now named (that is, flip and raise are explicitly named methods)

whereas earlier we used the apply method that Scala generates for function types.
3. Effect operations refer to the type member effect, declared in Eff, in their return type.

Note that the reference to effect is short for this.effect (Odersky and Zenger, 2005b).

The last difference is especially important. Guided by the previous implementation, we know
that a handler will eventually use some effect to implement the effect operations of the effect
signature. The concrete effects used, however, are considered an implementation detail of the
handler. We thus hide this detail existentially (Mitchell and Plotkin, 1988; Rossberg et al., 2010)
behind a type member effect.

The use of these effects is now exactly as in the introductory example:

def drunkFlip(exc: Exc, amb: Amb): Control[String, amb.effect & exc.effect] =

for {

caught ← amb.flip()

heads ← if (caught) amb.flip() else exc.raise("Too drunk")

} yield if (heads) "Heads" else "Tails"

137

6. Scala E�ekt – E�ect Safety through Regions

trait Eff { type effect }

trait Exc extends Eff { def raise(msg: String): Control[Nothing, effect] }

trait Amb extends Eff { def flip(): Control[Boolean, effect] }

(a) Effect Signatures for exception and ambiguity.

def maybe[R, FX](prog: (e: Exc) ⇒ Control[R, e.effect & FX]): Control[Option[R], FX] =

reset { (p: Prompt[Option[R], FX]) ⇒
val exc = new Exc {

type effect = p.type

def raise(msg: String) = shift(p) { resume ⇒ pure(None) }

}

prog(exc) map { x ⇒ Some(x) }

}

(b) Handler function for the exception effect. Implementation of raise like in Figure 4.6b.

def collect[R, FX](prog: (a: Amb) ⇒ Control[R, a.effect & FX]): Control[List[R], FX] =

reset { (p: Prompt[List[R], FX]) ⇒
val amb = new Amb {

type effect = p.type

def flip() = shift(p) { resume ⇒ for {

xs ← resume(true)

ys ← resume(false)

} yield xs ++ ys }

}

prog(amb) map { x ⇒ List(x) }

}

(c) Handler function for the ambiguity effect. Implementation of flip like in Figure 4.6c.

Figure 6.3. Using effect-safe delimited control to declare and handle exception and ambiguity
effects. Effect type related changes compared to Figure 4.6 highlighted.

138

6.2. E�ect-Safe Ambient State

The implementation of handler functions is given in Figures 6.3b and 6.3c. The implementations
of raise and flip in the handler functions are exactly as in Figure 4.6, but we repeat them for
easier reference. However, we now assign types that are more precise! Handlers have to state
that they implement the effect signatures in terms of delimited control. This is achieved by
the type assignment type effect = p.type, which is necessary to unify amb.effect with p.type.
This way reset, which removes the p.type from the set of effects, also removes amb.effect.

To emphasize, the simple library trait Eff plays an essential role in abstracting over the
(control) effects used by a handler. This implementation detail is hidden from the handled
program. Its type only refers to the abstract type member effect, the concrete implementation
in terms of delimited control is hidden existentially.

With effect types assigned to maybe and collect, we are ready to handle our running example:

val res1 = run {

collect { amb ⇒
maybe { exc ⇒

drunkFlip(amb, exc) // Control[String, exc.effect & amb.effect]

} // Control[Option[String], amb.effect]

} // Control[List[Option[String]], Pure]

} // List[Option[String]]

6.2 E�ect-Safe Ambient State

As seen in Section 4.3, and pointed out by Kiselyov et al. (2006), the interaction between
delimited control and mutable state is subtle. The functional state translation of Kammar
et al. (2013) allows us to guarantee the correct backtracking behavior, even in presence of
handlers that call the resumption multiple times. However, the benchmarks of Section 5.6.2
suggest that using our specialized state interface offers significant speedups over using functional
state. Figure 6.4 defines the effect signature of our built-in state effect. Only the types are
more precise, compared to Figure 4.7b. As before, the interface Field is nested in the state
effect. However, it now refers to the outer effect’s type member effect. This way, all fields
created by calling the method Field share the same effect type (Leijen (2018b) also refers to
this parent effect as “umbrella effect”). Simply by nesting the types, we are able to express
scoped resources, whose lifetime is conceptually coupled to the outer effect. This allows creating
a dynamic number of fields, while maintaining the invariant that fields cannot escape the region
of the corresponding state handler.

Given the built-in handler region (Figure 6.4), we can again assign more precise types to the
equivalent example of Section 4.3:

collect { amb ⇒
region { state ⇒

val x = state.Field(0)

amb.flip() flatMap { b ⇒
if (b) x.put(2) else pure(())

} andThen x.get() // Control[Int, state.effect & amb.effect]

} // Control[Int, amb.effect]

} // Control[List[Int], Pure]

139

6. Scala E�ekt – E�ect Safety through Regions

trait State extends Eff {

def Field[T](init: T): Field[T]

trait Field[T] {

def get(): Control[T, effect]

def put(value: T): Control[Unit, effect]

def update(f: T ⇒ T): Control[Unit, effect]

}

}

def region[R, FX](prog: (s: State) ⇒ Control[R, s.effect & FX]): Control[R, FX] = ...

Figure 6.4. Effect-safe state effect – effect signature of the built-in state effect and its handler
region.

Like the delimiter for continuation capture (i.e., reset) creates a fresh prompt, the delimiter for
ambient state (i.e., region) creates a fresh instance of State. This instance can only be used in
the scope delimited by region, which is guaranteed by the types.

6.3 From E�ect-Safe Delimited Control to E�ect Handlers

In Section 6.1, we have seen how to make delimited control effect-safe. This allowed us to
safely re-implement our running example in the style of structured programming with delimited
continuations (Kammar et al., 2013). The handlers of the previous section were implemented as
anonymous inner classes. This style of implementing handlers precludes certain forms of reuse.

What is left, is the small step from structured programming with delimited control to effect
handlers. A step we have already taken twice in Sections 4.4 and 5.2.2 for our Scala and Java
implementations, correspondingly. Analogous to the previous chapters, we can express the
handler interface of E�ekt in terms of effect-safe multi-prompt delimited control. As explored
in Section 4.4, implementing handlers as traits opens up interesting new opportunities for
modularity and extensibility.

In this section, we define the missing Handler interface, revisit a selection of examples of
Chapter 4, and show how to implement them in our effect-safe variant of ScalaE�ekt. Not only
is it possible to implement all the examples of Chapter 4 in an effect-safe way, adding effect
types also makes important details visible that were previously hidden.

6.3.1 Programming with E�ect-Safe E�ect Handlers

Many handler implementations need to capture the delimited continuation and use delimited
control as an implementation effect. Figure 6.5b abstracts over this common mode of use in the
effect-safe definition of the Handler trait.

140

6.3. From E�ect-Safe Delimited Control to E�ect Handlers

class Maybe[R, FX] extends Exc with Handler[R, Option[R]] { type Effects = FX; ... }

class Collect[R, FX] extends Amb with Handler[R, List[R]] { type Effects = FX; ... }

(a) The two effect handlers are parametric in the effects FX.

trait Handler[R, E] extends Eff {

// Abstract members that need to be specified by implementing classes

type Effects

protected def unit(result: R): Control[E, Effects]

protected def use[A](

body: (A ⇒ Control[E, Effects]) ⇒ Control[E, Effects]

): Control[A, effect] = ...

def handle(

prog: this.type ⇒ Control[R, effect & Effects]

): Control[E, Effects] = ...

}

(b) The effect-safe handler interface. The abstract type member Effects describes the effects the
handler may use.

Figure 6.5. Implementation of effect handlers for Exc and Amb using the effect-safe library class
Handler – changes compared to Figure 4.3 are highlighted.

The E�ect-Safe Handler Interface

Most importantly, the library trait Handler declares the type member Effects, which represents
the implementation effects a handler uses besides delimited control. As we will see, handler
implementations override the type member to specify concrete effects. Inspecting the type
signatures of the three methods (i.e., unit, use, and handle) sheds some light on how a handler
can use the implementation effects.

The type of the method unit signals that the return clause can use the specified implementation
effects, but not the handled effect itself (effect).
The type of the method use shows that the body, which is passed to it, can use the imple-

mentation effects. Since the implementation effects are not handled by this handler, the type of
the continuation (A ⇒ Control[E, Effects]) also mentions Effects. As already pointed out in
Chapter 2, effect encapsulation is one of the most important aspects of effect handlers. The
effects at the handler site (Effects) are encapsulated by use whose return type only mentions
the effect of the handler itself (effect). This effect encapsulation is the only difference between
ambiently bound lambdas and ambient functions in Chapter 3.

Analogous to reset, the type of the method handle states that the current effect h.effect is
removed from the set of the effects used by prog. The implementation effects are not affected by
calling handle.

Figure 6.5 uses the effect-safe handler interface to, once more, implement the handlers Maybe
and Collect. The implementation of the methods stays the same. Only the types change. The
example handlers Maybe and Collect do not use any other effects. They are parametric in the
ambient effects FX, much like they are parametric in the answer type R. While the result type is

141

6. Scala E�ekt – E�ect Safety through Regions

provided as a type parameter to the handler, for the effects we use the type member Effects.
As we will see, this offers us some more flexibility, since type members can refer to other type
members of the same class, while type parameters cannot.

The E�ect-Safe Handler Implementation

As in the previous chapters, in our implementation of ScalaE�ekt, we implement the effect handler
interface by adding a field that stores a unique prompt marker:

val prompt: Prompt[E, Effects]

Unlike before, however, the type of the prompt marker now carries the additional information
about the effects at the handler site (Effects). For convenient handling, we again extend
our implementation of multi-prompt delimited continuations with the method resetWith. The
method bodies of use and handle are thus syntactically equivalent to the ones of Figure 4.8.
The Handler trait uses control-effects. In our effect-safe implementation, this also needs to be
declared on the type level:

type effect = prompt.type

Using this type equality, the implementations of use and handle can be type checked without
any modifications.
While with the Handler trait we aim to abstract over the implementation detail of multi-

prompt delimited control, the type member effect and its definition are part of the public
interface. Once fully implemented, the proposed Scala feature of opaque types will help us to
fully encapsulate this implementation detail (Osheim and Cantero, 2017).

6.3.2 Case Study: E�ect-Safe Cooperative Multitasking
Using our effect-safe handler interface, we can implement all the effects and handlers from the
Chapter 4, but most implementations are straightforward and do not bare much new technical
insight. However, two handler implementations surface interesting properties of our E�ekt
design and our effect system: the Poll handler (for the Fiber effect) and Scheduler handler
(for the Async effect). To recall, the handler for the Fiber effect does not explicitly capture the
continuation, but only uses other effects in its implementation. In contrast, the handler for the
Async effect does capture the continuation and additionally uses another effect (i.e., State).

We now revisit these two effects (cf. Section 4.4) and handlers and add effect types. As we
will see, adding effect types makes important details visible that were previously hidden.

The Scheduler Handler – Storing e�ectful computation

Figure 6.6 defines the effect-safe variants of the Fiber effect and its handler Scheduler. All
term-level implementations are left unchanged but are repeated for convenience.
Adding effect types to the Fiber effect signature (Figure 6.6a) exhibits an interesting detail.

The derived effect operation forked is a higher-order effect operation (Wu et al., 2014): it takes
a computation as argument. While it is higher-order, the effect types inform us that it is not a
handler. The computation passed as argument can have arbitrary effects FX. However, these
effects are left unchanged. They still appear in the return type of forked.

142

6.3. From E�ect-Safe Delimited Control to E�ect Handlers

trait Fiber extends Eff {

def suspend(): Control[Unit, effect]

def fork(): Control[Boolean, effect]

def exit(): Control[Nothing, effect]

def forked[FX](p: Control[Unit, FX]): Control[Unit, effect & FX] = for {

b ← fork()

r ← if (b) p andThen exit() else pure(())

} yield r

}

(a) The Fiber effect signature – the derived operation forked is polymorphic in ambient effects FX.

trait Scheduler[R, FX] extends Fiber with Handler[R, Unit] {

val state: State

type Effects = state.effect & FX

def unit(r: R) = pure(())

type Queue = List[Control[Unit, Effects]]

lazy val queue = state.Field[Queue](Nil)

def exit() = use { resume ⇒ pure(()) }

def fork() = use { resume ⇒
queue.update { resume(true) :: resume(false) :: _ } andThen run

}

def suspend() = use { resume ⇒
queue.update { _ appended resume(()) } andThen run

}

private def run: Control[Unit, Effects] = queue.get() flatMap {

case Nil ⇒ pure(())

case p :: rest ⇒ queue.put(rest) andThen p andThen run

}

}

(b) Handler for the Fiber effect – enqueued processes now have more precise types.

Figure 6.6. Effect-safe versions of the Fiber effect signature and the Scheduler handler. All
term-level implementations are unchanged.

143

6. Scala E�ekt – E�ect Safety through Regions

Also the types of the Poll handler (Figure 6.6b) are more precise now. By defining

type Effects = state.effect & FX

the handler implementation declares that it uses the state capability. Specializing the type of
use[A] to this handler implementation, we obtain for the argument body:

body: (A ⇒ Control[Unit, state.effect & FX]) ⇒ Control[Unit, state.effect & FX]

This shows two things. Firstly, the handler is allowed to use the state effect within the body
passed to use. Secondly, continuations captured with use also still have the state effect and
other ambient effects FX. One can easily make mistakes when implementing the scheduler
example without effect types. As before, the scheduler stores continuations in a queue to later
run them in a potentially different context (Dolan et al., 2017). The previous type of stored
computations (i.e., Control[Unit]) did not provide much information about when it is safe
to run. In the effect-safe implementation, the type of Queue needs to be more specific. It
now contains computations of type Control[Unit, state.effect & FX]. Importantly, since the
computation is indexed by the involved effect types, it cannot be used outside of the handler for
state. The handler function for the scheduler leaves the state effect open:

def scheduler[R, FX](st: State)(prog: (f: Fiber) ⇒ Control[R, f.effect & FX]) =

new Scheduler[R, E] { val state: st.type = st } handle { fiber ⇒ prog(fiber) }

The type refinement val state: st.type is necessary for a precise return type, which is inferred
to be Control[Unit, st.effect & FX]. Without the type refinement, the state handler could
not remove the state effect from the set of effects.

The Async Handler – Forwarding without Capturing

Also the improved types of the Async effect (Figure 6.7a) and its handler implementation
(Figure 6.7b) reveal some interesting details. Like the derived effect operation forked, the effect
operation async is higher-order and takes a computation. Its return type also mentions the effect
parameter FX, which suggests that promises contain effectful computations. Those computations
are conceptually evaluated at the original call site to async. Correspondingly, the signature of
await mentions no effects beside this.effect.

As mentioned before, handlers in E�ekt do not have to capture and use the continuation and
consequently do not have to inherit from the Handler trait. It is up to the handler implementation
to decide. Figure 6.7b repeats the implementation of the Poll effect handler but adds effect
types. The only necessary change is the definition of the type member effect:

type effect = state.effect & fiber.effect

Instead of extending the library trait Handler, the Poll handler directly implements the Async

effect in terms of the two effects State and Fiber. This is not possible in languages like Koka,
where every effect handler always has to capture the continuation. As before, the handler
function poll takes the two required capabilities to construct an instance of the handler Poll:

def poll[R, FX](s: State, f: Fiber)(prog: (a: Async) ⇒ Control[R, a.effect & FX])

= prog(new Poll { val state: s.type = s; val fiber: f.type = f })

144

6.3. From E�ect-Safe Delimited Control to E�ect Handlers

trait Async extends Eff {

type Promise[T]

def async[T, FX](prog: Control[T, FX]): Control[Promise[T], effect & FX]

def await[T](p: Promise[T]): Control[T, effect]

}

(a) The Async effect signature – promises contain effectful computations.

trait Poll extends Async {

val state: State; val fiber: Fiber

type effect = state.effect & fiber.effect

type Promise[T] = state.Field[Option[T]]

def async[T, FX](prog: Control[T, FX]) = for {

p ← pure(state.Field[Option[T]](None))
_ ← fiber.forked { prog flatMap { r ⇒ p.put(Some(r)) }

} yield p

def await[T](p: Promise[T]) = p.get() flatMap {

case Some(r) ⇒ pure(r)

case None ⇒ fiber.suspend() andThen await(p)

}

}

(b) Handler for the Async effect – using two effects State and Fiber.

Figure 6.7. Effect-safe versions of the Async effect signature and the Poll handler. All term-level
implementations are unchanged.

145

6. Scala E�ekt – E�ect Safety through Regions

By refining the types of state and fiber to singleton types, the inferred return type of poll is
Control[R, s.effect & f.effect & FX]. It thus communicates precisely that we implement the
Async effect in terms of the given state and fiber capabilities.

We are now ready to safely handle the example program asyncExample from Section 4.4. The
user program does not require any modifications.

region { s ⇒
scheduler[Unit, s.effect](s) { f ⇒

poll(s, f) { a ⇒
asyncExample(f, a) // Control[Unit, f.effect & a.effect]

} // Control[f.effect & s.effect]

} // Control[s.effect]

} // Control[Pure]

The effect types illustrate that the poll handler function removes the async effect (a.effect),
but adds the state effect (s.effect) to the set of effects. The scheduler handler function uses
the same state effect but in turn removes the fiber effect (f.effect). Finally, the region handler
handles the state effect. Type inference is not proficient enough to infer the removal of effects
and we need to annotate the effect type s.effect at the call to scheduler.
This concludes our presentation of effect-safe programming with effect handlers. In this

section, we have introduced the missing Handler interface, revisited some non-trivial example
usages, and showed how they can be expressed in effect-safe ScalaE�ekt.

6.4 Discussion: E�ect Handlers and Object Orientation
E�ekt is an embedding of effect handlers in a language with support for object-oriented program-
ming. Naturally, the question arises how these two features interact. We will now revisit this
combination in the light of our effect-safe implementation.

Object-oriented programming has a strong focus on encapsulation. In particular, the concrete
implementation of an object and its internal state is often hidden behind an interface (Can-
ning et al., 1989). That is, the implementation can differ with the granularity of a single
object. Another important feature is that objects are first-class and are typically stored on the
heap (Lindholm et al., 2015). In contrast, effects and handlers are tied to a stack discipline.
Effect handler implementations can capture parts of the stack as a continuation, handlers delimit
segments of the stack and effect typing asserts that these stack operations are safe.

Which effects are used by an object’s implementation can be seen either as part of the public
interface or as a private implementation detail. It is a design decision the programmer should
make. However, if the effects used by an object are hidden behind an interface, how can we
assert effect safety? For instance, if an object closes over a capability, the object’s lifetime
needs to be restricted to the capability’s lifetime (Osvald et al., 2016). Otherwise, the use
of the capability within the object might not be effect-safe. In this section, we will discuss
possible design choices when combining effect handlers with object-oriented programming, while
maintaining effect safety. The following interface will serve as a running example:

trait Person {

def greet(other: String): Unit

}

146

6.4. Discussion: E�ect Handlers and Object Orientation

Alternative 1. E�ects as Part of the Public Interface

An implementation of this interface might want to use the following effect to print the greeting
on the console.

trait Console extends Eff { def print(msg: String): Control[Unit, effect] }

However, the method greet as defined above does not mention the Console effect. Of course,
we can change the interface accordingly.

trait Person {

def greet(other: String)(out: Console): Control[Unit, out.effect]

}

Now, the Console effect is part of the public interface and all implementations of Person can
make use of it to implement method greet. The effect has to be handled by the caller of greet.
In this variant, it is possible to have multiple implementations of Person and store the instances
in data structures on the heap.

var p1: Person = new Person { ... }

var p2: Person = new Person { ... }

val ps = List(p1, p2)

Alternative 2. Hiding E�ects behind an Interface

Changing the interface of Person to mention the effects, which are used by a particular imple-
mentation, leaks implementation details. This problem also occurs with checked exceptions in
Java. We can think of Console as a checked exception that is not mentioned in the interface
of greet. Java programmers often resort to wrapping checked exceptions in unchecked ones to
work around this problem (Zhang et al., 2016). Sometimes, the exceptions our implementation
throws are considered implementation details that we might want to encapsulate. Similarly, in
E�ekt, we can hide the effects behind an abstract type member effect.

trait Person {

type effect

def greet(other: String): Control[Unit, effect]

}

An implementation of Person closes over the effect capabilities, just like the handlers from the
previous section.

class MyPerson extends Person {

val out: Console

type effect = out.effect

def greet(other: String) = out.print("Hello " + other)

}

This way, the lifetime of an object of type MyPerson is tightly coupled to the lifetime of the
capability out. Let us assume some handler withConsole for the Console effect:

147

6. Scala E�ekt – E�ect Safety through Regions

withConsole { o ⇒
...

val p = new MyPerson { val out: o.type = o }

...

}

The instance p must not be used outside the scope of the handler withConsole, which is ensured
by our effect system: out.effect is an abstract type that only unifies with this one particular call
to withConsole. As before, to eventually be able to handle the effects used by the implementation,
users thus always need to have stable paths to an object. In the following example p1 and p2
are arguments of method user. They have stable paths that can be used in the return type.

def user(p1: Person, p2: Person): Control[Unit, p1.effect & p2.effect] = for {
_ ← p1.greet("Alice")
_ ← p2.greet("Bob")

} yield ()

In general, the requirement of path stability (Odersky and Zenger, 2005b) excludes objects to
be stored in mutable references or in containers like lists. While we can store p1 in a reference,
the effect system will prevent us from running a program that calls an effectful methods on it.

Alternative 3. Grouping Objects by their E�ect Implementations

The first alternative requires all objects to use the same effects in their implementation and the
second alternative allows each object to individually differ in their effect implementation. Both
solutions also have drawbacks: the former constrains the implementer while the latter imposes
restrictions on the user. As a compromise between the two extremes, we can generalize over the
effect implementation and thereby group objects by their effect implementations.

trait Person[FX] {

def greet(other: String): Control[Unit, FX]

}

Like with abstract type members, implementing classes can instantiate FX to the desired
implementation effects. Like with the first alternative, objects of type Person[out.effect] leak
the implementation detail that they use the Console effect in their implementation. Users can
be parametric in the effect type of the particular implementation:

def user[FX](p1: Person[FX], p2: Person[FX]): Control[Unit, FX] = for {
_ ← p1.greet("Alice")
_ ← p2.greet("Bob")

} yield ()

While we now can store objects of type Person[FX] in mutable references or lists of type
List[Person[FX]], this requires all instances to have the same effect implementation. Like in
the second alternative, instances of type Person[out.effect] are coupled to the lifetime of the
corresponding capability out. If an implementation depends on more than one effect, it can only
be used in the intersection of the corresponding handler regions. Using path-dependent types,
our effect-system allows programmers to express this dependency on the type level.

148

6.5. Discussion: Properties of the E�ect System

6.5 Discussion: Properties of the E�ect System

Our effect system is based on the λ calculus by Zhang and Myers (2019). We embed their
calculus into the practical programming language Scala that has no full formal specification. It
is therefore not in the scope of this thesis to formally prove properties of our library embedding.
Nevertheless, in this section we discuss some properties of our embedded effect system and
explain under which assumptions we believe them to hold.

6.5.1 E�ect Safety
Effect safety is the absence of runtime errors, caused by capabilities being used outside of their
defining handlers. Assuming a sound subset of Scala, such as the pDot calculus (Rapoport and
Lhoták, 2019), we are confident that our effect system establishes effect safety – though we do
not give formal proofs. Adding mutable variables and fields should also not affect our effect
system which relies on stable, that is, immutable paths (Odersky and Zenger, 2005b). The same
also holds for native exceptions, though unlike JavaE�ekt, our library as presented in this chapter
is not prepared to interact with native exceptions. A formal treatment is left to future work.
In our experience, adding effect types to existing advanced case studies (such as the Scheduler

handler in Section 4.10) helped us to discover subtle bugs. The effect system also guided us in
the design of the interface for ambient state as presented in Section 6.2.

6.5.2 E�ect Subtyping
By marking the set of capabilities in Control as contravariant, we use Scala’s support for
subtyping of intersection types to express effect subtyping. This is an important advantage over
effect systems that encode effect rows using type-level lists. In those systems, effect subtyping
typically has to be implemented manually by performing type-level computation (Kiselyov and
Ishii, 2015). In contrast, using intersection types to express the set of effects integrates well with
other Scala features like variance annotations and type bounds. Type inference for monotonically
growing intersection types is well supported and in consequence, most return types of effectful
functions (like drunkFlip) and effect handlers (like maybe) can be omitted.

6.5.3 E�ect Polymorphism
We also reuse Scala’s support for type polymorphism to express effect polymorphic functions.
Rytz et al. (2012) give an example of an effect polymorphic, higher-order function:

def mapM[A, B, E](lst: List[A], f: A ⇒ Control[B, E]): Control[B, E]

The function mapM is effect polymorphic in the effects E used by function f. The return type of
mapM indicates that it potentially calls f in its implementation and so has the same effects as
f. The effects E still need to be handled by the caller of mapM. Handler functions like collect

and maybe (Section 6.1) are other examples for effect polymorphic functions. Type inference for
calling higher-order functions (like mapM) that do not alter the set of effects is well supported. In
contrast, nesting multiple handler applications (like collect and maybe) often requires explicit
effect annotations.

149

6. Scala E�ekt – E�ect Safety through Regions

6.5.4 E�ect Parametricity
The example function mapM is polymorphic in the effects E. Following Zhang and Myers (2019),
we claim that it should not be possible for the implementation of mapM to (accidentally) handle
any concrete effect in E; no matter what E will be instantiated to at the call site. That is, in
the following user program, we should be able to determine statically that flip is handled by
collect. No implementation of mapM should be able to violate this assumption.

collect { amb ⇒ mapM(List(1,2,3), n ⇒ amb.flip()) }

Zhang and Myers (2019) refer to this parametricity of effect polymorphism as abstraction safety .
Generally speaking, given a type of a function, parametricity of type polymorphism allows us
to infer properties of the function’s implementation (Reynolds, 1983; Wadler, 1989). In the
case of effect parametricity, we want to statically determine that a given higher-order function
cannot handle a particular effect. Otherwise, we speak of accidental handling . But does effect
parametricity hold for our implementation of E�ekt? The answer is subtler than in most other
implementations of effects and handlers because E�ekt is based on capability passing style and
multi-prompt delimited continuations. We need to distinguish two aspects of accidental handling.

Implementation abstraction Accidental handling of effects can occur in languages without static
effect systems like Eff (Bauer and Pretnar, 2015) and Multicore OCaml (Dolan et al., 2014). Those
languages dynamically search handlers at runtime. In those systems, mapM could (accidentally or
purposefully) handle Amb and, for example, change the semantics of flip to always return true.
Similarly, the presentations of E�ekt of Chapters 4 and 5 do not have static effect systems. Still,
they already support this aspect of effect parametricity. Capabilities are passed down to their
use site and not looked up at runtime. In our example, the function passed to mapM closes over
the capability amb, which fixes the implementation of flip.

Control-�ow abstraction Because E�ekt uses an implementation of multi-prompt delimited con-
tinuations, there is a second aspect of effect parametricity to consider. Looking at the example
call to mapM again, we would also like to be sure that the continuation captured by flip will
always be delimited by the corresponding call to collect and nowhere else. Because mapM does
not know about amb, it should not be possible for mapM to delimit the continuation captured by
amb.flip(). However, as we will see next, in E�ekt we can construct examples that violate this
property34.

Capturing the Delimiter by Capturing the Continuation
The following example uses the untyped λdcp calculus (Section 2.2) to illustrate (accidental)
delimiting of continuations.

def example() = resetexc { delimit (λ(). shiftexc { k ⇒ ”aborted” }); ”resumed” }

In the example, we use resetexc to delimit a program with a prompt exc. Within the range of
resetexc , we then use shiftexc to abort the current computation and return the string "aborted"

as the overall result. Assuming that delimit has no access to the prompt exc, we might want

34The observation of the loss of parametricity is due to an anonymous reviewer, who we are grateful for. The
reviewer also presented a counter-example, which, in adapted form, our analysis in this section builds on.

150

6.5. Discussion: Properties of the E�ect System

to reason statically, that the continuation captured by shiftexc is delimited by the surrounding
call to resetexc. Independent of the implementation of delimit , running the program should
always return the string "aborted". This neither holds in λdcp , nor in any of the versions of
E�ekt presented in this thesis. The following code illustrates how to violate this assumption.
Given some prompt r , we can define the function delimit :

def delimit(prog) = (shiftr { k ⇒ k(λ(). k(prog)) })();
resetr { example() }

The call to shiftr returns a computation (highlighted in grey). In particular, it returns a
computation that, when forced, calls the continuation again with the provided program prog . We
finally force this computation outside of the call to shift. Operationally, passing the continuation
to the continuation itself duplicates the evaluation context between the call to delimit and
(including) the call to resetr . Let us recall the operational semantics of lambdadcp (Section 2.2).
In particular, rule −shift+:

(−shift+) resetp { Hp [shiftp { k ⇒ e }] } −→ e[k → λx . resetp { Hp [x] }]

Evaluating the call to shiftp reifies the capture context Hp and binds it to k . Importantly,
the capture context Hp can contain arbitrary other delimiter frames resetp′ { �} where p 6= p′.
Calling the continuation reinstalls those delimiters. Given the above implementation of delimit ,
we have the following reduction:

resetr { Hr [delimit { e }] } −→∗ resetr { Hr [resetr { Hr [e] }] }

That is, in our example, the capture context contains the delimiter with prompt exc, which is

Hr = resetexc {� ; ”resumed” }]

If body now captures and discards the continuation, only the innermost copy of the context Hr is
removed. Hence, our example returns "resumed". To emphasize again, delimiting the extent of
the continuation captured by shiftexc is possible without direct access to the prompt marker exc.

Violating Control-Flow Abstraction in ScalaE�ekt
We can translate the above example to the effect-safe handler setting of ScalaE�ekt.

trait Delimit[R, E] extends Eff {

def delimited[FX](prog: Control[R, FX]): Control[Control[R, FX & E], effect]

def delimit[FX](prog: Control[R, FX]): Control[R, FX & E & effect] =

delimited(prog) flatMap { c ⇒ c }

}

The Delimit effect has a primitive effect operation delimited and a derived effect delimit. The
latter simply calls the former and forces the returned computation. The type parameter E

describes the set of effects at the handler – FX describes the set of effects at the call to delimit.
It is an effect polymorphic effect operation. We implement Delimit like before:

class Reset[R, E] extends Delimit[R, E] with Handler[R, R] {

def unit(result: R) = pure { result }

def delimited[FX](prog: Control[R, FX]) = use { k ⇒ k(k(prog)) }

}

151

6. Scala E�ekt – E�ect Safety through Regions

We do not need to thunk the result of k(prog) since it already is a computation of type
Control[R, FX & E]. Intuitively, all handlers of effects present in FX, but not present in E, are
duplicated by calling delimited. In the following example, we use the effect Delimit together
with the exception effect.

new Reset[Option[String], Pure] handle { r ⇒
new Maybe handle { exc ⇒

r.delimit {

exc.raise("Abort")

} map { _ ⇒ "Resumed" }

}

}

Like the above program in λdcp , the example returns Some("Resumed"). Importantly, the type of
the effect operation delimited does not mention the exception effect. Instead, it is parametric
in the effects FX. So why can it handle (or, to be more precise delimit) the exception effect? In
our embedding of E�ekt, the effect type of the continuation k does not represent the fact that it
captures delimiters. It only mentions the effects it uses not the ones it delimits35. However, the
loss of parametricity is not a threat to effect safety. Handlers are duplicated, not removed.

6.5.5 E�ect Encapsulation
Another property, effect encapsulation, is related to effect parametricity and can be observed in
languages featuring an ML-like type system with row-polymorphism for effect types like Koka
and Frank (Lindley, 2018; Leijen, 2018b). The following program is adapted from Leijen (2018b)
and written in the Koka language. It shows how an effect used by f1 leaks into its type – it is
not encapsulated.

fun f1(action: () → <exc|e> a): e option<a> { // types inferred

maybe { if (...) { raise("abort") }; action() }

}

Here, f1 is a higher-order function taking an effectful function action as argument. The
function f1 uses exceptions in its implementation but locally handles them with the maybe

handler. This implementation detail leaks as part of the inferred type, which states the fact
that exc effects of action will be handled by f1. Koka implements effect subtyping via row
polymorphism (Leijen, 2014), so the effect row of action() is unified with those of other
statements under maybe.

Manually Encapsulating E�ects

Operationally, Koka will handle any exception effect used in action with the maybe handler in f1.
We cannot hide this fact by annotating the parameter action of f1 with the type () → e a. This
does not type check. However, if we do not want any exceptions thrown by action to be handled
by maybe, languages like Koka and Frank offer some form of manual lifting operation (Biernacki
et al., 2017; Convent et al., 2020).

35This has been brought to our attention by the aforementioned, anonymous reviewer.

152

6.6. Related Work and Chapter Conclusion

fun f2(action: () → e a): e option<a> { // types inferred

maybe {

if (...) { raise("abort") }

inject<exc> { action() }

}

}

Manually injecting the exc effect into the effect row also has operational content as described
by Leijen (2018b): the runtime search for the exception handler will skip the next handler for
exc. Now the type of f2 truthfully states that it does not handle any effects in e – including
any exception effects.
In E�ekt, we can also express the two variants of the function f with different types:

def f1[A, E](action: (exc: Exc) ⇒ Control[A, exc.effect & E]): Control[Option[A], E]

def f2[A, E](action: () ⇒ Control[A, E]): Control[Option[A], E]

The type of f1 makes it clear that action has an unhandled exception effect, handled by f1.

6.6 Related Work and Chapter Conclusion
In this section, we discuss closely related work. In particular, we compare our approach of
achieving effect safety with others.

6.6.1 Abstraction-Safe E�ect Handlers via Tunneling
Both, the dynamic and static semantics of E�ekt is closely related to λ , presented by Zhang
and Myers (2019). Handling an effect with a handler h introduces a fresh label. Like prompts in
E�ekt, the label is used on the term level to delimit the scope of captured continuations. As
in the first presented versions of ScalaE�ekt (Brachthäuser and Schuster, 2017), capabilities in
λ are tuples of a label and the handler implementation. To ensure effect safety, Zhang and
Myers use a simple form of dependent types: Using an effect handler h introduces h.lbl in the
effect type, which is effectively a set of labels. The dependent label corresponds to the abstract
type member h.effect in ScalaE�ekt. Like in ScalaE�ekt, this dependent effect type can only
be discharged by the very same delimiter (denoted by ` e) that introduced the label. Due to
the embedding of E�ekt in Scala, prompts are first class while labels in λ are not first class.
Instead, the binding of a label and its use in a handler implementation is statically scoped.
Zhang and Myers formalize λ and show effect safety. However, they do not provide an

implementation of their calculus. We use intersection types and path-dependent types to encode
the ideas of the λ effect system and thereby make E�ekt effect-safe.
To facilitate comparison of λ with E�ekt, Figure 6.8 presents an embedding of the λ -

calculus (Zhang and Myers, 2019) into Scala. We use the Control monad to express the
operational semantics. We present a practical embedding into Scala and leave a formal translation
and corresponding soundness proofs to future work. However, assuming a sound subset of Scala
that corresponds to λ , we conjecture that our embedding faithfully models the calculus by
Zhang and Myers. In particular, the restriction to a subset of Scala excludes the use of mutable
state, recursive function definitions, recursive data-types, and exceptions. In addition, effect
signatures have to be declared on the top level and should neither use mixin composition, type

153

6. Scala E�ekt – E�ect Safety through Regions

type `[T, E] = Prompt[T, E]

trait F[A, B] { type lbl; def apply(arg: A): Control[B, this.lbl] }

class Handler[A, B, T, E, L <: `[T, E]](

val label: L,

val impl: A ⇒ (B ⇒ Control[T, E]) ⇒ Control[T, E]

) extends F[A, B] {

type lbl = label.type

def apply(arg: A) = shift(label) { k ⇒ impl(arg)(k) }

}

def [R, E](prog: (l: `[R, E]) ⇒ Control[R, l.type & E]): Control[R, E] = reset { prog }

def [A, B](f: F[A, B]): A ⇒ Control[B, f.lbl] = a ⇒ f.apply(a)

Figure 6.8. Using Control to embed the λ calculus into Scala.

members, type-bounds, subtyping, or any other advanced Scala feature.

Example To ease comparison with the original calculus, we use ` as the type of labels and F as
the type of effect signatures. Effect signatures F[A, B] only declare a single effect operation
with argument type A and return type B. For example, we can express the signatures of the
ambiguity and exception effect as:

trait Amb extends F[Unit, Boolean]

trait Exc extends F[String, Nothing]

Handlers, modeled by the class Handler, are pairs of labels and effect implementations36. In
this style, the handler for expressions can be expressed as:

def maybe[R, E](prog: (exc: Exc) ⇒ Control[R, exc.effect & E]) = { l ⇒
val exc = new Handler(l, msg ⇒ k ⇒ pure(None)) with Exc

prog(exc) map { r ⇒ Some(r) }

}

Calling an effect operation amounts to calling on the handler:

maybe { h ⇒ ... (h)("Failed!") ... }

While in the λ calculus, the operation performs the continuation capture, in the embedding
we perform the capturing in the implementation of Handler.apply by means of shift(l). This
is necessary to have the available answer types (T and E) in scope. We use subtyping (i.e.,
Handler <: F) to existentially hide the answer types and other implementation details of Handler
when passing capabilities of type F (or Exc and Amb to be precise).

36Like with the handlers of ScalaE�ekt, the field label needs to be refined to the singleton type l.type. That is,
the constructor calls requires annotation: new Handler[String, Nothing, Option[R], E, l.type](...).

154

6.6. Related Work and Chapter Conclusion

6.6.2 E�ect Safety by Region Safety
In ScalaE�ekt, we establish effect safety by ensuring that a capability cannot be used outside of
its handler region. The problem of ensuring region safety is a general one and a wide range of
solutions exist.

Safety formulti-promptdelimited control As in our presentation in Section 4.2, Dybvig et al. (2007)
guarantee answer type safety by indexing prompts with the expected answer type. Furthermore,
they use rank-2 types to prevent prompts from being used across different instances of run. But,
as they observe, this is not enough to achieve effect safety, which they explicitly leave to future
work. We generalize the idea of region safety and guarantee that capabilities cannot be used
outside of the scope that they are created in. Instead of rank-2 types, we use abstract type
members. This lets us easily nest scopes using intersection types. As of now, Dotty has better
support for path-dependent function types than for rank-2 types. For instance, we can use the
lambda syntax (e.g., amb ⇒ amb.flip()), which is currently not possible with rank-2 types.

Safety for e�ects Many languages with effect handlers base their effect system on some form of
row polymorphism. Prominent examples are Koka (Leijen, 2014), Frank (Lindley et al., 2017;
Convent et al., 2020), and Links (Hillerström and Lindley, 2016; Hillerström et al., 2017). In
contrast, effect-safe library embeddings like Extensible Effects (Kiselyov et al., 2013; Kiselyov
and Ishii, 2015) often use various forms of open union types (Swierstra, 2008) to track the list of
unhandled effects. In E�ekt, we index the monad for effectful computations with an intersection
of all capabilities effects used by the computation. This way, capabilities cannot be used outside
of their handler region.

Safety for resources To achieve resource safety, Kiselyov and Shan (2008) generalize from a
single region (Launchbury and Sabry, 1997; Moggi and Sabry, 2001) to multiple nested regions.
They achieve region polymorphism and region subtyping together with good type inference for
their library in Haskell. On the type level, they represent nested regions as a nesting of monad
transformers. In contrast, we represent nested delimiters by an intersection of abstract type
members. To achieve region polymorphism, they reuse Haskell’s polymorphism and to achieve
region subtyping they use Haskell’s type class instance search. To achieve effect polymorphism,
we reuse Scala’s polymorphism and to achieve subtyping we reuse subtyping for intersection
types built into Scala.

Safety for variable scopes Parreaux et al. (2017) apply a strategy very similar to ours in order to
implement scope safety in the context of type-safe meta programming. The type parameter Ctx
of their type Code[+Typ, -Ctx] is used to track the set of free variables. Addtionally, variables
have a type member that describes the scope the variable can be used in.

class Variable[A] {

type Ctx;

def substitute[T,C](pgrm: Code[T, Ctx & C], v: Code[A, C]): Code[T,C]

}

As can be seen from the type of substitute, substitution of free variables removes Ctx from the
intersection type and thus corresponds to handling of effects.

155

6. Scala E�ekt – E�ect Safety through Regions

Safety for capabilities Like in this thesis, Osvald et al. (2016) perform capability passing in
Scala: A capability serves as a constructive proof, that the holder is entitled to use the actions
associated with the capability. To prevent leaking of capabilities, Osvald et al. (2016) introduce
a type-based escape analysis as an alternative approach to traditional effect systems: arguments
to functions can be marked as second class (or “local”). The type checker then guarantees
that the capability cannot leave the dynamic scope of the function call. Liu (2016) presents a
different approach to capability based effect safety, by distinguishing between functions that can
capture capabilities and others that cannot (called “stoic”). In our design of E�ekt, we adopt
the capability passing of Osvald et al. (2016). Their approach of second class values might be
an interesting alternative to the effect system presented in this thesis. However, they are not
available in Scala, while our library can readily be used.

6.6.3 E�ect Parametricity
Our implementation of ScalaE�ekt does not guarantee effect parametricity due to accidental
delimiter capture (Section 6.5). Effect polymorphic effect operations like delimited may seem
contrived. However, effect polymorphic effect operations are essential to express examples
like Async.async (Figure 6.7a). Languages without support for effect polymorphic operations,
like λ or Koka cannot directly express this signature. To work around this limitation in
Koka, Leijen (2017a); fixes the set of effects used by asynchronous programs to io. We embed
E�ekt into Scala and use intersection types as sets of effects. This allows us to reuse Scala’s
type system for effects. However, as shown in Section 6.5, it also allows to violate control-flow
abstraction. We leave it to future work to estimate the impact of lost parametricity and to
implement strategies to restore it. We see two ways to restore parametricity in ScalaE�ekt –
both come with significant trade-offs.

Restricting e�ect signatures We conjecture that control-flow abstraction can be restored by
restricting the expressivity of effect signatures. Languages like Koka or the λ d oo’t sup-
port effect polymorphic effect operations and thus cannot express operations like delimited

(Section 6.6.1). In E�ekt, effect signatures are arbitrary traits and effect operations can use
Scala’s polymorphism to express effect polymorphism (e.g., type parameter FX in the signature
of delimited). This is not expressible in our embedding of λ (Figure 6.8). There, one effect
signature F[A, B] always only describes a single effect operation from type A to B, which excludes
effect polymorphic operations. While this may restore effect parametricity, this might exclude
many of the newly supported extensibility scenarios of Section 4.4.

Resuming continuations as e�ect To duplicate parts of the evaluation context and the delimiters
contained therein, the implementation of the effect operation delimit calls the continuation
with the continuation. It thus relies on the fact that the continuation can escape the scope of
the shift that captured it! We can prevent this by treating continuation resumption itself as an
effect:

trait Cont[A, R, FX] extends Eff { def resume(a: A): Control[R, effect & FX] }

def shift[A, R, FX](p: Prompt[R, FX])(

body: (k: Cont[A, R, FX]) ⇒ Control[R, k.effect & FX]

): Control[A, p.type]

156

6.6. Related Work and Chapter Conclusion

This way, the continuation can only be used within the scope of the body provided to shift.
While we believe that this solution restores parametricity, it also rules out handlers (e.g.,
Scheduler, Figure 4.9), which need to store the continuation to resume it later.

6.6.4 E�ect Handlers and Object-Oriented Programming
In Chapters 4 and 5, we started to explore the combination of effect handlers and object
orientation. However, those versions of E�ekt did not guarantee effect safety. The present chapter
shows how to add effect safety to E�ekt and support effect polymorphism. As highlighted in
Section 4.7.3, effect-safe programming with effect handlers in a language with objects comes
with new challenges – mediating encapsulation and flexible use of objects. Inostroza and van der
Storm (2018) also combine effect handlers and object orientation in the language JEff. In JEff,
the continuation takes an updated copy of the effect handler as additional argument, which
models dynamically scoped state (Kiselyov et al., 2006). It also allows to change the handler
implementation for the rest of the computation, similar to shallow handlers. The effect system of
JEff does not feature effect polymorphism and hence problems with effect encapsulation do not
arise. Inostroza and van der Storm (2018) present a static effect system for the language JEff.
However, in contrast to our embedded effect system, JEff does not support effect polymorphism.
In the simpler setting without effect polymorphic functions, violations of effect parametricity
are not a concern.

6.6.5 Conclusion
In this chapter, we presented E�ekt, a monadic library for programming with effect handlers in
Scala that features effect polymorphism, effect subtyping and effect safety. We use intersection
types and path-dependent types to track the set of effects a program might use. This allows us
to directly reuse Scala’s support for polymorphism for effect polymorphism and Scala’s support
for subtyping for effect subtyping. Combining effect-safe delimited control with object-oriented
programming both offers new ways to modularize effectful programs but also comes with new
challenges.

157

Chapter 7

Discussion and Conclusion
Effect handlers enable control-flow abstractions that are user-definable, modular, and compo-
sitional. In this thesis, we explored the modularity and extensibility opportunities gained by
combining effect handlers with object-oriented programming. First, we revised two important
aspects of effect handlers, delimited control (Chapter 2) and dynamic binding (Chapter 3) to
elaborate the operational and conceptual essence of effect handlers. Building on this foundation,
we presented a design to integrate effect handlers with object-oriented programming (Chapter 4).
We showed how to enable user programs to be written in direct-style (Chapter 5) and how to
establish effect safety (Chapter 6). In this chapter, we summarize the conclusions of the previous
chapters, highlight the most important aspects of each chapter, discuss some limitations, and
sketch potential future work.

Delimited control In the first part of this thesis, we revisited several different forms of delimited
control in the literature. We presented existing generalizations of delimited control in two steps
to arrive at effect handlers. These two steps helped us to highlight important characteristics of
effect handlers: First, the generalization from one control operator to a family of control operators
enables the safe use of multiple different effects in one program. With multi-prompt delimited
control, prompt markers can be used to uniquely describe the connection between a control
operator (shiftp) and its corresponding delimiter (resetp) without having to risk interference with
other operators and delimiters. Second, syntactically moving the implementation of a control
effect from the control operator to the delimiter simplifies reasoning about the continuation
usage. Maybe most importantly, it emphasizes that handlers perform effect encapsulation:
Handlers can use other control effects to implement effect operations. However, these control
effects are not evaluated at the call site of the implemented effect operation – they are evaluated
at the definition site of the handler. Effect handlers thus offer an interesting combination of
dynamic and static scoping. Handlers dynamically bind effect operations, but execute their
implementation in the static scope of their definition.

Dynamic binding Starting from dynamic binding (e.g., ambient values), we again performed
two steps of generalization to arrive at effect handlers. While the generalizations from delimited
control carried some insight, but no technical novelty – this is different for the generalization
from dynamic binding. In particular, the novel feature of ambient functions provides the same
aforementioned effect encapsulation that effect handlers provide, without the complexity of
delimited continuations. Avoiding this complexity bears fruit for both language implementors
and users. On the one hand, it is easier to efficiently implement ambient functions than it is to
implement ambient control. This is the case since ambient functions are always tail-resumptive,
which allows important optimizations (Leijen, 2017b). On the other hand, users can readily
apply their intuition about closure and lexical scoping to reason about effect encapsulation. In
the future, we hope to see more languages that will support this feature.

159

7. Discussion and Conclusion

E�ekt In the second part of this thesis, we presented E�ekt, a library design for effect handlers
that integrates well with object-oriented programming languages. Building on the insights from
the first part, we designed E�ekt around the concept of explicit capability-passing style as an
alternative to dynamic binding. Explicit capability-passing style has several advantages. Since
it only requires basic features, it is well supported by existing programming languages. Modern
implementations of the Java Virtual Machine offer a multitude of optimization strategies for
dynamic dispatch and virtual method calls such as polymorphic inline caches (Hölzle et al., 1991)
and inlining of monomorphic calls (Kotzmann et al., 2008). Explicit capability passing directly
benefits from these optimizations. Combining capability passing with multi-prompt delimited
control also gives rise to an alternative of expressing effect polymorphism (Osvald et al., 2016).
Lastly, capability passing helps us to understand effects as imposing an additional requirement
on the calling context, rather than a side effect that occurs in addition to computing the result.
In our effect-safe implementation, we used this insight and marked the type parameter Effect
on Control as contravariant.
The combination of effect handlers and object-oriented programming proved to be a fruitful
one. On the one hand, embedding effect handlers in an object-oriented programming offers
new ways to modularize effect handlers. On the other hand, having control effects and handlers
available in a language allows users to express user-defined control-flow constructs. Nevertheless,
the combination also comes with new challenges. If no special measures are taken, allocation
of objects and modification of fields has to be understood as global effects. In contrast, effect
handlers express control flow locally . They can use the captured continuation in non-linear ways,
potentially violating assumptions about global resources, such as heap-allocated objects. In
Section 4.3 we presented a specialized state handler to implement ambient state, which interacts
well with non-linear control flow. In particular, it implements the desired backtracking behavior,
when resuming a continuation multiple times. The solution of handlers with ambient state is
only a partial one as it only backtracks the handler state shallowly. In future work, it would be
interesting to develop a more holistic approach to integrate heap-state with effect handlers –
potentially following Leijen (2018b).

Direct-style E�ekt in Java We presented the first library design for programming with effect
handlers in Java. In contrast to our Scala implementations, programs in JavaE�ekt can be
written in direct style. We enable the direct style by applying a CPS transformation on the
level of bytecode. Our transformation reduces stack utilization by trampolining, performs
resumptions in constant time (in the stack-depth), supports multiple resumptions and is
competitive in its performance. In the future, once delimited continuations are natively supported
by the JVM (Pressler, 2017), the bytecode transformation backend could be switched to an
implementation in terms of native continuations. As of this writing, switching to the development
version of the native implementation still comes with performance penalties. More importantly,
it does not (yet) allow multiple resumptions.

E�ect-safe E�ekt in Scala To the best of our knowledge, we are the first to present an effect-safe
embedding of monadic, multi-prompt delimited control. Our effect-system is conservative and
excludes some programs that could be expressed safely without effect-types (Kobori et al., 2016).
Building on monadic delimited control, we then showed how to make our Scala implementation
of E�ekt effect safe. We use intersection types and path-dependent types to track the set of
effects a program might use. This allows us to readily reuse Scala’s support for polymorphism to
express effect polymorphism and Scala’s support for subtyping to express effect subtyping. Our

160

7.1. Future Work: E�ect-Safe and Direct-Style E�ekt

implementation supports effect encapsulation without manual lifting annotations, by building
on explicit capability passing and multi-prompt delimited control. Using singleton types and
intersection types also has limitations. Handling effects, that is, removing elements from the
intersection type, often requires explicit type and effect annotations. Forwarding of effects, that
is, handlers using other effects in their implementation, requires manual type refinements to
the corresponding singleton type. As we have seen in Chapter 6, this is necessary to unify
the path-dependent types. In the future, it would be interesting to investigate whether type
inference can be improved by either modifying Scala’s type system or our embedding of the
effect system. Furthermore, reusing type polymorphism in Scala to express effect polymorphism
allows users to express effect polymorphic effect operations. However, using those operations,
control-flow abstraction and effect parametricity can be violated.

7.1 Future Work: E�ect-Safe and Direct-Style E�ekt
We identified two major limitations of our E�ekt implementation in Chapter 4: user programs
have to be written in monadic style and the implementation does not guarantee effect safety.
We separately addressed the two issues in Chapters 5 and 6.

In the future, it would be interesting to combine the two solutions and obtain an effect-safe
embedding where user programs can be written in direct-style. However, Java’s type system is
not expressive enough to embed an effect system in the style of Chapter 6. In particular, it does
not support path-dependent types. We conjecture, the most promising way is to use the effect
system of ScalaE�ekt together with a CPS translation like the one presented in Chapter 5.

Since Scala does not support checked exceptions, one could instead use annotations to guide the
transformation (Rompf et al., 2009; Parallel Universe Software Co., 2013). Rompf et al. (2009)
implement delimited continuations as a Scala compiler plugin. They annotate effectful programs
with A @cps[B, C] denoting a computation that computes a result of type A and changes the
answer type from B to C (Rompf et al., 2009). Since annotations are not automatically propagated
(as opposed to checked exceptions in Java) Rompf et al. need to manually implement annotation
inference and checking of annotations. We could employ a similar strategy and instead of
the monadic type constructor Control[+A, -Effects] use an annotation A @effects[-Effects].
Using such an annotation based approach, our running example could be expressed as

def drunkFlip(amb: Amb, exc: Exc): String @effects[amb.effect & exc.effect] =

if (amb.flip()) {

if (amb.flip()) { "Heads" } else { "Tails" }

} else {

exc.raise("Too drunk")

}

Like the type constructor Control, the effects annotation could be indexed by a contravariant
intersection type to track the set of used effects.

161

7. Discussion and Conclusion

7.2 Future Work: E�cient Compilation of E�ect Handlers

Effect handlers allow high-level, user-definable, and composable control abstractions. However,
a significant runtime cost is associated with searching the correct handlers and capturing the
continuation. By means of capability passing, our implementations of E�ekt reduce the handler
search to a simple dynamic dispatch. Still, capturing the continuation involves a runtime
search through the (user level) stack. This becomes visible in our performance evaluation of
Section 5.6.2. Comparing the baseline, not using effects, with our optimized version of JavaE�ekt
suggests room for improvement of around 27x for the Stateloop benchmark and 7x for the
NQueens benchmark. Future work could investigate how to further improve the performance of
our effect handler implementations. There exist two lines of closely related work to minimize
the performance overhead of the abstraction of effect handlers: runtime optimizations and
compile-time optimizations.

Runtime optimizations
Some languages limit the expressivity of effect handlers to allow more efficient implementation
strategies in the language runtime. For example, Multicore OCaml originally only allowed
continuations to be called once to support efficient (and destructive) stack switching (Dolan
et al., 2014, 2013). Other languages detect usage patterns of the continuation, which then
can be supported more efficiently. In the Koka implementation, Leijen (2017b) syntactically
recognizes that the continuation is only used once in tail position to optimize capture /
resume sequences.

Compile-time optimizations
Leijen (2017c) uses effect types to distinguish pure from effectful computations and only
applies a CPS transformation to the latter. Pretnar et al. (2017) explore compile time
source-to-source transformation rules to implement an optimizing compiler for the language
Eff. The idea is to repeatedly apply rewrite rules in order to specialize effectful programs to
their handlers (Pretnar et al., 2017).

In previous work (Schuster and Brachthäuser, 2018), we explored an alternative strategy to
efficiently compile control effects. We started to adapt the approach as a compilation strategy
for effect handlers (Schuster et al., 2020), which we outline in the remainder of this subsection.
Our compilation strategy rests on the following observations: As pointed out in Chapter 2,
the semantics of a program with control-effects depends on the evaluation context (the stack).
The concrete stack can only be known at runtime. But, what if certain information about the
stack can be determined statically at compile time? In languages like Koka (Leijen, 2017c),
the stack carries both, the effect handler implementations as well as markers delimiting the
captured continuations. Both are part of the evaluation context, as discussed in Chapter 2. If
some of this information would be available at compile-time, can we use it to partially evaluate
(that is, specialize) the program? We distinguish the following two classes of potentially static
information:

Stack shape.
We might know in which order effect handlers will be present on the stack, when evaluating
a part of the program. We refer to this information as the shape of the stack. Statically
knowing the order in which effect handlers appear would allow us to specialize the control flow
and continuation capture. For instance, we could use this information to drive an iterated
CPS translation (Danvy and Filinski, 1990), that is, perform one CPS translation for every

162

7.3. Future Work: E�ectful Traversals and Modular Interpreters

handler in the stack shape. This is similar to the translation by Hillerström et al. (2017),
however, we propose to additionally also take the static ordering of effect handlers into
account. Like in the CPS hierarchy by Danvy and Filinski (1990), dynamic runtime search
for a delimiter could be replaced by direct composition of explicit continuation fragments.

Handler implementation.
We might know the concrete handler implementation that will be present on the stack
when evaluating a particular part of the program. This would allow inlining of the handler
implementations at the call site of the effect operation. Inlining the handlers not only removes
the runtime search for the handler implementation, but also potentially opens up further
local optimizations.

We believe that capability-passing style, as performed by E�ekt, can be an important step to
achieve handler inlining. Use staging annotations (Taha and Sheard, 1997) capabilities can be
marked as stage-time information. This is similar to how Kammar et al. (2013) use Haskell’s
support for inlining type-class dictionaries. In future work, it would be interesting to fully
develop the ideas into a compiler for a language with effect handlers like Koka. This will come
with interesting challenges, since in Koka, both the stack shape and handlers are not always
statically known. However, we believe that it is beneficial to start from the restricting assumption
that handlers and the stack shape are always statically known and guarantee full elimination of
the associated runtime costs. We conjecture that having to lift some of the restrictions that
come with this requirement will make the associated runtime costs explicit.

7.3 Future Work: E�ectful Traversals and Modular Interpreters

Often, interpreters for programming languages are structured as recursive functions over the
abstract syntax tree of the object language. If the recursion structure of the interpreter follows
the recursion structure of the object language, the traversal itself can be defined separately
as a fold . Maybe most importantly, separating the recursion structure from the computation
immediately gives rise to fusion of traversals (Meijer et al., 1991).

Often, interpreters for programming languages use computational effects of the host language
to express effects of the object language. Another way to model effects of the object language is
by monads (Wadler, 1995). Expressing effects with monads allows implementing interpreters in
host languages that do not support the effects of the object language.
The two approaches can be naturally combined to implement interpreters using effectful (or

monadic) folds (Meijer and Jeuring, 1995). This allows describing traversals that can be fused,
while being able to use effects not available in the host language. Object algebras (Oliveira and
Cook, 2012; Oliveira et al., 2013) are a recent way to describe folds in a modular and extensible
way. Different aspects of a traversal can be implemented in separate modules, while still allowing
some dependencies. Computations can access attributes computed on the current node and on
immediate child nodes. The following example, adopted from Oliveira et al. (2013), shows a
simple algebra for arithmetic expressions with numeric literals and addition:

trait ExpAlg[E] {

def lit(n: Int): E

def add(e1: E, e2: E): E

}

163

7. Discussion and Conclusion

Instead of constructing the recursive data structure, terms are represented by their church
encoding (i.e., ∀r . (ExpAlg [r] ⇒ r) ⇒ r) and are constructed by immediately calling into the
algebra (Barendregt, 1992; Oliveira and Cook, 2012).

In future work, it would be interesting to extend object algebras to support modular effectful
traversals. We believe that combining object algebras with effect handlers as presented in this
thesis is especially promising. Different components of effectful traversals can use different
monads with different semantic domains, which might be difficult to compose. In contrast, using
E�ekt the only necessary monad is Control and effectful algebras can easily be specialized to it:

type ExpEff[E] = ExpAlg[Control[E]]

Inostroza and Storm (2015) extend the object algebra approach to modularly propagate context
information (like a type-environment) through the traversal. Each traversal component can
depend on different aspects of the context. The framework of Inostroza and Storm (2015) hides
the necessary context composition and projections. The same approach could potentially be
used to propagate capabilities.

In prior work (Rendel et al., 2014), we extended the expressiveness of object algebras to also
allow dependencies on left siblings, encoding the full class of L-attributed grammars. This way,
object algebras can be used to modularly implement one-pass compilers. Using the results of
this thesis, traversals expressed with object algebras can also be effectful . That is, attribute
specifications can use control effects. Using the encoding techniques of Rendel et al. (2014)
together with the design for effect handlers, as presented in this thesis, it might be possible to
implement effectful one-pass compilers.
Combining tree traversals with delimited control effects is particularly interesting, since

it allows expressing non-local tree rewritings, such as let-insertion (Yallop, 2016, 2017) or
transformations to A-normal form (Thiemann, 1996). Similarly, it has recently been shown
by Wang et al. (2019) that delimited control operators can be used to express reverse-mode
automatic differentiation. Using effectful tree traversals, it might be possible to describe such
transformations as separate, reusable modules.

7.4 Future Work: Naturalistic DSLs and E�ectful Syntax
It is the goal of domain specific languages (DSLs) to bridge the conceptual gap between languages
used in the particular domain and the computer language domain experts use to solve the
domain problems (Hudak, 1996). Domain language is often close to natural (i.e., spoken)
language, making the task of DSL design particularly challenging (Lopes et al., 2003). Natural
language has the reputation of being lexically and syntactically ambiguous, having complicated
and context dependent binding structures, and often has non-trivial semantics, which rarely is
compositional.
In consequence, often DSLs are still far away from being close to natural language. This

is in particular the case for DSLs, which are embedded (Hudak, 1996) into a general-purpose
language. With embedded DSLs, the host language additionally imposes its own syntactical
restrictions and typing discipline on the DSL designer. Many limitations have been addressed in
their own line of work. Examples include syntax extensions as libraries (Erdweg et al., 2011;
Biboudis et al., 2016) and domain specific type system extensions (Lorenzen and Erdweg, 2016)).
However, non-context-free linguistic constructs are often neglected.

In about the last decade, many developments in modeling the semantics of natural languages

164

7.4. Future Work: Naturalistic DSLs and E�ectful Syntax

have been inspired by computer science and the theory of abstract machines and control op-
erators in particular. Importantly, Shan (2005) describes “noncompositional phenomena in
natural languages” as linguistic side effects. Delimited continuations have successfully been
used to model linguistic side effects, such as quantification, focus, and polymorphic coordina-
tion (Shan, 2004a, 2005; Barker and Shan, 2004). Mars̆ík and Amblard (2016) recently used
algebraic effects with handlers to give a compositional semantics to deixis (“John loves me”),
quantification with scope islands (“John loves every woman”), and implicature (“John, my best
friend, loves me”).

Implementors of (domain specific) programming languages often reside to effects to describe
the semantics of the language (Wadler, 1995). Inspired by the recent developments in natural
language semantics, we propose to follow Mars̆ík and Amblard (2016) and use effects and
handlers to describe the syntax of a DSL. In particular, we propose to group the different
syntactic constructs of a DSL according to the following aspects: (1) pure syntax , that can be
understood as compositional construction of the abstract syntax tree. (2) effectful syntax , that,
like linguistic side effects (Shan, 2005), (often) requires context for interpretation and results in
some form of non-local rewriting of the syntax tree. Effect operations can be used to express
effectful syntax. (3) binding syntax , which provides the necessary context. Binding syntax can
be expressed as effect handlers for effectful syntax.

7.4.1 E�ectful Syntax in Scala
Scala comes equipped with many features that allow designing elegant embedded DSLs (Moors
et al., 2012). Examples include infix notation of method application, implicit coercions, implicit
resolution, and techniques to extend classes retroactively with new methods (Odersky et al., 2006).
Using the results of this thesis, we can now additionally use effect handlers to implement
effectful DSLs. To illustrate the gained expressivity, we implement examples from Mars̆ík and
Amblard (2016) as an embedded domain specific language in Scala. Mars̆ík and Amblard (2016)
already use a calculus of effects and handlers to express the semantics. We simply translate the
examples to Scala, using ScalaE�ekt as presented in Chapter 6. We also use Scala implicits to
hide the details of capability passing (Section 4.6.1) and to focus on the application domain of
natural language.

The Speaker E�ect. We begin with a simple sentence that uses the speaker effect to refer to the
contextual speaker of the sentence:

def s1 given Speaker = John said { Mary loves me }

The declaration of sentence s1 requires an implicit parameter of type Speaker, which tells us
that the sentence uses the speaker effect:

trait Speaker extends Eff { def me(): Control[NominalPhrase, effect] }

Here, the type NominalPhrase is part of the abstract syntax tree of our DSL. Making capability
passing and other DSL implementation techniques explicit, the above example corresponds to:

def s1(s: Speaker) = s.me().map { p ⇒ Said(John, Loves(Mary, p)) }

The syntax tree describing the sentence can only be fully constructed, once the speaker is known.
The speaker effect can be handled locally by using the handler saidQuote:

165

7. Discussion and Conclusion

def s2 = John saidQuote { Mary loves me }

Again, making capability passing and other DSL implementation techniques explicit, the sentence
corresponds to:

def s2: Control[Sentence, Pure] = saidQuote(John) { s ⇒
s.me().map { p ⇒ Said(John, Loves(Mary, p)) }

}

The type of the sentence now suggests that no effect is left to be handled, and we can run the
sentence to obtain Said(John, Loves(Mary, John)).

The Scope e�ect. Passing down context information, as we did with the speaker effect, does
not require full handlers. In Koka we could use the feature of ambient values as presented in
Chapter 3. Likewise, in Scala, implicit parameters suffice to express this effect. Things become
more interesting when we consider the scope effect, which can be used to model universal
quantification (Mars̆ík and Amblard, 2016).

def s3 = scoped { John saidQuote { every(Woman) loves me } }

The effect operation every takes a predicate (i.e., Woman) and introduces a universal quantification
at the position of the handler scoped. It is declared in the signature of the Scope effect.

trait Scope extends Eff {

def every(pred: NominalPhrase ⇒ Sentence): Control[NominalPhrase, effect]

}

Running s3, we see that this leads to a systematic “rewrite” of the syntax tree, moving the
introduced binder and the predicate up to the handler:

I Forall(x ⇒ Implies(Woman(x), Said(John, Loves(x, John))))

Every invocation of the effect operation every introduces an additional quantifier. This non-
local rewriting of the syntax tree to introduce a binder is very similar to let-insertion (Yal-
lop, 2016, 2017). Yallop (2017) show how to use effect handlers to perform let-insertion.

With effectful syntax, we propose to revisit linguistic side effects (Shan, 2005) in the context
of domain specific languages. In particular, we propose to apply Mars̆ík and Amblard’s (2016)
idea of using effect handlers to model natural language semantics to embedded domain specific
languages. The library presented in this thesis enabled us to combine the expressivity of
Scala with the expressivity of effect handlers to modularly implement effectful syntax. We
conjecture that systematically using effect handlers and effectful syntax leads to user programs
that communicate the usage of linguistic features in their types, opens up new modularization
strategies for DSL implementations, and potentially offers improved error reporting and better
IDE support. We believe that effectful syntax opens up a new interesting perspective on the
design and implementation of naturalistic DSLs. In future work, it would be interesting to
explore the idea of effectful syntax on application domains like (financial) contracts (Peyton Jones
et al., 2000) or test specifications.

166

7.5. Conclusion

7.5 Conclusion
In this thesis, we addressed our goal to make the powerful program structuring technique of
effect handlers available to a wider audience in two ways.

Firstly, we provided a fresh perspective on effect handlers, viewing them as a combination of
delimited control and dynamic binding. Approaching effect handlers from dynamic binding, the
new feature of ambient functions emerged. Ambient functions are easier to understand and to
reason about than effect handlers since they do not manipulate the control flow. At the same
time, they show the same powerful effect encapsulation properties of effect handlers. The way
to approach handlers from dynamic binding and ambient functions as an intermediate form of
abstraction can make a significant difference in a wider adoption of effect handlers.
Secondly, we explored the design space of embedding effect handlers in existing mainstream

object-oriented programming languages. We have demonstrated that effect handlers can be
implemented efficiently on top of existing object-oriented languages. Our approach finally
enables programmers of object-oriented languages to also use effect handlers to structure their
programs. At the same time, it allows to use object-oriented programming techniques to structure
effect handlers. This way, our language design opens up previously unexplored dimensions
of extensibility. We presented a novel bytecode transformation, which enables writing user
programs of effect handlers in direct-style. The transformation makes significant use of closure
creation and is competitive in performance. Finally, we demonstrated a new way to achieve effect
safety in a library embedding of effect handlers. Using intersection types and path-dependent
types allowed us to model regions and establish that capabilities cannot be used outside of their
region. We are confident that our library design can guide the research on effect handlers towards
more modular and extensible language designs, regardless of the programming paradigm.

167

References
Dan Abramov. Algebraic effects for the rest of us, 2019. URL https://overreacted.io/algebraic-

effects-for-the-rest-of-us/. [Last access: 09-30-2019].

Michael Adams, Celeste Hollenbeck, and Matthew Might. On the complexity and performance of
parsing with derivatives. In Proceedings of the Conference on Programming Language Design and
Implementation, pages 224–236, New York, NY, USA, 2016. ACM.

Nada Amin and Ross Tate. Java and Scala’s type systems are unsound: The existential crisis of null
pointers. In Proceedings of the Conference on Object-Oriented Programming, Systems, Languages and
Applications, pages 838–848, New York, NY, USA, 2016. ACM.

Kenichi Asai and Yukiyoshi Kameyama. Polymorphic delimited continuations. In Proceedings of the
Asian Symposium on Programming Languages and Systems, pages 239–254, Berlin, Heidelberg, 2007.
Springer.

Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Revised Edition. North-Holland,
Amsterdam, The Netherlands, 1984.

Henk P. Barendregt. Lambda calculi with types. In Handbook of Logic in Computer Science (vol. 2):
Background: Computational Structures, pages 117–309. Oxford University Press, New York, NY, USA,
1992.

Chris Barker and Chung-chieh Shan. Continuations in natural language. Technical report CSR-04-1,
School of Computer Science, University of Birmingham, Birmingham, UK, 2004.

Andrej Bauer and Matija Pretnar. An effect system for algebraic effects and handlers. In International
Conference on Algebra and Coalgebra in Computer Science, pages 1–16, Berlin, Heidelberg, 2013.
Springer.

Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers. Journal of Logical
and Algebraic Methods in Programming , 84 (1): 108–123, 2015.

Tim Berners-Lee. The principle of least power, 2005. URL https://www.w3.org/2001/tag/doc/leastPower-

2005-12-19.html. [Last access: 10-09-2019].

Aggelos Biboudis, Pablo Inostroza, and Tijs van der Storm. Recaf: Java dialects as libraries. In
Proceedings of the Conference on Generative Programming and Component Engineering , pages 2–13,
New York, NY, USA, 2016. ACM.

Gavin Bierman, Claudio Russo, Geoffrey Mainland, Erik Meijer, and Mads Torgersen. Pause’n’play: For-
malizing asynchronous C#. In Proceedings of the European Conference on Object-Oriented Programming ,
pages 233–257, Berlin, Heidelberg, 2012. Springer.

Malgorzata Biernacka, Dariusz Biernacki, and Sergueï Lenglet. Typing control operators in the CPS
hierarchy. In Proceedings of the Conference on Principles and Practice of Declarative Programming ,
pages 149–160, New York, NY, USA, 2011. ACM.

169

https://overreacted.io/algebraic-effects-for-the-rest-of-us/
https://overreacted.io/algebraic-effects-for-the-rest-of-us/
https://www.w3.org/2001/tag/doc/leastPower-2005-12-19.html
https://www.w3.org/2001/tag/doc/leastPower-2005-12-19.html

References

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Handle with care: Relational
interpretation of algebraic effects and handlers. Proc. ACM Program. Lang., 2 (POPL): 8:1–8:30,
December 2017. ISSN 2475-1421.

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Abstracting algebraic effects.
Proc. ACM Program. Lang., 3 (POPL): 6:1–6:28, January 2019. ISSN 2475-1421.

Walter Binder, Jarle Hulaas, and Philippe Moret. Advanced Java bytecode instrumentation. In
Proceedings of the International Conference on Principles and Practice of Programming in Java, pages
135–144, New York, NY, USA, 2007. ACM.

Richard J. Boulton, Andrew Gordon, Michael J. C. Gordon, John Harrison, John Herbert, and John Van
Tassel. Experience with embedding hardware description languages in HOL. In Proceedings of the
International Conference on Theorem Provers in Circuit Design: Theory, Practice and Experience,
pages 129–156, Amsterdam, The Netherlands, 1992. North-Holland Publishing Co.

Jonathan Immanuel Brachthäuser and Philipp Schuster. Effekt: Extensible algebraic effects in Scala
(short paper). In Proceedings of the International Symposium on Scala, New York, NY, USA, 2017.
ACM. doi:10.1145/3136000.3136007.

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. Effect handlers for the
masses. Proc. ACM Program. Lang., 2 (OOPSLA): 111:1–111:27, October 2018. ISSN 2475-1421.
doi:10.1145/3276481.

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. Effekt: Capability-passing
style for type- and effect-safe, extensible effect handlers in Scala. Journal of Functional Programming ,
2020. doi:10.1017/S0956796820000027.

Jonathan Immanuel Brachthäuser and Daan Leijen. Programming with implicit values, functions, and
control. Technical Report MSR-TR-2019-7, Microsoft Research, 2019.

Jonathan Immanuel Brachthäuser, Tillmann Rendel, and Klaus Ostermann. Parsing with first-class
derivatives. In Proceedings of the Conference on Object-Oriented Programming, Systems, Languages
and Applications, New York, NY, USA, 2016. ACM. doi:10.1145/2983990.2984026.

Edwin Brady. Programming and reasoning with algebraic effects and dependent types. In Proceedings
of the International Conference on Functional Programming , pages 133–144, New York, NY, USA, 2013.
ACM.

Janusz A Brzozowski. Derivatives of regular expressions. Journal of the ACM (JACM), 11 (4): 481–494,
1964.

P. S. Canning, W. R. Cook, W. L. Hill, and W. G. Olthoff. Interfaces for strongly-typed object-oriented
programming. In Proceedings of the Conference on Object-Oriented Programming, Systems, Languages
and Applications, pages 457–467, New York, NY, USA, 1989. ACM.

Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. Finally tagless, partially evaluated. In
Proceedings of the Asian Symposium on Programming Languages and Systems, pages 222–238, Berlin,
Heidelberg, 2007. Springer LNCS 4807.

Robert Cartwright and Matthias Felleisen. Extensible denotational language specifications. In Masami
Hagiya and John C. Mitchell, editors, Theoretical Aspects of Computer Software, pages 244–272, Berlin,
Heidelberg, 1994. Springer Berlin Heidelberg.

Lukas Convent, Sam Lindley, Conor McBride, and Craig McLaughlin. Doo bee doo bee doo. Journal of
Functional Programming , 30: e9, 2020. doi:10.1017/S0956796820000039.

170

https://doi.org/10.1145/3136000.3136007
https://doi.org/10.1145/3276481
https://doi.org/10.1017/S0956796820000027
https://doi.org/10.1145/2983990.2984026
https://doi.org/10.1017/S0956796820000039

References

Nils Anders Danielsson. Total parser combinators. In Proceedings of the International Conference on
Functional Programming , pages 285–296, New York, NY, USA, 2010. ACM.

Oliver Danvy and Andrzej Filinski. Representing control: A study of the CPS transformation. Mathe-
matical Structures in Computer Science, 2 (4): 361–391, 1992.

Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts. DIKU Rapport 89/12,
DIKU, University of Copenhagen, 1989.

Olivier Danvy and Andrzej Filinski. Abstracting control. In Proceedings of the Conference on LISP and
Functional Programming , pages 151–160, New York, NY, USA, 1990. ACM.

Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dummies. a tool for automatic
formula manipulation with application to the Church-Rosser theorem. Indagationes Mathematicae, 34:
381–392, 1972.

Jack B. Dennis and Earl C. Van Horn. Programming semantics for multiprogrammed computations.
Commun. ACM , 9 (3): 143–155, March 1966. ISSN 0001-0782.

Stephen Dolan, Servesh Muralidharan, and David Gregg. Compiler support for lightweight context
switching. ACM Transactions on Architecture and Code Optimization (TACO), 9 (4): 36:1–36:25, 2013.
ISSN 1544-3566.

Stephen Dolan, Leo White, and Anil Madhavapeddy. Multicore OCaml. In OCaml Workshop, 2014.

Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and Anil Madhavapeddy. Effective
concurrency through algebraic effects. In OCaml Workshop, 2015.

Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy, KC Sivaramakrishnan, and
Leo White. Concurrent system programming with effect handlers. In Proceedings of the Symposium on
Trends in Functional Programming . Springer LNCS 10788, 2017.

Iulian Dragos, Antonio Cunei, and Jan Vitek. Continuations in the Java virtual machine. In Sec-
ond ECOOP Workshop on Implementation, Compilation, Optimization of Object-Oriented Languages,
Programs and Systems (ICOOOLPS 2007), Berlin, Germany, 2007. Technische Universität Berlin.

R. Kent Dybvig, Simon L. Peyton Jones, and Amr Sabry. A monadic framework for delimited
continuations. Journal of Functional Programming , 17 (6): 687–730, 2007.

Michael Eichberg and Ben Hermann. A software product line for static analyses: The OPAL framework.
In Proceedings of the 3rd ACM SIGPLAN International Workshop on the State of the Art in Java
Program Analysis, SOAP ’14, pages 1–6, New York, NY, USA, 2014. ACM.

Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann. Sugarj: Library-based
syntactic language extensibility. In Proceedings of the Conference on Object-Oriented Programming,
Systems, Languages and Applications, pages 391–406, New York, NY, USA, 2011. ACM.

Erik Ernst. Family polymorphism. In Proceedings of the European Conference on Object-Oriented
Programming , pages 303–326, London, United Kingdom, 2001. Springer LNCS 2072.

Kasra Faghihi. Coroutines – Java toolkit that allows you to write coroutines, 2015. URL https://

github.com/vsilaev/tascalate-javaflow. [Last access: 10-01-2019].

Matthias Felleisen. The theory and practice of first-class prompts. In Proceedings of the Symposium on
Principles of Programming Languages, pages 180–190, New York, NY, USA, 1988. ACM.

Matthias Felleisen. On the expressive power of programming languages. In Proceedings of the European
Symposium on Programming , pages 134–151. Springer, Berlin, Heidelberg, 1990.

171

https://github.com/vsilaev/tascalate-javaflow
https://github.com/vsilaev/tascalate-javaflow

References

Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD-machine, and the λ-calculus. In
Formal Description of Programming Concepts III , pages 193–217. Elsevier (North-Holland), Amsterdam,
1986.

Michael J. Fischer. Lambda calculus schemata. In Proceedings of ACM Conference on Proving Assertions
About Programs, pages 104–109, New York, NY, USA, 1972. ACM.

Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. On the expressive power of user-
defined effects: Effect handlers, monadic reflection, delimited control. Proc. ACM Program. Lang., 1
(ICFP): 13:1–13:29, August 2017. ISSN 2475-1421.

Daniel P. Friedman, Christopher T. Haynes, and Eugene Kohlbecker. Programming with continuations.
In Peter Pepper, editor, Program Transformation and Programming Environments, Berlin, Heidelberg,
1984. Springer-Verlag.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Publishing Co., Boston, Massachusetts, USA, 1995.

Steven E. Ganz, Daniel P. Friedman, and Mitchell Wand. Trampolined style. In Proceedings of the
International Conference on Functional Programming , pages 18–27, New York, NY, USA, 1999. ACM.

Benedict R. Gaster and Mark P. Jones. A polymorphic type system for extensible records and variants.
Technical Report NOTTCS-TR-96-3 , 1996.

James Gosling, Bill Joy, and Guy L. Steele. The Java Language Specification. Addison-Wesley Publishing
Co., Boston, MA, USA, 1996. ISBN 0201634511.

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java Language Specification
– Java SE8 Edition. Oracle America, Inc., Redwood City, CA, USA, 2015.

Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A generalization of exceptions and control in ML-like
languages. In Proceedings of the Conference on Functional Programming Languages and Computer
Architecture, pages 12–23, New York, NY, USA, 1995. ACM.

Philipp Haller and Alex Loiko. LaCasa: Lightweight affinity and object capabilities in Scala. In
Proceedings of the Conference on Object-Oriented Programming, Systems, Languages and Applications,
pages 272–291, New York, NY, USA, 2016. ACM.

Chris Hanson. MIT Scheme reference manual. Massachusetts Institute of Technology, January 1991.

Christopher T. Haynes and Daniel P. Friedman. Embedding continuations in procedural objects. ACM
Trans. Program. Lang. Syst., 9 (4): 582–598, October 1987. ISSN 0164-0925.

Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Obtaining coroutines from continuations.
Computer languages, 11 (3-4): 143–153, 1986.

Robert Hieb and R. Kent Dybvig. Continuations and concurrency. In Proceedings of the Second ACM
SIGPLAN Symposium on Principles & Practice of Parallel Programming , PPOPP ’90, pages 128–136,
New York, NY, USA, 1990. ACM.

Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing control in the presence of first-class
continuations. In Proceedings of the Conference on Programming Language Design and Implementation,
pages 66–77, New York, NY, USA, 1990. ACM.

Robert Hieb, R. Kent Dybvig, and Claude W. Anderson, III. Subcontinuations. Lisp Symb. Comput., 7
(1): 83–110, January 1994. ISSN 0892-4635.

172

References

Daniel Hillerström and Sam Lindley. Liberating effects with rows and handlers. In Proceedings of the
Workshop on Type-Driven Development , New York, NY, USA, 2016. ACM.

Daniel Hillerström and Sam Lindley. Shallow effect handlers. In Sukyoung Ryu, editor, Proceedings of
the Asian Symposium on Programming Languages and Systems, pages 415–435, Cham, 2018. Springer
International Publishing.

Daniel Hillerström, Sam Lindley, Bob Atkey, and KC Sivaramakrishnan. Continuation passing style for
effect handlers. In Formal Structures for Computation and Deduction, volume 84 of LIPIcs. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2017.

J.R. Hindley. The principal type scheme of an object in combinatory logic. Trans. of the American
Mathematical Society , 146: 29–60, Dec. 1969.

Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan Moors. Polymorphic embedding
of DSLs. In Proceedings of the Conference on Generative Programming and Component Engineering ,
pages 137–148, New York, NY, USA, 2008. ACM.

Urs Hölzle, Craig Chambers, and David Ungar. Optimizing dynamically-typed object-oriented lan-
guages with polymorphic inline caches. In Proceedings of the European Conference on Object-Oriented
Programming , pages 21–38. Springer, 1991.

Paul Hudak. Building domain-specific embedded languages. ACM Computing Surveys, 28 (4es),
December 1996. ISSN 0360-0300.

Paul Hudak. Modular domain specific languages and tools. In Proceedings of the Conference on Software
Reuse, pages 134–142. IEEE Computer Society Press, June 1998.

Pablo Inostroza and Tijs van der Storm. Modular interpreters for the masses: Implicit context
propagation using object algebras. In Proceedings of the Conference on Generative Programming and
Component Engineering , pages 171–180, New York, NY, USA, 2015. ACM.

Pablo Inostroza and Tijs van der Storm. JEff: Objects for effect. In Proceedings of the 2018 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software, Onward! 2018, New York, NY, USA, 2018. ACM.

G. F. Johnson and D. Duggan. Stores and partial continuations as first-class objects in a language and
its environment. In Proceedings of the Symposium on Principles of Programming Languages, pages
158–168, New York, NY, USA, 1988. ACM.

Mark P. Jones. A theory of qualified types. In Proceedings of the European Symposium on Programming ,
volume 582 of Lecture Notes in Computer Science, pages 287–306. Springer-Verlag, February 1992.

Mark P. Jones. Functional programming with overloading and higher-order polymorphism. In Johan
Jeuring and Erik Meijer, editors, Advanced Functional Programming , pages 97–136, Berlin, Heidelberg,
1995. Springer Berlin Heidelberg.

Ohad Kammar and Matija Pretnar. No value restriction is needed for algebraic effects and handlers.
Journal of Functional Programming , 27 (1), January 2017.

Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. In Proceedings of the International
Conference on Functional Programming , pages 145–158, New York, NY, USA, 2013. ACM.

Andrew Kennedy. Compiling with continuations, continued. In Proceedings of the International
Conference on Functional Programming , pages 177–190, New York, NY, USA, 2007. ACM.

173

References

David J. King and John Launchbury. Structuring depth-first search algorithms in Haskell. In Proceedings
of the Symposium on Principles of Programming Languages, pages 344–354, New York, NY, USA, 1995.
ACM.

Oleg Kiselyov. Incremental, undoable parsing in OCaml as the general parser inversion. Posted on the
OCaml mailing list, July 2007.

Oleg Kiselyov. Delimited control in OCaml, abstractly and concretely. Theoretical Computer Science,
435: 56–76, 2012.

Oleg Kiselyov and Hiromi Ishii. Freer monads, more extensible effects. In Proceedings of the Haskell
Symposium, pages 94–105, New York, NY, USA, 2015. ACM.

Oleg Kiselyov and Chung-chieh Shan. Functional pearl: Implicit configurations–or, type classes reflect
the values of types. In Proceedings of the Haskell Symposium, pages 33–44, New York, NY, USA, 2004.
ACM.

Oleg Kiselyov and Chung-chieh Shan. Lightweight monadic regions. In Proceedings of the Haskell
Symposium, Haskell ’08, New York, NY, USA, 2008. ACM.

Oleg Kiselyov and KC Sivaramakrishnan. Eff directly in OCaml. In ML Workshop, 2016.

Oleg Kiselyov and KC Sivaramakrishnan. Eff directly in OCaml. In Kenichi Asai and Mark Shinwell,
editors, Proceedings of the ML Family Workshop / OCaml Users and Developers workshops, volume 285
of Electronic Proceedings in Theoretical Computer Science, pages 23–58. Open Publishing Association,
2018. doi:10.4204/EPTCS.285.2.

Oleg Kiselyov, Chung-chieh Shan, and Amr Sabry. Delimited dynamic binding. In Proceedings of the
International Conference on Functional Programming , pages 26–37, New York, NY, USA, 2006. ACM.

Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible effects: An alternative to monad trans-
formers. In Proceedings of the Haskell Symposium, pages 59–70, New York, NY, USA, 2013. ACM.

Donald E. Knuth. Semantics of context-free languages. Mathematical Systems Theory , 2 (2): 127–145,
1968.

Ikuo Kobori, Yukiyoshi Kameyama, and Oleg Kiselyov. Answer-type modification without tears: Prompt-
passing style translation for typed delimited-control operators. arXiv preprint arXiv:1606.06379 , 2016.

James Koppel, Gabriel Scherer, and Armando Solar-Lezama. Capturing the future by replaying the
past (functional pearl). Proc. ACM Program. Lang., 2 (ICFP): 76:1–76:29, July 2018. ISSN 2475-1421.

Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas Rodriguez, Kenneth Russell,
and David Cox. Design of the Java HotSpot™ client compiler for Java 6. ACM Transactions on
Architecture and Code Optimization (TACO), 5 (1): 7:1–7:32, May 2008.

Ralf Lämmel and Ondrej Rypacek. The Expression Lemma. In Proceedings of the Conference on
Mathematics of Program Construction. Springer LNCS 5133, July 2008.

Peter J Landin. A generalization of jumps and labels. In Report, UNIVAC Systems Programming
Research, 1965.

John Launchbury and Amr Sabry. Monadic state: Axiomatization and type safety. In Proceedings of
the International Conference on Functional Programming , ICFP ’97, pages 227–238, New York, NY,
USA, 1997. ACM.

Daan Leijen. Extensible records with scoped labels. In Proceedings of the Symposium on Trends in
Functional Programming , pages 297–312, 2005.

174

https://doi.org/10.4204/EPTCS.285.2

References

Daan Leijen. Koka: Programming with row polymorphic effect types. In Proceedings of the Workshop
on Mathematically Structured Functional Programming , 2014.

Daan Leijen. Algebraic effects for functional programming. Technical report, MSR-TR-2016-29. Microsoft
Research technical report, 2016.

Daan Leijen. Structured asynchrony with algebraic effects. In Proceedings of the Workshop on Type-
Driven Development , pages 16–29, New York, NY, USA, 2017a. ACM.

Daan Leijen. Implementing algebraic effects in C. In Proceedings of the Asian Symposium on Programming
Languages and Systems, pages 339–363, Cham, Switzerland, 2017b. Springer International Publishing.

Daan Leijen. Type directed compilation of row-typed algebraic effects. In Proceedings of the Symposium
on Principles of Programming Languages, pages 486–499, New York, NY, USA, 2017c. ACM.

Daan Leijen. Algebraic effect handlers with resources and deep finalization. Technical Report MSR-TR-
2018-10, Microsoft Research, April 2018a.

Daan Leijen. First class dynamic effect handlers: Or, polymorphic heaps with dynamic effect handlers.
In Proceedings of the Workshop on Type-Driven Development , pages 51–64, New York, NY, USA, 2018b.
ACM.

Jeffrey R. Lewis, John Launchbury, Erik Meijer, and Mark B. Shields. Implicit parameters: Dynamic
scoping with static types. In Proceedings of the Symposium on Principles of Programming Languages,
pages 108–118. ACM, 2000.

P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns. Attributed translations. Journal of Computer and
System Sciences, 9 (3): 279–307, December 1974.

Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular interpreters. In Proceedings
of the Symposium on Principles of Programming Languages, pages 333–343, New York, NY, USA, 1995.
ACM.

Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual Machine Specification
– Java SE8 Edition. Oracle America, Inc., Redwood City, CA, USA, 2015.

Sam Lindley. Algebraic effects and effect handlers for idioms and arrows. In Proceedings of the Workshop
on Generic Programming , pages 47–58, New York, NY, USA, 2014. ACM.

Sam Lindley. Encapsulating effects. Dagstuhl Reports, 8 (4), 2018.

Sam Lindley, Conor McBride, and Craig McLaughlin. Do be do be do. In Proceedings of the Symposium
on Principles of Programming Languages, pages 500–514, New York, NY, USA, 2017. ACM.

Fengyun Liu. A study of capability-based effect systems. Master’s thesis, École Polytechnique Fédérale
de Lausanne, Switzerland, 2016.

Florian Loitsch. Exceptional continuations in JavaScript. In Workshop on Scheme and Functional
Programming , 2007.

Cristina Videira Lopes, Paul Dourish, David H. Lorenz, and Karl Lieberherr. Beyond AOP: Toward
naturalistic programming. In Proceedings of the Conference on Object-Oriented Programming, Systems,
Languages and Applications (Onward! track), Anaheim, 2003. ACM.

Florian Lorenzen and Sebastian Erdweg. Sound type-dependent syntactic language extension. In
Proceedings of the Symposium on Principles of Programming Languages, pages 204–216, New York, NY,
USA, 2016. ACM.

175

References

Jirka Mars̆ík and Maxime Amblard. Introducing a calculus of effects and handlers for natural language
semantics. In International Conference on Formal Grammar , pages 257–272. Springer LNCS 9804, 2016.

Marek Materzok and Dariusz Biernacki. Subtyping delimited continuations. In Proceedings of the
International Conference on Functional Programming , pages 81–93, New York, NY, USA, 2011. ACM.

John McCarthy. Recursive functions of symbolic expressions and their computation by machine, Part I.
Communications of the ACM , 3 (4): 184–195, 1960. doi:10.1145/367177.367199.

Erik Meijer and Johan Jeuring. Merging monads and folds for functional programming. In International
School on Advanced Functional Programming , pages 228–266. Springer LNCS 925, 1995.

Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with bananas, lenses,
envelopes and barbed wire. In Proceedings of the Conference on Functional Programming Languages
and Computer Architecture, pages 124–144. Springer-Verlag, 1991.

Albert R. Meyer and Mitchell Wand. Continuation semantics in typed lambda-calculi. In Workshop on
Logic of Programs, pages 219–224. Springer LNCS 173, 1985.

Matthew Might, David Darais, and Daniel Spiewak. Parsing with derivatives: A functional pearl. In
Proceedings of the International Conference on Functional Programming , pages 189–195, New York,
NY, USA, 2011. ACM.

Mark Samuel Miller. Robust Composition: Towards a Unified Approach to Access Control and Concur-
rency Control . PhD thesis, Johns Hopkins University, Baltimore, Maryland, USA, 2006. AAI3245526.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System
Sciences, 17: 248–375, 1978.

John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type. ACM Trans. Program.
Lang. Syst., 10 (3): 470–502, July 1988. ISSN 0164-0925.

Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the Symposium on
Logic in Computer Science, pages 14–23. IEEE, 1989.

Eugenio Moggi and Amr Sabry. Monadic encapsulation of effects: a revised approach (extended version).
Journal of Functional Programming , 11 (6): 591–627, November 2001.

Adriaan Moors, Tiark Rompf, Philipp Haller, and Martin Odersky. Scala-virtualized. In Proceedings of
the Workshop on Partial Evaluation and Program Manipulation, pages 117–120, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1118-2.

Luc Moreau. A syntactic theory of dynamic binding. Higher-Order and Symbolic Computation, 11 (3):
233–279, Sep 1998. ISSN 1573-0557.

Ana Lúcia De Moura and Roberto Ierusalimschy. Revisiting coroutines. ACM Trans. Program. Lang.
Syst., 31 (2): 6:1–6:31, February 2009. ISSN 0164-0925.

Martin Odersky. Towards Scala 3, 2018. URL https://www.scala-lang.org/blog/2018/04/19/scala-3.

html. [Last access: 09-30-2019].

Martin Odersky. The Scala language specification, 2.8, 2019a. URL https://docs.scala-lang.org/tour/

implicit-parameters.html. [Last access: 09-30-2019].

Martin Odersky. Dotty documentation – dependent function types, 2019b. URL https://dotty.epfl.

ch/docs/reference/new-types/dependent-function-types.html. [Last access: 09-15-2019].

176

https://doi.org/10.1145/367177.367199
https://www.scala-lang.org/blog/2018/04/19/scala-3.html
https://www.scala-lang.org/blog/2018/04/19/scala-3.html
https://docs.scala-lang.org/tour/implicit-parameters.html
https://docs.scala-lang.org/tour/implicit-parameters.html
https://dotty.epfl.ch/docs/reference/new-types/dependent-function-types.html
https://dotty.epfl.ch/docs/reference/new-types/dependent-function-types.html

References

Martin Odersky. Dotty documentation – given parameters, 2019c. URL https://dotty.epfl.ch/docs/

reference/contextual/given-clauses.html. [Last access: 09-15-2019].

Martin Odersky and Matthias Zenger. Independently extensible solutions to the expression problem. In
Proceedings of the Workshop on Foundations of Object-Oriented Languages, 2005a.

Martin Odersky and Matthias Zenger. Scalable component abstractions. In Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages and Applications, pages 41–57, New York, NY,
USA, 2005b. ACM.

Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger. A nominal theory of objects
with dependent types. In Luca Cardelli, editor, Proceedings of the European Conference on Object-
Oriented Programming , pages 201–224. Springer LNCS 2743, 2003. ISBN 978-3-540-40531-3.

Martin Odersky, Philippe Altherr, Vincent Cremet, Gilles Dubochet, Burak Emir, Philipp Haller,
Stéphane Micheloud, Nikolay Mihaylov, Adriaan Moors, Lukas Rytz, Michel Schinz, Erik Stenman, and
Matthias Zenger. The Scala language specification, 2.13, 2006. URL https://scala-lang.org/files/

archive/spec/2.13. [Last access: 09-30-2019].

Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos Biboudis, Heather Miller, and Sandro Stucki.
Simplicitly: Foundations and applications of implicit function types. Proc. ACM Program. Lang., 2
(POPL): 42:1–42:29, December 2017. ISSN 2475-1421.

Bruno C. d. S. Oliveira and William R. Cook. Extensibility for the masses: Practical extensibility with
object algebras. In Proceedings of the European Conference on Object-Oriented Programming , pages
2–27. Springer LNCS 7313, 2012.

Bruno C. d. S. Oliveira and Jeremy Gibbons. Scala for generic programmers. Journal of Functional
Programming , 20 (3–4): 303–352, October 2010.

Bruno C. d. S. Oliveira, Tijs van der Storm, Alex Loh, and William R. Cook. Feature-oriented
programming with object algebras. In Proceedings of the European Conference on Object-Oriented
Programming , pages 27–51. Springer LNCS 7920, 2013.

Bruno C.d.S. Oliveira, Tom Schrijvers, Wontae Choi, Wonchan Lee, and Kwangkeun Yi. The implicit
calculus: A new foundation for generic programming. In Proceedings of the Conference on Programming
Language Design and Implementation, PLDI ’12, pages 35–44. ACM, 2012.

Erik Osheim and Jorge Vicente Cantero. Scala improvement proces (SIP-35) - opaque types, 2017. URL
https://docs.scala-lang.org/sips/opaque-types.html. [Last access: 09-30-2019].

Leo Osvald, Grégory Essertel, Xilun Wu, Lilliam I González Alayón, and Tiark Rompf. Gentrification
gone too far? affordable 2nd-class values for fun and (co-) effect. In Proceedings of the Conference on
Object-Oriented Programming, Systems, Languages and Applications, pages 234–251, New York, NY,
USA, 2016. ACM.

Parallel Universe Software Co. Quasar, 2013. URL http://docs.paralleluniverse.co/quasar. [Last
access: 10-01-2019].

David. L. Parnas. On the criteria to be used in decomposing systems into modules. Communications of
the ACM , 15 (12): 1053–1058, 1972.

Lionel Parreaux, Antoine Voizard, Amir Shaikhha, and Christoph E. Koch. Unifying analytic and
statically-typed quasiquotes. Proc. ACM Program. Lang., 2 (POPL): 13:1–13:33, December 2017. ISSN
2475-1421.

177

https://dotty.epfl.ch/docs/reference/contextual/given-clauses.html
https://dotty.epfl.ch/docs/reference/contextual/given-clauses.html
https://scala-lang.org/files/archive/spec/2.13
https://scala-lang.org/files/archive/spec/2.13
https://docs.scala-lang.org/sips/opaque-types.html
http://docs.paralleluniverse.co/quasar

References

Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishnamurthi, and Matthias Felleisen. Contin-
uations from generalized stack inspection. In Proceedings of the International Conference on Functional
Programming , pages 216–227, New York, NY, USA, 2005. ACM.

Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing contracts: An adventure in
financial engineering (functional pearl). In Proceedings of the International Conference on Functional
Programming , pages 280–292, New York, NY, USA, 2000. ACM.

Simon L. Peyton Jones and John Launchbury. State in Haskell. Lisp and Symbolic Comp., 8 (4):
293–341, 1995.

Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Washburn. Simple
unification-based type inference for GADTs. In Proceedings of the International Conference on Functional
Programming , pages 50–61, New York, NY, USA, 2006. ACM.

Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Typed equivalence of effect handlers and delimited
control. In Formal Structures for Computation and Deduction, LIPIcs, pages 30:1–30:16. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2019.

Gordon Plotkin and John Power. Algebraic operations and generic effects. Applied Categorical Structures,
11 (1): 69–94, 2003.

Gordon Plotkin and Matija Pretnar. Handlers of algebraic effects. In European Symposium on
Programming , pages 80–94. Springer-Verlag, 2009.

Gordon D. Plotkin and Matija Pretnar. Handling algebraic effects. Logical Methods in Computer
Science, 9 (4), 2013.

Joe Gibbs Politz, Alejandro Martinez, Matthew Milano, Sumner Warren, Daniel Patterson, Junsong
Li, Anand Chitipothu, and Shriram Krishnamurthi. Python: The full monty. In Proceedings of the
Conference on Object-Oriented Programming, Systems, Languages and Applications, pages 217–232,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2374-1.

Ron Pressler. Loom Project: Fibers and Continuations for the Java Virtual Machine. OpenJDK
Project, HotSpot Group, September 2017. URL http://mail.openjdk.java.net/pipermail/discuss/

2017-September/004390.html.

Matija Pretnar, Amr Hany Shehata Saleh, Axel Faes, and Tom Schrijvers. Efficient compilation of
algebraic effects and handlers. Technical report, Department of Computer Science, KU Leuven; Leuven,
Belgium, 2017.

Aleksandar Prokopec. ScalaMeter, 2012. URL https://scalameter.github.io. [Last access: 10-01-2019].

Aleksandar Prokopec and Fengyun Liu. Theory and practice of coroutines with snapshots. In Proceedings
of the European Conference on Object-Oriented Programming , volume 109, pages 3:1–3:32. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2018.

Marianna Rapoport and Ondrej Lhoták. A path to DOT: formalizing fully-path-dependent types.
CoRR, abs/1904.07298, 2019. URL http://arxiv.org/abs/1904.07298.

Didier Rémy. Type inference for records in natural extension of ML. In Theoretical Aspects of
Object-oriented Programming , pages 67–95, Cambridge, MA, USA, 1994. MIT Press. doi:10.1.1.48.5873.

Tillmann Rendel, Jonathan Brachthäuser, and Klaus Ostermann. From object algebras to attribute
grammars. In Proceedings of the Conference on Object-Oriented Programming, Systems, Languages and
Applications, pages 377–395, New York, NY, USA, 2014. ACM. doi:10.1145/2714064.2660237.

178

http://mail.openjdk.java.net/pipermail/discuss/2017-September/004390.html
http://mail.openjdk.java.net/pipermail/discuss/2017-September/004390.html
https://scalameter.github.io
http://arxiv.org/abs/1904.07298
https://doi.org/10.1.1.48.5873
https://doi.org/10.1145/2714064.2660237

References

John C. Reynolds. Definitional interpreters for higher-order programming languages. In Proceedings of
the ACM annual conference, pages 717–740, New York, NY, USA, 1972. ACM.

John C. Reynolds. Types, abstraction and parametric polymorphism. In Proceedings of the IFIP World
Computer Congress, pages 513–523, Amsterdam, The Netherlands, 1983. Elsevier (North-Holland).

Tiark Rompf, Ingo Maier, and Martin Odersky. Implementing first-class polymorphic delimited
continuations by a type-directed selective CPS-transform. In Proceedings of the International Conference
on Functional Programming , pages 317–328, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-332-7.

Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. F-ing modules. In Proceedings of the 5th ACM
SIGPLAN Workshop on Types in Language Design and Implementation, pages 89–102, New York, NY,
USA, 2010. ACM.

Lukas Rytz, Martin Odersky, and Philipp Haller. Lightweight polymorphic effects. In James Noble,
editor, Proceedings of the European Conference on Object-Oriented Programming , pages 258–282, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

Tom Schrijvers, Bruno C.D.S. Oliveira, Philip Wadler, and Koar Marntirosian. Cochis: Stable and
coherent implicits. Journal of Functional Programming , 29, 2019.

Philipp Schuster and Jonathan Immanuel Brachthäuser. Typing, representing, and abstracting control.
In Proceedings of the Workshop on Type-Driven Development , pages 14–24, New York, NY, USA, 2018.
ACM. doi:10.1145/3240719.3241788.

Philipp Schuster, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. Compiling effect handlers
in capability-passing style. To appear in Proceedings of the International Conference on Functional
Programming, 2020.

Tatsurou Sekiguchi, Takahiro Sakamoto, and Akinori Yonezawa. Portable implementation of continuation
operators in imperative languages by exception handling. In Alexander Romanovsky, Christophe Dony,
Jørgen Lindskov Knudsen, and Anand Tripathi, editors, Advances in Exception Handling Techniques,
pages 217–233. Springer-Verlag, Heidelberg, Berlin, Germany, 2001.

Chung-chieh Shan. Delimited continuations in natural language. In Continuation Workshop, 2004a.

Chung-chieh Shan. Shift to control. In Proceedings of the 5th workshop on Scheme and Functional
Programming , pages 99–107, 2004b.

Chung-chieh Shan. Linguistic side effects. In Proceedings of the Symposium on Logic in Computer
Science. University Press, 2005.

Jeremy G. Siek and Andrew Lumsdaine. Essential language support for generic programming. In
Proceedings of the Conference on Programming Language Design and Implementation, PLDI ’05, pages
73–84. ACM, 2005.

Valery Silaev. Tascalate JavaFlow – continuations / coroutines for Java 1.5 - 11, 2015. URL https://

github.com/vsilaev/tascalate-javaflow. [Last access: 10-01-2019].

Dorai Sitaram. Handling control. In Proceedings of the Conference on Programming Language Design
and Implementation, pages 147–155, New York, NY, USA, 1993. ACM.

Dorai Sitaram and Matthias Felleisen. Control delimiters and their hierarchies. LISP and Symbolic
Computation, 3 (1): 67–99, Jan 1990.

Lukas Stadler, Christian Wimmer, Thomas Würthinger, Hanspeter Mössenböck, and John Rose. Lazy
continuations for Java virtual machines. In Proceedings of the International Conference on Principles
and Practice of Programming in Java, pages 143–152, New York, NY, USA, 2009. ACM.

179

https://doi.org/10.1145/3240719.3241788
https://github.com/vsilaev/tascalate-javaflow
https://github.com/vsilaev/tascalate-javaflow

References

Guy Lewis Steele Jr. Common Lisp. The Language, Second Edition. Digital Press, 1990.

Norihisa Suzuki. Inferring types in smalltalk. In Proceedings of the Symposium on Principles of
Programming Languages, pages 187–199, New York, NY, USA, 1981. ACM.

S. Doaitse Swierstra. Combinator parsing: A short tutorial. In Language Engineering and Rigorous
Software Development , pages 252–300. Springer, 2009.

Wouter Swierstra. Data types à la carte. Journal of Functional Programming , 18 (4): 423–436, July
2008.

Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations. In Proceedings of the
Workshop on Partial Evaluation and Program Manipulation, pages 203–217, New York, NY, USA, 1997.
ACM.

Peter J. Thiemann. Cogen in six lines. In Proceedings of the International Conference on Functional
Programming , pages 180–189, New York, NY, USA, 1996. ACM.

Eric Torreborre. Eff monad for cats, 2016. URL https://github.com/atnos-org/eff. [Last access:
09-24-2019].

Philip Wadler. Theorems for free! In Proceedings of the Conference on Functional Programming
Languages and Computer Architecture, pages 347–359, New York, NY, USA, 1989. ACM.

Philip Wadler. Monads for functional programming. In International School on Advanced Functional
Programming , pages 24–52. Springer, 1995.

Philip Wadler. The expression problem. Note to Java Genericity mailing list, November 1998.

Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc. In Proceedings of the
Symposium on Principles of Programming Languages, pages 60–76, New York, NY, USA, 1989. ACM.

Mitchell Wand. Continuation-based multiprocessing. In Proceedings of the Conference on LISP and
Functional Programming , LFP ’80, pages 19–28, New York, NY, USA, 1980. ACM.

Fei Wang, Daniel Zheng, James Decker, Xilun Wu, Grégory M. Essertel, and Tiark Rompf. Demystifying
differentiable programming: Shift/reset the penultimate backpropagator. Proc. ACM Program. Lang., 3
(ICFP): 96:1–96:31, July 2019. ISSN 2475-1421.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Inf. Comput., 115
(1): 38–94, November 1994.

Nicolas Wu and Tom Schrijvers. Fusion for free - efficient algebraic effect handlers. In Proceedings of
the Conference on Mathematics of Program Construction. Springer LNCS 9129, 2015.

Nicolas Wu, Tom Schrijvers, and Ralf Hinze. Effect handlers in scope. In Proceedings of the Haskell
Symposium, Haskell ’14, pages 1–12, New York, NY, USA, 2014. ACM.

Jeremy Yallop. Staging generic programming. In Proceedings of the Workshop on Partial Evaluation
and Program Manipulation, pages 85–96, New York, NY, USA, 2016. ACM.

Jeremy Yallop. Staged generic programming. Proc. ACM Program. Lang., 1 (ICFP): 29:1–29:29, August
2017. ISSN 2475-1421.

Yizhou Zhang and Andrew C. Myers. Abstraction-safe effect handlers via tunneling. Proc. ACM
Program. Lang., 3 (POPL): 5:1–5:29, January 2019. ISSN 2475-1421.

Yizhou Zhang, Guido Salvaneschi, Quinn Beightol, Barbara Liskov, and Andrew C. Myers. Accepting
blame for safe tunneled exceptions. In Proceedings of the Conference on Programming Language Design
and Implementation, pages 281–295, New York, NY, USA, 2016. ACM.

180

https://github.com/atnos-org/eff

	Introduction
	Thesis Overview and Contributions
	Effect Handlers in Perspective
	Effect Handlers and Object-Oriented Programming

	List of Papers and Publications
	 Effekt: Effect Handlers and Object-Oriented Programming
	Effect Handlers as a Monadic Library in Scala
	Effect Handlers via Bytecode Transformation in Java
	 Effekt in this Thesis

	From Dynamic Binding to Effect Handlers
	Ambient Functions in this Thesis

	Software Modularity
	Efficient Compilation of Effect Handlers

	Structure of the Thesis

	Effect Handlers in Perspective
	From Delimited Control to Effect Handlers
	Delimiting Control
	Four Variants of Delimited Control
	Delimiters and Modular Reasoning

	Families of Delimited Control Operators
	On the Choice of Prompts
	Static Hierarchies
	Multi-Prompt Delimited Control in Effekt

	From Delimited Control to Effect Handlers
	A Type System for Effect Handlers
	Semantic Soundness
	Proof of Semantic Soundness
	Proof of Subject Reduction
	Proof that Effects are Meaningful

	Related Work and Chapter Conclusion
	Delimited Control and Effect Handlers
	Comparison with Effect Handlers in Koka
	Chapter Conclusion

	From Dynamic Binding to Effect Handlers
	Ambient Values
	Ambient Values Operationally
	Ambient Values Summarized

	Ambient Functions
	Ambient Functions: Dynamic Binding with Lexical Scoping
	Ambient Functions Operationally
	A Novel Abstraction Mechanism
	Example: Depth-First Traversal

	Ambient Control
	Aborting Control
	Resuming Control
	Ambient Control Operationally
	Mutable Variables as Ambient Control

	Type-Safety of Ambient Values
	Effect Safety for Ambient Values
	Conservative Extension

	Effect Safety for Ambient Functions and Control

	Ambient Values and Ambient Functions as Ambient Control
	Translation to Ambient Control
	Type Preservation
	Preservation of Semantics

	Translating to Effect Handlers and Back
	Related Work and Chapter Conclusion
	Discussion: Ambient Values and Ambient Functions
	Conclusion

	Effect Handlers and Object-Oriented Programming
	Effekt – A Library Design
	Programming with Effect Handlers in Effekt
	Effect Signatures are Interfaces
	Effect Handlers are Implementations
	Handling with Control Effects
	Implementing Effect Handlers
	Design of the Effekt Library

	Delimited Control
	Delimiting Control
	Families of Delimited Control Operators
	Answer Type Safety
	Structured Programming with Delimited Control

	Ambient State
	Composing Effect Signatures
	Extending Effect Signatures
	Default Methods: Primitive vs. Derived Effect Operations
	Abstract Type Members: Effect Signatures as Module Interfaces
	Example: Asynchronous Programming

	Nested Traits: Families of Effectful Types
	Mixing Effect Signatures

	Composing Effect Handlers
	From Delimited Control to Effect Handlers
	The Effect Expression Problem
	Dimensions of Extensibility
	Adding new Handlers for an Effect
	Adding new Operations to an Effect

	Mixing Handlers – Horizontal Composition of Handlers
	Composition over Inheritance – Vertical Composition of Handlers
	Vertical Composition and Continuation Capture
	Example: Running Asynchronous Programs

	Composing Effectful Programs
	Implicits for Capability-Passing Style
	Implicit Parameters for Effectful Functions

	Binding Implicit Parameters
	Reducing the Overhead by Composition

	Related Work and Chapter Conclusion
	Capability-Passing Style
	Implementing Monadic Delimited Control
	Effect Handlers and Object-Oriented Programming
	Conclusion

	Java Effekt – Effectful Programming in Direct Style
	Programming with Effect Handlers in JavaEffekt
	Handling Effects
	Implementing Effect Handlers

	Implementing Effect Handlers for Java in three Steps
	Step 1: Type Selective CPS Transformation by Example
	Step 2: Delimited Continuations
	The Interface of Delimited Control
	Using Delimited Continuations
	A Splittable Stack Implementation
	Pushing a Prompt
	Capturing a Continuation

	Step 3: Implementation of the JavaEffekt Library

	Use Cases
	Handling Multiple Effects in one Handler
	Alternatives to Capability Passing
	Ambient State and Parametrized Handlers
	Case Study: Parsing
	Case Study: Generators
	Case Study: Cooperative Multitasking

	Implementation of the Type Selective CPS Transformation
	An Example with Jumps and Exceptions
	Translation of Methods
	Saving Function Local State
	Translation of Instructions

	Discussion and Related Work
	Continuations on the Java Virtual Machine

	Performance of Effekt
	Performance of the Bytecode Instrumentation
	Performance of the Effect Library

	Chapter Conclusion

	Scala Effekt – Effect Safety through Regions
	Effect-Safe Delimited Control
	Tracking and Delimiting Prompt Usage
	The Control Interface

	The Prompt Interface – From Answer Type Safety to Effect Safety
	Structured Programming with Effect-Safe Delimited Control

	Effect-Safe Ambient State
	From Effect-Safe Delimited Control to Effect Handlers
	Programming with Effect-Safe Effect Handlers
	The Effect-Safe Handler Interface
	The Effect-Safe Handler Implementation

	Case Study: Effect-Safe Cooperative Multitasking
	The Scheduler Handler – Storing effectful computation
	The Async Handler – Forwarding without Capturing

	Discussion: Effect Handlers and Object Orientation
	Alternative 1. Effects as Part of the Public Interface
	Alternative 2. Hiding Effects behind an Interface
	Alternative 3. Grouping Objects by their Effect Implementations

	Discussion: Properties of the Effect System
	Effect Safety
	Effect Subtyping
	Effect Polymorphism
	Effect Parametricity
	Capturing the Delimiter by Capturing the Continuation
	Violating Control-Flow Abstraction in ScalaEffekt

	Effect Encapsulation
	Manually Encapsulating Effects

	Related Work and Chapter Conclusion
	Abstraction-Safe Effect Handlers via Tunneling
	Effect Safety by Region Safety
	Effect Parametricity
	Effect Handlers and Object-Oriented Programming
	Conclusion

	Discussion and Conclusion
	Future Work: Effect-Safe and Direct-Style Effekt
	Future Work: Efficient Compilation of Effect Handlers
	Future Work: Effectful Traversals and Modular Interpreters
	Future Work: Naturalistic DSLs and Effectful Syntax
	Effectful Syntax in Scala

	Conclusion

