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ADP    adenosine diphosphate 

1,6-anhMurNAc  1,6-anhydro-N-acetyl muramic acid 

BAM    β-barrel assembly machinery 

bp    base pairs 

Ec    Escherichia coli 

EP    endopeptidase 

ESKAPE Enterococcus faecium, Staphylococcus aureus, Klebsiella 

pneumoniae, Acinetobacter baumannii, Pseudomonas 

aeruginosa and Enterobacter species 

EUCAST European Committee on Antimicrobial Susceptibility 

Testing 

GlcNAc   N-acetyl glucosamine 

IM    inner membrane 

LB    lysogeny broth 

LC-MS/MS   liquid chromatography tandem-mass spectrometry 

LFQ    label-free quantification 

LMM    low-molecular-mass 

LPS    lipopolysaccharide 

LT    lytic transglycosylase 

MDR    multidrug-resistant 

MIC    minimal inhibitory concentration 

MurNAc   N-acetyl muramic acid 

NPN    1-N-phenylnaphthylamine 

OM    outer membrane 

OMP    outer membrane protein 

Pa    Pseudomonas aeruginosa 

PBP    penicillin-binding protein 

PBS    phosphate-buffered saline 

PCR    polymerase chain reaction 

PG    peptidoglycan 

PPIase   peptidyl-prolyl cis/trans isomerase 

qRT-PCR   real-time quantitative polymerase chain reaction 
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Skp    seventeen kilodalton protein 

SurA    survival protein A 

T3SS    type III secretion system 

Tn    transposon 

TraDIS   Transposon-Directed Insertion Sequencing 

UDP    uridine diphosphate 

WHO    World Health Organisation 

WT    wild type 

Ye    Yersinia enterocolitica 
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Zusammenfassung 

 

Pseudomonas aeruginosa (Pa) ist ein Gram-negatives, fakultativ pathogenes 

Bakterium und einer der häufigsten Erreger bei nosokomialen Infektionen mit 

multiresistenten Bakterien. Pa wurde von der World Health Organisation (WHO) als 

einer der drei bakteriellen Erreger eingestuft, gegen die die Entwicklung neuer 

Antibiotika am dringendsten benötigt wird. Das Ziel dieser Arbeit war, neue 

Zielstrukturen in Pa für die Entwicklung von Adjuvantien zu finden. Im Gegensatz zu 

Antibiotika sind Adjuvantien nicht gegen überlebenswichtige Strukturen gerichtet mit 

dem Ziel, das Bakterium zu eliminieren, sondern gegen Resistenz-vermittelnde 

Mechanismen. Dadurch wäre es mit Adjuvantien möglich, die Resistenz gegen eine 

oder sogar mehrere Antibiotikaklassen aufzuheben und damit mehrere 

Therapieoptionen wieder verfügbar zu machen. 

Für das hohe Resistenzlevel von Pa sind hauptsächlich drei Mechanismen 

verantwortlich: die Undurchlässigkeit der Außenmembran, die Inaktivierung von 

Antibiotika durch Enzyme wie die β-Laktamase AmpC und die Expression von Efflux-

Pumpen. In den beiden Studien dieser Arbeit sollten Kandidaten für die Entwicklung 

von Adjuvantien identifiziert werden, die zum ersten und zweiten Mechanismus 

beitragen. 

In der ersten Studie wurde eine Transposonbank des multiresistenten Isolats ID40 

hergestellt, das durch eine Überproduktion von AmpC hochresistent ist gegenüber β-

Laktam-Antibiotika. Die Transposonbank wurde in Gegenwart von Cefepim oder 

Meropenem kultiviert und dann wurden mittels Transposon-Directed Insertion 

Sequencing (TraDIS) diejenigen Mutanten identifiziert, deren Sensitivität wieder 

hergestellt war. Neben vielen bekannten Resistenzgenen wurden 3 Gene, die beim 

Recycling von Peptidoglycan eine Rolle spielen, sowie ein uncharakterisiertes Gen 

als aussichtsreichste Kandidaten identifiziert, da sie für das Wachstum sowohl in 

Anwesenheit von Cefepim als auch von Meropenem notwendig waren. Die Deletion 

dieser Gene hatte eine stark reduzierte ampC-Expression und β-Laktamase-Aktivität 

zur Folge und dadurch eine wiederhergestellte Sensitivität gegenüber mehreren β-

Laktam-Antibiotika. Alle vier Gene sind vielversprechende Kandidaten für die 

Entwicklung von Adjuvantien für die Kombinationstherapie mit β-Laktam-Antibiotika 

von multiresistenten Pa-Stämmen. 
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In der zweiten Studie wurde der Einfluss von Proteinen untersucht, die den Einbau 

von Außenmembranproteinen in die Außenmembran fördern. Ein Mangel des 

periplasmatischen Chaperons SurA führte zu einer starken Veränderung in der 

Zusammensetzung der Außenmembranproteine,  verminderter Virulenz und erhöhter 

Sensibilität gegenüber verschiedensten Antibiotika. Daher könnte SurA eine gute 

Möglichkeit sein, die Virulenz von Pa zu reduzieren und die Sensitivität 

multiresistenter Stämme wiederherzustellen.  



Abstract 
 

3 
 

Abstract 

 

Pseudomonas aeruginosa (Pa) is a Gram-negative opportunistic pathogen and a 

frequent cause of nosocomial infection with multidrug-resistant (MDR) bacteria. Pa 

was classified as one of the three pathogens with the highest priority for the 

development of novel antibiotics by the World Health Organisation (WHO). The aim 

of this thesis was to identify novel targets in Pa for the development of antibiotic 

adjuvants. In contrast to antibiotics, adjuvants do not target structures essential for 

viability to directly eliminate a pathogen but the mechanism which confers resistance. 

Therefore, adjuvants could restore the sensitivity to one or even several classes of 

antibiotics and thereby restore several therapy options. 

The high resistance of Pa is mainly caused by three mechanisms: Low permeability 

of the outer membrane (OM), inactivation of antibiotics by enzymes like the β-

lactamase AmpC and the expression of efflux pumps. In two studies, the aim was to 

identify targets contributing to the first and the second mechanism. 

In the first study, a transposon (Tn) library was generated in the MDR isolate ID40, 

which is highly resistant to β-lactam antibiotics due to an overproduction of AmpC. 

The Tn library was grown in presence of cefepime or meropenem at the breakpoint 

concentration and then mutants with restored sensitivity were identified by 

transposon-directed insertion sequencing (TraDIS). Besides a lot of known resistance 

genes, we identified three genes involved in peptidoglycan (PG) recycling as well as 

a gene with unknown function as most promising candidates, since they were found 

to be necessary for growth in both the presence of cefepime or meropenem. Deletion 

of these genes led to strongly reduced ampC expression, β-lactamase activity and 

consequently to restored sensitivity against several β-antibiotics. All four candidates 

are promising targets for adjuvants for therapy in combination with β-lactam 

antibiotics in MDR Pa strains. 

In the second study, we investigated the impact of proteins promoting the insertion of 

outer membrane proteins (OMP) into the OM. Deprivation of the periplasmic 

chaperone SurA resulted in a drastically altered OMP composition, impaired 

virulence and enhanced sensitivity to various antibiotics. SurA could therefore serve 

as a target to reduce virulence of Pa and to restore antibiotic sensitivity in MDR 

strains.  
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Introduction 

 

Pseudomonas aeruginosa 

Pa is a Gram-negative, rod-shaped bacterium and one of the most frequent causes 

for nosocomial infections with MDR bacteria. It was first described by Carle Gessard 

in 1882 as an organism producing the pigment pyocyanin, which is responsible for 

the characteristic colour of Pa cultures (Gessard, 1984).  

Pa occurs ubiquitously and can be isolated from various environments like plants, 

animals, sinks, contact lens solutions and even from antiseptic solutions (Pollack, 

1995; Harris et al., 1984; Pitt, 1998). This ability allows Pa to colonize also medical 

environments and equipment like mechanical ventilation devices and catheters, 

which is one of the most important infection routes in nosocomial infections with Pa 

(Park et al., 2011; Willmann et al., 2014; Percival et al., 2015). Pa can be part of the 

human microbiome with colonization rates between 2.6 and 24 % of the intestinal 

tract (Morrison and Wenzel, 1984), which can exceed 50 % during hospitalization 

(Pollack, 1995).  

Colonization with Pa usually does not lead to infection in immunocompetent people. 

However, impaired immunity, cystic fibrosis or disruption of the intestinal microbiota 

by antibiotic treatment are risk factors for Pa infection (Morrison and Wenzel, 1984; 

Pollack, 1995; Bonten et al., 1999; Takesue et al., 2002; Williams et al., 2010). 

Therefore, Pa is a problem mainly in intensive care units (Richards et al., 1999; 

Spencer, 1996) causing bacteremia, pneumonia, wound or urinary tract infections 

(Page and Heim, 2009). The mortality rates can be very high, especially in sepsis 

and ventilator-associated pneumonia, where mortality rates of 30 % (Williams et al., 

2010) and up to 60 % (Page and Heim, 2009) have been observed. 

Pa displays a wide variety of virulence factors which contribute to infection. It is able 

to move in solution with its single polar flagellum as well as on solid surfaces using 

type IV pili. Type IV pili are in addition the most important adhesins of Pa, promoting 

adhesion to abiotic surfaces as well as to host cells and thereby play an important 

role in the course of infection (Kipnis et al., 2006; Kohler et al., 2000; Yeung et al., 

2009).  

After adhesion, Pa employs a lot of different effector proteins which are mainly 

secreted by one of the secretion systems. Effectors of the type I and type II secretion 

systems are secreted into the extracellular environment and mainly involved in the 
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degradation of extracellular matrix and complement proteins like the alkaline 

protease AprA (Laarman et al., 2012) and the elastases LasA and LasB 

(Mariencheck et al., 2003). But also the AB toxin exotoxin A is secreted by the type II 

secretion system which causes the adenosine diphosphate (ADP)-ribosylation of 

elongation factor 2 of the host cell leading to apoptosis (Jenkins et al., 2004). The 

most important effectors for virulence of Pa are secreted by the type III secretion 

system (T3SS), which has been shown to be crucial for virulence (Schulert et al., 

2003; Shaver and Hauser, 2004; Roy-Burman et al., 2001). The effectors ExoY, 

ExoT, ExoS and ExoU of the T3SS are directly injected into the host cell. Pa strains 

produce either ExoS or ExoU, whereas ExoU is estimated to be 100 times more 

potent than ExoS (Kipnis et al., 2006; Hauser, 2009; Gellatly and Hancock, 2013). 

The induction of cell death by these different effectors probably aims to cause 

breaches in the epithelial barrier and allow Pa to reach deeper tissue (Hauser, 2009). 

Additional important virulence factors are pyocyanin, which causes oxidative stress to 

the host by disrupting the host catalase (Gellatly and Hancock, 2013; Lau et al., 

2004), iron chelators like pyoverdine and lipopolysaccharide (LPS), which plays an 

important role in sepsis (Ramachandran, 2014). Moreover, Pa is able to produce 

biofilm providing protection against antibiotics (Hall-Stoodley and Stoodley, 2009; 

Lieleg et al., 2011). Biofilm formation is particularly problematic in patients suffering 

from cystic fibrosis, where biofilm together with thickened mucus in the lung and 

multidrug resistance of Pa make treatment extremely difficult (Donlan and Costerton, 

2002). 

 

Antibiotic resistance mechanisms 

The prevalence of MDR Pa strains is rising despite the use of combination therapies 

(Lister et al., 2009; Moore and Flaws, 2011) and poses a serious threat for 

immunocompromised and hospitalized people. In more and more cases colistin 

serves as antibiotic of last resort despite its heavy side effects (Livermore, 2002; 

Biswas et al., 2012). Pa belongs to the group of ESKAPE pathogens (Enterococcus 

faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, 

Pseudomonas aeruginosa and Enterobacter species) and carbapenem-resistant Pa 

was rated by the WHO as the species for which novel antibiotics are most urgently 

needed besides carbapenem-resistant Acinetobacter baumannii and extended-

spectrum β-lactamase producing Enterobacteriaceae (Tacconelli et al., 2018). Beside 
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acquired resistance, high levels and prevalence of antibiotic resistance in Pa are 

mainly due to three resistance mechanisms: The low permeability of the OM, 

constitutive expression of efflux pumps and enzymes like AmpC which inactivate 

antibiotics (Strateva and Yordanov, 2009). 

The integrity of the OM in Gram-negative bacteria functions as an important barrier 

against antibiotics. The permeability of the OM of Pa has been estimated to be 12-

100 fold lower than in Escherichia coli (Ec) (Nikaido, 1986). Therefore, the 

permeation of antibiotics is slow or completely prevented and together with the export 

by efflux pumps, the amount of antibiotic molecules in the bacterial cell is reduced, 

allowing resistance-conferring enzymes to efficiently inactivate them (Hancock and 

Speert, 2000). 

Pa employs 12 RND-type efflux pumps (Lister et al., 2009) to efflux a wide variety of 

substances. The main efflux pumps MexAB-OprM and MexXY-OprM are able to 

export β-lactam antibiotics, fluoroquinolones, chloramphenicol, tetracycline, 

macrolides and trimethoprim (Livermore, 2002; Schweizer, 2003). Mutations in the 

regulators (MexR or MexZ, respectively) can furthermore cause overexpression of 

efflux pumps leading to increased resistance (Islam et al., 2004; Vogne et al., 2004; 

Evans et al., 2001). 

Resistance to β-lactam antibiotics is mainly caused by the expression of β-

lactamases, especially ampC. The expression level of ampC is low in wild type (WT) 

strains (Sanders and Sanders, 1986) but can be induced by β-lactam antibiotics and 

β-lactamase inhibitors (Lindberg et al., 1988; Lister et al., 1999; Stobberingh, 1988; 

Weber and Sanders, 1990). Overproduction of AmpC can also be due to 

chromosomal mutations like in the dacB gene encoding penicillin-binding protein 4 

(PBP4) (Moya et al., 2009). Resistance to carbapenems can be achieved by either 

expressing metallo-β-lactamases like GIM, IMP, SPM and VIM (Castanheira et al., 

2004; Gales et al., 2003; Nordmann and Poirel, 2002) or by inactivation of the porin 

OprD, which is exploited by carbapenems to cross the OM (Margaret et al., 1989; 

Sakyo et al., 2006; Satake et al., 1991; Trias and Nikaido, 1990). OprD inactivation is 

mostly achieved by changes in the promoter sequence, premature interruption of 

transcription (Wolter et al., 2008; Yoneyama and Nakae, 1993; El Amin et al., 2005) 

or mutations in the oprD gene causing frame-shift or premature stop codons (Pirnay 

et al., 2002). 
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Peptidoglycan turnover and ampC expression 

Overproduction of the β-lactamase AmpC plays an important role in the resistance of 

Pa against β-lactam antibiotics and is intimately connected with peptidoglycan (PG) 

turnover. The ampC gene is regulated by AmpR, which can either serve as an 

activator when bound to 1,6-anhydro-N-acetyl muramic acid (1,6-anhMurNAc)-

peptides or as a repressor when bound to uridine diphosphate N-acetyl muramic acid 

(UDP-MurNAc)-pentapeptide (Jacobs et al., 1997). These molecules are part of the 

PG recycling pathway and therefore, changes in PG turnover by chromosomal 

mutations or the action of β-lactam antibiotics can have a strong impact on ampC 

expression and thereby on the level of resistance against β-lactam antibiotics. 

The cell wall composed of PG is an essential structure providing shape and 

protection against cell lysis by osmotic pressure. It consists of a 

heteropolysaccharide of MurNAc and N-acetyl glucosamine (GlcNAc) linked by 

glycosidic bonds with short peptide chains attached, which are up to 5 amino acids 

long (Dhar et al., 2018). The cross-links mainly between the third residue of the one 

and the fourth residue of the other peptide chain form a mesh-like structure 

conferring high stability (Dhar et al., 2018). 

 

Peptidoglycan turnover 

For better comprehension, a graphic representation of the PG turnover processes 

can be found in Figure 3 of the publication “Identification of drug-resistance 

determinants in a clinical isolate of Pseudomonas aeruginosa by high-density 

transposon mutagenesis” in the appendix of this thesis. 

The PG layer is constituted by incorporating the precursor molecule UDP-MurNAc-

pentapeptide. This precursor is either synthesized de novo or by recycling of PG 

degradation products in the cytoplasm. The de novo biosynthesis starts with fructose-

6-phosphate, which is converted to UDP-MurNAc-pentapeptide by the addition of 

UDP and peptides by the Glm and Mur enzyme groups (Mengin-Lecreulx and van 

Heijenoort, 1994, 1996; Barreteau et al., 2008). After transfer to an undecaprenol 

carrier, this PG precursor is transported across the inner membrane (IM) into the 

periplasm by so far undetermined flippase enzymes, presumably FtsW (PA4413) and 

MviN (PA4562) (Azzolina et al., 2001; Mohammadi et al., 2011; Dhar et al., 2018). In 

the periplasm the precursor is incorporated into the existing PG layer. This process is 

facilitated by high molecular mass penicillin-binding proteins (PBPs), which catalyse 
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the transglycosylation between MurNAc and GlcNAc moieties as well as the 

transpeptidation between the peptide chains (Ishino et al., 1980; Handfield et al., 

1997; Legaree et al., 2007; Chen et al., 2017). 

On the catabolic side, degradation of PG is mainly mediated by low molecular mass 

(LMM) PBPs, lytic transglycosylases (LTs) and amidases (Park and Uehara, 2008). 

Pa harbours three LMM PBPs (PBP4/DacB, PBP5/DacC and PBP7/PbpG), which act 

as carboxypeptidases and/or endopeptidases (EP) and cleave the crosslinks 

between the peptide chains (Ropy et al., 2015). Members of the LT family release PG 

degradation products like GlcNAc-1,6-anhMurNAc from the PG layer (Höltje et al., 

1975). In Pa, 11 LTs have been identified, exhibiting exolytic as well as endolytic 

activity (Lee et al., 2017b). Finally, the periplasmic amidases cleave between the 

peptide chain and the muramyl moieties, either in the PG layer or in the already 

released degradation products like GlcNAc-1,6-anhMurNAc-peptides (Zhang et al., 

2013). For PG recycling, the two periplasmic amidases AmpDh2 and AmpDh3 are 

important, which are homologues of Ec AmiD (Juan et al., 2006) and related to the 

cytoplasmic amidase AmpD (Moya et al., 2008; Zhang et al., 2013). Since AmpDh2 

carries a signal sequence of OM lipoproteins like AmiD from Ec, AmpDh2 is thought 

to be the AmiD homologue in Pa, while AmpDh3 is an extra amidase of Pa (Moya et 

al., 2008). 

GlcNAc-1,6-anhMurNAc-peptides generated by the different periplasmic enzymes 

are then transported into the cytoplasm by the permease AmpG and probably its 

homologue AmpP (Perley-Robertson et al., 2016; Kong et al., 2010). In the 

cytoplasm, the GlcNAc moiety is cleaved by NagZ (Stubbs et al., 2008) and the 

peptide chain is removed by the cytoplasmic amidase AmpD, resulting in free 

peptides and 1,6-anhMurNAc (Zhang et al., 2013). In addition, the L,D-

carboxypeptidase LdcA removes the terminal D-alanine from the peptide part (Korza 

and Bochtler, 2005). 

1,6-anhMurNAc and free peptides can then be recycled and reused for the synthesis 

of the PG precursor UDP-MurNAc-pentapeptide which saves energy compared to de 

novo biosynthesis. In Pa, 1,6-anhMurNAc is converted to UDP-MurNAc by the so-

called salvage pathway including the sequential action of the enzymes AnmK, MupP, 

AmgK and MurU (Borisova et al., 2014; Gisin et al., 2013). The free peptides can 

then be ligated again to UDP-MurNAc by Mpl (Mengin-Lecreulx et al., 1996). 

Subsequently, MurF adds D-alanine-D-alanine to the peptide chain resulting in UDP-
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MurNac-pentapeptide (Duncan et al., 1990) which can then again be transferred into 

the cytoplasm and integrated into the PG layer. The function of Mpl and MurF has 

only been demonstrated in Ec so far, but homologues are also found in Pa (Dhar et 

al., 2018). 

 

ampC expression and resistance against β-lactam antibiotics 

Since resistance to β-lactam antibiotics strongly depends on the expression level of 

the inducible ampC gene, which is regulated positively or negatively by AmpR when 

bound to 1,6-anhMurNAc-peptides or UDP-MurNAc-pentapeptide, respectively, 

changes in PG recycling can have an impact on β-lactam resistance in Pa.  

Mutations in the dacB gene encoding the LMM-PBP PBP4 are common in clinical 

isolates resistant against β-lactam antibiotics, probably because the loss of PBP4 

results in a higher amount of PG catabolites that finally lead to ampC expression (Lee 

et al., 2015a; Moya et al., 2009; Dhar et al., 2018). The other group of enzymes 

beside LMM PBPs whose products can end as ampC-inducing 1,6-anhMurNAc-

peptides are LTs. In Pa, the loss of Slt and MltF has been shown to decrease 

resistance against β-lactam antibiotics (Cavallari et al., 2013). Additionally, the 

inhibition of Slt, MltD and MltG by bulgecin results in an enhanced sensitivity of Pa 

PAO1 against ceftazidime and meropenem (Dik et al., 2019). Loss of SltB1 and 

MltB1 on the other hand lead to increased resistance against β-lactam antibiotics, 

however, this effect was independent from ampC expression (Cavallari et al., 2013; 

Lamers et al., 2015).  

After generation in the periplasm, muropeptides are transported into the cytoplasm. If 

the main permease AmpG is inactivated, the PG catabolites cannot be processed to 

1,6-anhMurNAc-peptides in the cytoplasm and therefore ampC expression is 

abrogated (Korfmann and Sanders, 1989). Loss of AmpG can even restore sensitivity 

of pan-resistant clinical Pa isolates against β-lactam antibiotics (Zamorano et al., 

2011; Dhar et al., 2018).  

In the cytoplasm, NagZ is important for the generation of 1,6-anhMurNAc-peptides by 

removing GlcNAc from the muropeptides. Therefore, loss of NagZ leads to 

decreased ampC expression and β-lactam resistance (Asgarali et al., 2009; 

Zamorano et al., 2010). In contrast, AmpD reduces the 1,6-anhMurNAc-peptide pool 

by cleaving the peptide chain. Therefore, loss of AmpD leads to enrichment of 1,6-

anhMurNAc-peptides in the cytoplasm and consequently strong ampC induction and 
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high levels of resistance against β-lactam antibiotics (Jacobs et al., 1995). Mutations 

in ampD are the most common cause for β-lactam resistance by ampC 

overexpression in clinical isolates (Juan et al., 2005).  

The role of AnmK, MupP, AmgK and MurU in antibiotic resistance has not been 

clearly elucidated so far. In one study, it has been shown that deletion of each of 

these genes led to increased resistance against β-lactam antibiotics in PAO1 

(Fumeaux and Bernhardt, 2017). This could be explained by a reduced UDP-

MurNAc-pentapeptide pool without a functional recycling pathway and thereby 

reduced repression of ampC. However, another study could not see a change in the 

minimal inhibitory concentration (MIC) against β-lactam antibiotics of a ΔamgK 

deletion in the same strain (Borisova et al., 2014). 

Finally, also loss of the regulator AmpR obviously enhances sensitivity against β-

lactam antibiotics since ampC expression is reduced without activation (Kong et al., 

2005; Kumari et al., 2014). 

 

Outer membrane protein biogenesis 

Composition of the outer membrane  

Beside expression of β-lactamases and efflux pumps, the integrity of the OM of 

Gram-negative bacteria is an important property conferring resistance by already 

preventing many molecules to reach their targets inside the bacterial cell. Most of our 

current knowledge about OMP biogenesis was derived from other Gram-negative 

species, especially Ec and Yersinia enterocolitica (Ye) (Sklar et al., 2007; Weirich et 

al., 2017), but also Neisseria meningitidis (Volokhina et al., 2011). The OM is 

composed of an asymmetric bilayer consisting of an inner phospholipid and an outer 

LPS leaflet (Patel et al., 2017). Due to its amphiphatic character conferred by the 

hydrophobic lipid A core and the hydrophilic O-antigen, LPS provides an efficient 

barrier (Nikaido, 2003, 2005). Additionally, the OM harbours a lot of lipoproteins 

which are anchored in the inner leaflet (Narita and Tokuda, 2017) and OMPs that 

span the OM and connect extra- and intracellular space (Choi and Lee, 2019). 

LPS is transported to the OM by the Lpt pathway after the formation in the cytoplasm 

and transfer to the periplasm by the LptB2CFG complex (Narita and Tokuda, 2009; 

Sperandeo et al., 2017). LPS molecules are extracted by the LptB2CFG complex and 

transferred to LptA which functions as a shuttle protein across the periplasm (Okuda 
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et al., 2012). The LptDE complex in the OM then inserts LPS into the OM (Gu et al., 

2015; Li et al., 2015; Sperandeo et al., 2017).  

The exact mechanism of phospholipid transport to the OM still remains to be 

resolved. Recent data suggest that phospholipids are translocated across the IM by a 

MlaFEDB complex and then transferred to the periplasmic shuttle MlaC (Hughes et 

al., 2019). Maintenance of the asymmetry of the OM seems to be important since 

there are different mechanisms involved in this process: Proteins of the Mla pathway 

mediate retrograde transport of phospholipids, that were mislocalized into the outer 

leaflet (Choi and Lee, 2019). PagP is responsible for the transfer of the acyl-chain of 

surface-exposed phospholipids to lipid A of LPS (Bishop et al., 2000) and the 

phospholipase PldA degrades phospholipids in the outer leaflet of the OM (Dekker, 

2000). 

Lipoproteins are transported and inserted into the OM by the Lol pathway. After 

production in the cytoplasm, lipoproteins are translocated across the IM by the Sec or 

the Tat system (Konovalova and Silhavy, 2015; Narita and Tokuda, 2017), then 

extracted by the LolCD2E complex and transferred to the shuttle protein LolA (Narita 

and Tokuda, 2017; Yakushi et al., 2000). LolA transports the lipoprotein across the 

periplasm to LolB in the OM, which inserts the lipoprotein (Grabowicz, 2018). 

 

Outer membrane protein biogenesis  

OMPs are transported to the OM in a partially similar fashion like lipoproteins. OMPs 

contain usually 8 to 24 antiparallel β-strands, forming a β-barrel in the OM by 

connecting the first and last β-strand by hydrogen bonds (Jacob-Dubuisson et al., 

2009). The protein is synthesized in the cytoplasm, held in an unfolded confirmation 

by SecB (Xu et al., 2000) and translocated into the periplasm by the SecYEG 

translocon in the IM (Crane and Randall, 2017). Subsequently, the unfolded OMPs 

are transferred to periplasmic chaperones, which serve as shuttle proteins and 

transport the OMP to the β-barrel assembly machinery (BAM) complex in the OM 

(Ruiz et al., 2006). 

For the transport between IM and OM, two possible pathways have been described 

in Gram-negative bacteria: Either survival protein A (SurA) or the serine EP DegP 

together with the seventeen kilodalton protein (Skp) can transfer the OMP to the BAM 

complex. The SurA pathway is the preferred one and the DegP/Skp pathway is 

thought to be a substitute in case the SurA pathway is disturbed (Sklar et al., 2007). 
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SurA exerts peptidyl-prolyl-cis/trans-isomerase (PPIase) as well as chaperone 

activity (Behrens et al., 2001) and was originally identified as a protein necessary for 

survival in stationary phase (Tormo et al., 1990; Sklar et al., 2007). It is composed of 

a big N-terminal, two parvulin-like and a small C-terminal domain (Rahfeld et al., 

1994; Behrens et al., 2001; Bitto and McKay, 2002). As shuttle from the SecYEG 

translocon to the BAM complex, it functions as a holdase (Malinverni and Silhavy, 

2011) which holds OMPs in an unfolded confirmation to prevent misfolding in the 

periplasm. SurA binds preferentially to unfolded OMPs (Bitto and McKay, 2004) and 

porins (Behrens et al., 2001). At the OM, SurA interacts with BamA to transfer its 

substrate to the BAM complex (Sklar et al., 2007). Loss of SurA leads to increased 

sensitivity against hydrophobic antibiotics, SDS and bile salts (Lazar and Kolter, 

1996; Rouviere and Gross, 1996; Weirich et al., 2017), reduced OMP levels and OM 

density (Sklar et al., 2007) and appearance of aberrant OMPs in the periplasm 

(Behrens et al., 2001; Lazar and Kolter, 1996; Onufryk et al., 2005; Rouviere and 

Gross, 1996). 

DegP was described as an EP with temperature-dependent chaperone activity 

(Strauch et al., 1989; Lipinska et al., 1990). It serves as a holdase at low temperature 

and as protease at high temperature (Spiess et al., 1999). DegP was shown to be 

responsible for the degradation of unfolded OMPs in a surA/skp double mutant 

depletion strain (Sklar et al., 2007). Skp forms homotrimers and binds to denatured 

OMPs. Loss of Skp leads to reduced levels of various OMPs (Chen and Henning, 

1996). DegP and Skp can together compensate for the loss of SurA in Ec (Rizzitello 

et al., 2001; Sklar et al., 2007; Malinverni and Silhavy, 2011). Absence of DegP or 

Skp results in the accumulation of unfolded OMPs in the periplasm and in reduction 

of OM integrity (Chen and Henning, 1996; Dartigalongue et al., 2001; Missiakas et 

al., 1996). 

After delivery by the periplasmic chaperones, OMPs are inserted into the OM by the 

BAM complex. The BAM complex consists of the integral β-barrel protein BamA and 

four lipoproteins (BamB-E) (Konovalova et al., 2017). The exact mechanism of 

insertion is still not clear and two models are discussed: Either the β-barrel is formed 

in the BamA pore and then escapes into the OM through lateral opening of BamA or 

the OMPs are inserted by homooligomers formed by several BAM complexes which 

form a protected environment, in which β-barrels can be formed (Malinverni and 

Silhavy, 2011).  
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Of the BAM complex components, BamA and BamD are essential. Depletion of one 

of them results in accumulation of misfolded OMPs and reduced OM density (Wu et 

al., 2005; Malinverni et al., 2006; Doerrler and Raetz, 2005). Loss of the non-

essential components was shown to lead to lower OMP levels and reduced OM 

integrity in Ec and Ye (Malinverni et al., 2006; Onufryk et al., 2005; Sklar et al., 2007; 

Weirich et al., 2017). 

The periplasmic chaperones and BAM complex components are regulated by the σE 

stress response (Rhodius et al., 2006; Dartigalongue et al., 2001; Onufryk et al., 

2005), which is activated by the presence of unfolded OMPs (Mecsas et al., 1993; 

Walsh et al., 2003; Sklar et al., 2007), and by Cpx, which in contrast to σE only 

regulates DegP and Skp (Danese and Silhavy, 1997; Dartigalongue et al., 2001). σE 

enhances DegP and Skp levels and decreases OMP synthesis (Erickson and Gross, 

1989; Vogel and Papenfort, 2006; Guisbert et al., 2007) by inhibiting the translation 

of important OMPs with small RNAs (Johansen et al., 2008; Johansen et al., 2006; 

Udekwu and Wagner, 2007). 

While much is known about OMP biogenesis in Ec and Ye, in Pa only parts of this 

process have been described. Like in Ec and Ye, BamA is lethal also in Pa (Hoang et 

al., 2011). Depletion of BamA leads to strongly reduced OprF levels in the OM and 

increased expression of mucD that encodes a DegP-homologue (Hoang et al., 2011; 

Tashiro et al., 2009). Inhibition of the interaction between BamA and BamD was 

shown to result in a higher sensitivity against antibiotics, reduced production of OMPs 

and reduced OM integrity (Mori et al., 2012). Deletion of bamB leads to sensitivity 

against lysozyme, slightly impaired OM integrity, enhanced sensitivity against cell 

wall targeting antibiotics and reduced virulence (Lee et al., 2017a). Moreover, the 

deletion of a BamE homologue leads to enhanced sensitivity against SDS, 

deoxycholate and antibiotics (Ochsner et al., 1999). From the periplasmic 

chaperones only MucD was shown to be important for resistance against oxidative 

stress and virulence (Yorgey et al., 2001).  

 

The concept of adjuvants 

The development of resistance against antibiotics is known since the first antibiotics 

have been discovered (Abraham and Chain, 1988). Beside the search for novel 

antibiotics, the most promising approach to nevertheless be able to control bacterial 

infection is the development of adjuvants. The aim of this concept is not to target 
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essential structures in bacteria but to target the resistance mechanism and thereby 

restore the sensitivity against existing antibiotics when administered in combination 

with the respective adjuvant. Targeting a global resistance mechanism has the 

potential to restore the sensitivity against multiple antibiotics and broaden the 

available repertoire for treatment of infections with MDR strains. The best-known 

examples for adjuvants are β-lactamase inhibitors, which are widely used for therapy 

in combination with β-lactam antibiotics such as piperacillin/tazobactam, 

ampicillin/sulbactam or ceftazidime/avibactam. 

The main aim of this thesis was to find novel targets involved in either induction of 

ampC expression or OM integrity with the long-term aim being the development of 

adjuvants, which could restore the sensitivity of MDR Pa against antibiotics. 
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Objectives of the thesis 

 

Since the frequency of infections with MDR Pa strains is increasing and treatment 

becomes more and more difficult, novel options to control infections with MDR Pa 

strains are urgently required. The major aim of this thesis was to find novel targets for 

adjuvants that could restore the sensitivity of MDR strains against antibiotics and 

thereby restore the possibility to use these antibiotics for therapy.  

For this purpose, we addressed two central resistance mechanisms that enhance the 

resistance level of Pa against multiple classes of antibiotics: The expression of the β-

lactamase ampC and the permeability of the OM. To address the first mechanism, we 

used a screening approach called TraDIS to identify all genes that contribute to 

resistance against β-lactam antibiotics, which is mainly mediated by AmpC. Deletion 

mutants of the most interesting candidates were then tested for sensitivity against β-

lactam antibiotics, β-lactamase activity and ampC expression. To address the second 

mechanism on the other hand, we used a hypothesis-driven approach and analysed 

the potential of targeting four proteins involved in OM biogenesis to decrease the OM 

integrity and to thereby enable antibiotics to cross the OM more efficiently. 

Beside the major aim to find novel targets for antibiotic adjuvants, we wanted to 

further elucidate the relation between changes in PG turnover and ampC expression 

in a MDR isolate and the players contributing to an enhanced level of AmpC. This 

knowledge contributes to a better understanding of the mechanisms involved in the 

regulation of ampC and could therefore help to generate novel strategies to combat 

resistance against β-lactam antibiotics.  

Moreover, in the second study we were interested in the importance of the four 

investigated proteins for OM biogenesis in comparison to other species since the 

participating proteins in OM biogenesis are conserved in the most Gram-negative 

bacteria but their contribution to OM composition differs. Especially for SurA in Pa, 

we wanted to analyse in detail which OMPs are inserted SurA-dependently and 

which changes in OMP composition a deprivation of SurA implicates. These data can 

contribute to a broader understanding of the biogenesis and insertion of OMPs into 

the OM in general.  
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Results and discussion 

 

“Identification of drug-resistance determinants in a clinical isolate of 

Pseudomonas aeruginosa by high-density transposon mutagenesis” 

Aim of this study was to identify potential targets in Pa to restore the sensitivity of 

MDR strains to treatment with existing antibiotics. Therefore, we generated a Tn 

library in a clinical MDR bloodstream isolate called ID40. Biparental mating was 

carried out with an Ec SM10 λpir strain containing the plasmid pBT20 which encodes 

the transposon sequence as well as a transposase. The generated Tn library of ID40 

was then grown in presence of meropenem or cefepime, which are commonly used 

antibiotics for treatment of Pa infection and against which ID40 is resistant 

(Sonnabend et al., 2019). Therefore, only Tn mutants with restored sensitivity against 

these antibiotics were killed by the antibiotics. By TraDIS we then identified these Tn 

mutants. The respective genes were considered to be promising candidates for novel 

targets for antibiotic adjuvants. For the most interesting candidates the restored 

sensitivity was verified by MIC determination of a broader panel of β-lactam 

antibiotics in respective clean deletion mutants. For the verified candidates in addition 

the reason for the restored sensitivity was investigated by analysing β-lactamase 

activity and expression of ampC. 

Before conducting the experiment and TraDIS, the ID40 strain was sequenced by 

long-read sequencing (Nanopore). Together with short-read sequencing (Illumina) 

data provided by Willmann et al. (Willmann et al., 2018) the reference genome was 

generated by hybrid assembly and then annotated with Prokka (version 1.11) 

(Bankevich et al., 2012; Seemann, 2014). ID40 harbours a chromosome of 6.86 

mega base pairs (Mbp) and a plasmid of 57446 bp encoding 6468 genes in total and 

belongs to the sequence type ST-252 as determined by multi-locus sequence typing 

(MLST 2.0, Center for Genomic Epidemiology, DTU, Denmark (Larsen et al., 2012)) 

(Sonnabend et al., 2019). MIC analysis using microbroth dilution was performed to 

analyse the resistance profile. According to the breakpoints of the European 

Committee on Antimicrobial Susceptibility Testing (EUCAST), ID40 is resistant 

against piperacillin, piperacillin/tazobactam, cefepime, ceftazidime, aztreonam, 

imipenem, levofloxacin and ciprofloxacin, intermediate for meropenem and sensitive 

against amikacin, gentamicin, tobramycin and colistin (Sonnabend et al., 2019). The 

sensitivity to aminoglycosides was a necessary property because gentamicin was 
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used as a resistance marker integrated into the transposon sequence. Beside 

common resistance genes like the β-lactamase genes ampC (PDC-3) and bla/poxB 

as well as crpP and fosA associated with resistance to fluoroquinolone and 

fosfomycin, respectively, a point mutation in dacB encoding PBP4 was found (G-A 

nt1310, G437D) (Sonnabend et al., 2019). This point mutation has been described to 

cause resistance of Pa against ceftazidime with an increase in MIC from 1 µg/ml to 

32 µg/ml in PAO1 (Moya et al., 2009) and is a likely explanation for the resistance of 

ID40 against all β-lactam antibiotics.  

Analysis of the Tn library grown in lysogeny broth (LB) as a control showed a 

homogeneous distribution of Tn insertions across the whole genome with 

approximately 100000 unique insertion sites. 697 genes were identified to be 

essential for viability in ID40, 9 further genes were ambiguous (Sonnabend et al., 

2019). 

For the identification of promising candidates to restore antibiotic sensitivity, the Tn 

library was grown in cefepime or meropenem at the respective breakpoint 

concentration according to the EUCAST (cefepime: 8 µg/ml, meropenem: 2 µg/ml), 

defined as the maximum MIC at which a strain is still sensitive. Afterwards, the DNA 

was isolated and Tn-containing fragments were enriched and sequenced. The read 

counts of the samples grown in cefepime or meropenem were compared to those 

grown in LB by DeSeq2 (Love et al., 2014). Comparison to the control grown in LB 

showed significant changes in read counts (adjusted p value < 0.05) in 102 genes for 

cefepime and in 140 genes for meropenem (Sonnabend et al., 2019). Genes with an 

at least 5-fold reduction in read counts in comparison to the WT were considered to 

be the most interesting candidates. These criteria were fulfilled by 19 genes for 

cefepime and by 18 genes for meropenem. Out of these, 13 genes were found in the 

analysis for both antibiotics (Sonnabend et al., 2019). The identification of many 

genes known to confer resistance confirmed that the TraDIS screening approach was 

suitable for the aim to identify genes involved in antibiotic resistance. Among these 

genes were mexA and mexB from one of the most important efflux pumps, the main 

β-lactamase ampC as well as ampG and nagZ (Sonnabend et al., 2019). 

Most of the identified genes contribute to PG recycling: besides ampC, ampG, nagZ 

and slt, which have already been described to be crucial for resistance against β-

lactam antibiotics, we identified the LT mltG, the EPs mepM1 and mepM2 and all four 

members of the salvage pathway which recycles 1,6-anhMurNAc to UDP-MurNAc in 
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the cytoplasm (anmK, mupP, amgK and murU). From the PG biosynthesis pathway 

the putative PG glycosyltransferase ftsW, mrcA encoding PBP1 and the PBP-

activator lpoA were identified (Sonnabend et al., 2019). We decided to further 

investigate the genes that were found to be important for resistance against both 

cefepime and meropenem since they have the biggest potential as targets for 

antibiotic adjuvants. Besides mltG and mepM1, we chose amgK as representative of 

the salvage pathway and the two unknown genes ygfB and tuaC. We generated 

deletion mutants of each gene and analysed the MICs of the most common β-lactam 

antibiotics by microbroth dilution, their β-lactamase activity by nitrocefin turnover as 

well as their expression of the ampC β-lactamase by real-time quantitative PCR 

(qRT-PCR) in order to find out whether the restored sensitivity is a consequence of 

altered β-lactamase regulation. 

MltG is one of eleven LTs in Pa. It was described to exert endolytic LT activity and 

may act as terminase of PG chain length (Yunck et al., 2016). In contrast to Slt, MltB, 

MltD, MltF, SltB1 and SltH (Cavallari et al., 2013; Lamers et al., 2015), its role in 

antibiotic resistance has not been investigated in detail so far. The deletion of slt 

caused a decreased MIC of piperacillin, cefotaxime and ceftazidime. On the other 

hand, deletion mutants of sltB1, sltH, mltB, mltD and mltF2 were slightly less 

sensitive against piperacillin and cefotaxime (Cavallari et al., 2013; Lamers et al., 

2015). MltG was shown so far to be one of several LT substrates for the LT inhibitor 

bulgecin A (Dik et al., 2019; Sonnabend et al., 2019). Bulgecin A inhibits Slt, MltD 

and MltG and thereby potentiates the effect of ceftazidime and meropenem. A Tn 

mutant of mltG in the laboratory strain PAO1 showed reduced growth in sub-MIC of 

meropenem but not ceftazidime (Dik et al., 2019). In our experiments in ID40, the 

ΔmltG mutant showed strikingly reduced MICs and sensitivity was restored against 

all β-lactam antibiotics except for meropenem according to the EUCAST breakpoints. 

This directly corresponds to a strongly reduced β-lactamase activity and ampC 

expression, which were almost as low as those of the control laboratory strain PA14 

indicating that deletion of mltG almost compensates for the effect of the dacB 

mutation (Sonnabend et al., 2019). MltG is therefore a promising target with the 

ability to restore sensitivity against all β-lactam antibiotics at least in dacB mutant 

strains like ID40. The inhibitor bulgecin A showed only a minor reduction in MICs 

against ceftazidime and meropenem (Dik et al., 2019). However, the strains tested in 

Dik et al. were all sensitive to meropenem and 8 out of 10 strains were sensitive to 
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ceftazidime. It would be therefore very interesting to examine whether bulgecin A 

shows a bigger effect in strains resistant to β-lactam antibiotics, especially in dacB 

mutants. 

As a second candidate involved in PG degradation we investigated MepM1. MepM1 

is a metallo-EP cleaving the crosslinks between the PG strands with specificity for D‐
Ala−mDAP cross‐links (Singh et al., 2012). MepM1 is non-essential, but a double 

deletion mutant of mepM1 and spr, another D,D-EP with similar function, is 

synthetically lethal in Ec indicating the importance of D,D-EPs for viability (Singh et 

al., 2012). MepM1 together with three other EPs (TUEID40_02316 (homologue in 

PAO1: PA4404), TUEID40_01415 (PA1198) and TUEID40_01414 (PA1199)) is 

inactivated by the carboxy-terminal processing protease CtpA (Srivastava et al., 

2018; Sonnabend et al., 2019). CtpA requires the lipoprotein LbcA to exert its 

protease activity on the EP substrates. The deletion of ctpA has already been 

characterised to lead to a defective T3SS, enhanced surface attachment and low salt 

sensitivity (Srivastava et al., 2018). Except the low salt sensitivity, the phenotype 

could be reverted by the deletion of mepM1 in the ΔctpA mutant (Srivastava et al., 

2018). To investigate whether a ΔctpA mutant shows the opposite phenotype than 

ΔmepM1 also regarding antibiotic resistance, we generated a ΔctpA as well as a 

ΔctpAΔmepM1 double mutant. From the other EPs inactivated by CtpA, additionally 

TUEID40_01415 was identified in the TraDIS experiment but the reduction in read 

counts was much less than for mepM1. On the other hand, for mepM2 from the same 

protein family a significant and strong reduction in read counts was found after 

treatment with meropenem, but MepM2 is not inactivated by CtpA (Srivastava et al., 

2018; Sonnabend et al., 2019).  

The ΔmepM1 mutant showed reduced MIC values for all investigated β-lactam 

antibiotics except for meropenem and imipenem and its sensitivity was restored for 

cefepime and aztreonam. Correspondingly, the β-lactamase activity as well as the 

expression of ampC were significantly reduced, but to a clearly lesser extent than in 

the ΔmltG mutant. In the ΔctpA mutant the MICs of meropenem, cefepime, 

piperacillin and aztreonam were even increased in comparison to the WT. 

Consistently, the β-lactamase activity as well as the expression of ampC were 

increased indicating that loss of inactivation of the four EPs (including MepM1) by 

CtpA leads to hyperresistance due to derepression of ampC (Sonnabend et al., 

2019). This finding is consistent with the observation by Sanz-Garcia et al. who 
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reported the occurrence of mutations in ctpA in strains that developed resistance 

against ceftazidime/avibactam (Sanz-Garcia et al., 2018). The MICs of piperacillin 

and aztreonam, the β-lactamase activity and the ampC expression of the 

ΔctpAΔmepM1 double mutant were comparable to those of the WT but not reverted 

to those of the ΔmepM1 mutant (Sonnabend et al., 2019). Therefore, the three other 

EP substrates of CtpA also play a role for the level of resistance since their 

deregulation in absence of CtpA can compensate for the loss of MepM1. An inhibitor 

targeting multiple of the structurally similar EPs like MepM1 and MepM2 or MepM1 

and TUEID40_01415 could be a good option to further decrease β-lactamase 

expression and resistance against β-lactam antibiotics.  

After the degradation of the PG by LTs, EPs and amidases in the periplasm, the PG 

catabolites are transported into the cytoplasm by the permease AmpG. In the 

periplasm, the catabolites are further processed by NagZ, LdcA and AmpD. AmpG 

and NagZ contribute to the pool of 1,6-anhMurNAc-peptides and were consistently 

identified in the TraDIS results since their deletion leads to a reduced amount of 1,6-

anhMurNAc-peptides in the cytoplasm and therefore a lower expression level of 

ampC. AmpD on the other hand degrades 1,6-anhMurNAc-peptides to free peptides 

and 1,6-AnhMurNAc. Loss of AmpD therefore increases the pool of 1,6-anhMurNAc-

peptides and is a frequent cause of resistance against β-lactam antibiotics (Jacobs et 

al., 1995; Sonnabend et al., 2019). After cleavage by AmpD, the released 1,6-

anhMurNAc can then be recycled to UDP-MurNAc by the salvage pathway and 

subsequently reused for PG biosynthesis. 

From the four players of the salvage pathway amgK, anmK and murU were identified 

for both cefepime and meropenem in the TraDIS screen and mupP was identified for 

cefepime (Sonnabend et al., 2019). The salvage pathway was discovered in Pa and 

bypasses the fosfomycin-sensitive de novo PG biosynthesis (Gisin et al., 2013) by 

recycling of 1,6-anhMurNAc to UDP-MurNAc. Therefore, it is responsible for 

resistance against fosfomycin. A connection to resistance against β-lactam antibiotics 

has been suggested as the deletion of amgK leads to a slight increase of MICs 

against ceftazidime and cefotaxime (Fumeaux and Bernhardt, 2017). However, 

another study did not see increased MIC values in PAO1 (Borisova et al., 2014), 

which could also be confirmed in our study for all investigated β-lactam antibiotics 

(Sonnabend et al., 2019). Surprisingly, the ΔamgK mutant in ID40 showed a strong 

reduction in MICs for all investigated β-lactam antibiotics except for meropenem as 
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well as reduced β-lactamase activity and ampC expression in addition to a reduction 

of the MIC of fosfomycin (Sonnabend et al., 2019). The higher sensitivity to 

fosfomycin was expected because without a functional salvage pathway, PG 

synthesis can only be conducted by the de novo biosynthesis pathway which 

comprises MurA, the target of fosfomycin. Reduced MICs against fosfomycin with an 

impaired salvage pathway have been previously reported (Borisova et al., 2014). In 

addition to the reduced MIC of fosfomycin, the sensitivity of ID40 ΔamgK to cefepime, 

ceftazidime and aztreonam was restored (Sonnabend et al., 2019). Therefore, at 

least AmgK and presumably the whole salvage pathway are crucial for resistance 

against β-lactam antibiotics at least in ID40. This finding underlines the necessity to 

investigate antibiotic resistance in MDR strains instead of laboratory strains and 

shows that depending on the genetic background of a strain the same players can 

have different roles. 

In addition to genes involved in PG recycling, also two genes with unknown function 

were identified by the TraDIS experiment. tuaC is a gene with unknown function 

belonging to the glycosyltransferase 1 family. However, the restored sensitivity of the 

Tn mutant in the TraDIS experiment could not be confirmed with the ΔtuaC deletion 

mutant and therefore, the ΔtuaC mutant was not further analysed (Sonnabend et al., 

2019). The reason for our finding that the deletion mutant did not show the same 

phenotype like the Tn mutant could be that the Tn insertions did not affect the 

functionality of the protein due to an insertion at the very 3’-end of the gene. Another 

explanation could be that not the inactivation of tuaC itself caused the restored 

sensitivity but an additional effect of the Tn insertion on another gene downstream of 

tuaC. This result confirms the need of verification of results obtained by TraDIS by 

the generation of clean deletion mutants. 

The ΔygfB mutant on the other hand showed reduced MICs very similar to the 

ΔamgK mutant with restored sensitivity against cefepime and aztreonam. 

Accordingly, also β-lactamase activity and expression of ampC were strongly 

reduced and had the lowest expression level except for the ΔmltG mutant 

(Sonnabend et al., 2019). The function of YgfB was not characterized so far. It is 

located in an operon comprising the aminopeptidase pepP, the ubiquinone 

biosynthesis genes ubiH and ubiI and another unknown gene. Similar operons with 

genes homologous to ygfB can be found in Ec, Acinetobacter baumannii (each 33 % 

identical amino acids) and Legionella pneumophila (32 % identical amino acids), but 
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also in these species the function of YgfB is unknown (Sonnabend et al., 2019). Data 

from experiments with Tn mutants in PAO1 and PA14, however, suggested that YgfB 

could be important for the colonization of the gastrointestinal tract in mice (Skurnik et 

al., 2013) as well as for virulence in Caenorhabditis elegans, respectively (Feinbaum 

et al., 2012). These findings emphasize that YgfB is an interesting target since an 

inhibitor would not only restore sensitivity against β-lactam antibiotics but maybe also 

reduce colonization and virulence of Pa. 

Mass spectrometry analysis of whole cell lysates showed a strikingly higher amount 

of AmpDh3 in the ΔygfB mutant in comparison to the WT (unpublished data). While in 

the WT, the amount of AmpDh3 was below the detection limit, in the ΔygfB mutant a 

226-fold higher amount of AmpDh3 compared to the detection limit was found. 

AmpDh3 is a periplasmic homologue of AmpD. Presumably, higher AmpDh3 levels in 

the periplasm lead to enhanced cleavage of the peptides from 1,6-anhMurNAc-

peptides and related precursors and subsequently result in lower levels of 1,6-

anhMurNAc-peptides in the cytoplasm. Therefore, it is quite plausible that the 

reduction in ampC expression and the restored sensitivity of the ΔygfB mutant is 

based on the strong upregulation of ampDh3. This hypothesis is supported by the 

finding that deletion of ampDh3 leads to a strong increase in ampC expression and 

consequently in increased MICs of β-lactam antibiotics (Juan et al., 2006). While the 

molecular function of YgfB still has to be determined in Pa and also in other Gram-

negative species, it seems to either directly or indirectly suppress the expression of 

ampDh3 and thereby to indirectly contribute to the amount of 1,6-anhMurNAc-

peptides and ampC expression. 

In conclusion, we identified several genes which have not yet or only partly been 

described to be important for resistance against β-lactam antibiotics so far. They 

serve as promising targets since a potent inhibitor could reduce β-lactamase 

expression and activity and therefore allow to reconsider various classes of β-lactam 

antibiotics for treatment of MDR Pa strains at least with a dacB mutant background. 
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“Deprivation of the Periplasmic Chaperone SurA Reduces Virulence and 
Restores Antibiotic Susceptibility of Multidrug-Resistant Pseudomonas 

aeruginosa“ 

Besides expression of resistance-conferring enzymes like AmpC and efflux pumps, 

the low permeability of the OM is the most important intrinsic resistance mechanism 

in Gram-negative bacteria, especially in Pa. Therefore, in this study we addressed 

the OMP biogenesis pathway, whose function is crucial for OM integrity, to identify 

targets for adjuvants that could restore antibiotic resistance by facilitating the entry of 

antibiotics into the bacterial cell. 

In different Gram-negative species the importance of various players in OM 

biogenesis can be different: SurA is the major periplasmic chaperone in Ec and Ye 

and Skp and DegP are thought to comprise the rescue pathway when SurA is lacking 

(Sklar et al., 2007), while in Neisseria meningitidis, Skp seems to be more important 

compared to SurA (Volokhina et al., 2011). The non-essential BAM complex 

components BamB and BamC have been shown to have an impact on OM integrity 

and composition in Ec and Ye (Malinverni et al., 2006; Onufryk et al., 2005; Sklar et 

al., 2007; Weirich et al., 2017).  

To assess the importance and the potential as targets for antibiotic adjuvants in Pa, 

we generated mutants of BamB and BamC as well as the periplasmic chaperones 

SurA and the Skp-homologue HlpA in PA14. Since it was not possible to generate a 

ΔsurA deletion mutant, we constructed a conditional mutant by introducing a copy of 

surA under the control of an arabinose-inducible promotor and subsequently deleting 

the intrinsic surA gene (Klein et al., 2019). Deletion of the genes was verified by 

polymerase chain reaction (PCR) and by the absence of the respective proteins in 

the mass spectrometry experiment. Depletion of SurA without addition of arabinose 

and complementation by the addition of 0.2 % arabinose was verified by qRT-PCR 

and western blot. qRT-PCR revealed a reduced surA expression by 92 %, which can 

be explained by a residual expression because of the leaky araC-PBAD promoter 

(Meisner and Goldberg, 2016; Klein et al., 2019). In absence of arabinose, SurA was 

not detectable by western blot but the protein level was restored after addition of 

arabinose (Klein et al., 2019). The impossibility to generate a surA deletion mutant 

was surprising since in other Gram-negative bacteria, surA is not essential. This 

seems to be different in Pa supported by the fact that in the most Tn libraries of Pa 

no surA Tn mutant is available (Skurnik et al., 2013; Lee et al., 2015b; Turner et al., 
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2015; Sonnabend et al., 2019). Only in one Tn library of PA14, three different 

mutants with Tn insertions at the very beginning or the very end of the surA gene are 

viable. Possible explanations for this could be that the biggest part of the gene is 

intact and a slightly truncated protein with residual functionality is still formed or that 

compensatory mutations have been acquired in these strains.  

Growth kinetics at 37 °C in LB medium were assessed for all mutants and revealed a 

slightly but significantly reduced growth of the conditional surA mutant while all other 

mutants showed a growth comparable to the WT. Using electron microscopy, 

morphological changes were observed for the ΔbamB and the conditional surA 

mutant: in the ΔbamB mutant numerous vesicles were formed on the cell surface and 

the conditional surA mutant looked slightly bloated and also showed vesicle 

formation. This is probably a sign of cell envelope stress in both mutants (Klein et al., 

2019). 

To investigate the impact of the different deletions on OM integrity, we analysed the 

influx of the fluorescent dye 1-N-phenylnaphthylamine (NPN) as well as the 

susceptibility of the strains to bile salts. NPN is not able to cross the OM of Pa WT 

strains. It fluoresces only when it reaches the hydrophobic environment of the inner 

phospholipid layer of the OM (Konovalova et al., 2016). Therefore, NPN fluorescence 

indicates that the dye is able to cross the OM due to a reduced OM integrity. The 

conditional surA mutant showed a significantly higher NPN signal than the WT which 

was complemented upon addition of arabinose. The other mutants did not show a 

significant difference to WT indicating that only loss of SurA results in a reduced OM 

integrity to an extent that NPN is able to cross the OM (Klein et al., 2019). 

Bile salts are physiological detergents occurring in the intestinal tract. Treatment with 

a concentration of bile salts that does not harm the WT (0.3 %) resulted in 

significantly reduced growth of the conditional surA mutant as well as of the ΔbamB 

and ΔbamC mutant. Only the ΔhlpA mutant did not show a higher susceptibility to 

bile salts (Klein et al., 2019). Therefore, also the OM integrity in the ΔbamB and 

ΔbamC mutant is slightly disturbed while for ΔhlpA no change in OM integrity could 

be observed. 

OM integrity is determined by its composition and changes in the amount of OMPs or 

LPS or can lead to reduced OM integrity. Therefore, we prepared OM fractions of all 

strains and analysed their OMP composition by liquid chromatography tandem-mass 

spectrometry (LC-MS/MS). Differences in the log2 of intensities of label-free 
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quantification (LFQ) values with a false discovery rate of < 0.1 were considered to be 

significant. The ratio between the LFQ value of a mutant and the LFQ value of the 

WT was calculated.  

The most prominent change in OMP composition in the OM fraction was found in the 

SurA-depleted strain: 42 proteins predicted to be localized in the OM were 

significantly lower or higher abundant in the conditional surA mutant compared to the 

WT. Mainly the amount of members of the type V secretion system (T5SS) family, 

TonB-dependent receptors, porins, BAM complex components and LptD and LptE 

was strongly reduced in the OM of the conditional surA mutant (Klein et al., 2019).  

From other species it is known that SurA is crucial for the insertion of autotransporter 

proteins, which belong to the T5SS, into the OM (Sklar et al., 2007; Wu et al., 2005; 

Oberhettinger et al., 2012). The autotransporter proteins PlpD and AaaA as well as a 

two-partner secretion system consisting of the membrane transporter PA14_32790 

and its partner PA14_32780 were not detectable in the OM of the conditional surA 

mutant. Similarly, the amount of the autotransporter protein EprS was strongly 

reduced in comparison to the WT (Klein et al., 2019). Therefore, SurA is crucial for 

the insertion of auotransporter proteins into the OM also in Pa. 

In a comparable manner, siderophore receptors and other TonB-dependent 

receptors were absent or at least strongly reduced in the OM of the conditional surA 

mutant (Klein et al., 2019). In addition to three uncharacterized TonB-dependent 

receptors, three major iron uptake systems were completely or almost absent: The 

pyoverdine receptor FpvA, the ferric citrate receptor FecA and the ferrichrome 

receptor FiuA (Klein et al., 2019). Since iron uptake is very important for bacterial 

growth, the reduction in iron uptake systems could contribute to the reduced fitness 

of the conditional surA mutant. Loss of FiuA has been shown to have a detrimental 

impact on elastase level and reduced virulence in an airway infection model (Lee et 

al., 2016). To further investigate the consequences of the strong reduction in iron 

uptake system, we analysed the growth under iron-depleted conditions. The growth 

of the conditional surA mutant in presence of the iron chelator 2,2’-Bipyridyl was 

significantly and dose-dependently reduced compared to the WT.  

The biggest group of OMPs affected by SurA deprivation were porins: 13 porins were 

less abundant or not detectable at all (OpdO, OpdN) in the conditional surA mutant, 

while 3 porins of the OprM family (OprM, OpmB, OpmG) were significantly more 

abundant than in the OM fraction of the WT. Among the reduced porins, members of 



Results and discussion 
 

29 
 

the OprD family (OpdO, OpdN, OpdP and OprD) were the strongest reduced. The 

porins that were found are mainly responsible for the uptake of different nutrients like 

pyroglutamate (OpdO), glycine-glutamate (OpdP), arginine (OprD and OprQ) and 

glucose (OprB) (Chevalier et al., 2017; Klein et al., 2019). A reduction of these porins 

in the OM could therefore also contribute to reduced fitness and attenuation. 

Moreover, the major OMP of Pa, OprF, was reduced in abundance by over 50 % in 

the conditional surA mutant. OprF has been shown to fulfil a lot of functions like 

nonspecific diffusion of ions and low-molecular-mass sugars (Nestorovich et al., 

2006), OM permeability and adhesion to eukaryotic cells (Azghani et al., 2002). Loss 

of OprF leads to an impaired production of a number of virulence factors (Fito-

Boncompte et al., 2011) and increased sensitivity to a range of antibiotics (Dötsch et 

al., 2009) and therefore its reduced level in the OM contributes to all observed 

phenotypes of the conditional surA mutant.  

Surprisingly, the insertion of OprM family members seems to be independent from 

SurA in contrast to the other porins since their level was even enhanced in the 

conditional surA mutant. It was previously observed in other species that a particular 

subset of OMPs was affected only weakly by loss of periplasmic chaperones and 

non-essential BAM complex components (Mahoney et al., 2016; Weirich et al., 2017). 

Possibly, this also accounts for the different dependence on SurA of OprM-like 

proteins. Members of the OprM family are the OM component of the two most 

important efflux pumps of Pa, MexAB and MexXY (Poole, 2000). They are involved in 

resistance against β-lactams, chloramphenicol, macrolides, quinolones, tetracycline 

(Li et al., 1995; Masuda et al., 2000) and aminoglycosides (Mao et al., 2001; Klein et 

al., 2019). Consequently, also the associated efflux pump proteins were found in a 

higher amount in the OM of the conditional surA mutant (Klein et al., 2019). 

Nevertheless, the higher abundance of these two major efflux pumps did not 

compensate for the reduced OM integrity and thereby higher sensitivity to antibiotics.  

Furthermore, the amount of LptD and LptE, which form a complex in the OM and are 

responsible for the insertion of LPS into the OM (Chimalakonda et al., 2011), was 

clearly reduced in the conditional surA mutant. It has previously been shown that a 

depletion of LptE and LptD results in impaired OM integrity, reduced virulence and 

reduced antibiotic resistance (Lo Sciuto et al., 2018; Klein et al., 2019). Therefore, 

the reduction of LptD and LptE in the OM is likely to be at least partly responsible for 

the observed phenotypes in the conditional surA mutant.  
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In the ΔbamB mutant, a similar tendency in the changes of the OMP composition was 

observed like in the conditional surA mutant. However, the effect was less 

pronounced and not significant except for the loss of BamB itself. In the ΔbamC 

mutant besides the loss of BamC only OmpH was significantly reduced and in the 

ΔhlpA mutant, no significant changes in OMP composition could be observed (Klein 

et al., 2019). Therefore, HlpA seems to play an even minor role for OMP composition 

compared to other Gram-negative species, where the loss of Skp had a slight impact 

on OM integrity and composition (Chen and Henning, 1996; Weirich et al., 2017). 

Changes in OMP composition can either be caused by a reduced insertion of OMPs 

by lack of SurA or by transcriptional downregulation of OMP expression by the σE 

stress response triggered by the accumulation of misfolded β-barrel proteins in the 

periplasm (Mecsas et al., 1993; Walsh et al., 2003; Guisbert et al., 2007). We 

analysed the expression level of selected genes in the conditional surA mutant. The 

level of all investigated genes encoding OMPs was comparable to the WT, indicating 

that the reduced OMP levels in the OM are due to reduced insertion because of the 

lack of SurA, but not due to an indirect downregulation of expression by the σE stress 

response. The only gene for which a significantly altered expression level was 

observed was hlpA. A 2.4-fold increase in transcription suggests a compensatory 

upregulation of hlpA to rescue the effects of the SurA deprivation (Klein et al., 2019). 

To confirm the proteomics data we determined the protein levels of SurA, OprD and 

PlpD in whole bacterial lysates by western blot. As expected, SurA was not 

detectable in the conditional surA mutant without induction but restored to 64 % in 

the presence of arabinose according to the quantification of the western blot signals. 

In the deletion strains, no difference in SurA protein level was detected. Consistent 

with the result of the mass spectrometry analyses, the protein levels of OprD (15 %) 

and PlpD (24 %) were clearly reduced in the conditional surA mutant. In addition, the 

level of OprD was slightly reduced in the ΔbamB mutant and the level of PlpD was 

reduced in the ΔbamB and the ΔhlpA mutant, which also fits to the proteomics data 

albeit the effects are not significant (Klein et al., 2019). 

Several proteins that are important for full virulence like FpvA and OprF were found 

to be less abundant or absent in the OM of the conditional surA mutant. Therefore, 

we were interested in the ability of the conditional surA mutant to cause infection and 

analysed its ability to survive in human serum as well as its virulence in an in vivo 

infection model in Galleria mellonella. The serum complement is an important 
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defense mechanism of the innate immune system to eliminate pathogens in the 

bloodstream. The strains were grown in either 10 % human serum in phosphate-

buffered saline (PBS) or in 10 % heat-inactivated serum. While the WT and the 

ΔbamB, ΔbamC and ΔhlpA deletion mutants were able to survive, the conditional 

surA mutant was rapidly killed by the active human serum (Klein et al., 2019). 

Therefore, the changes in OM composition in the conditional surA mutant lead to 

sensitivity against the complement system and thereby withdraw an important 

property of Pa to cause sepsis which is associated with high mortality rates (Suarez 

et al., 2009). 

To assess the general virulence of the mutants, we used the Galleria mellonella 

infection model which has been shown to be a valuable tool in bacterial infection 

research (Jander et al., 2000; Junqueira, 2012). In total, 60 larvae per group were 

injected with 12 ± 2 bacteria and survival of the larvae was monitored at physiological 

temperature. The larvae injected with the WT, the ΔbamB, ΔbamC or the ΔhlpA 

mutant were rapidly killed within 24 hours. In contrast, larvae injected with the 

conditional surA mutant survived significantly longer, some up to 72 hours (Klein et 

al., 2019). Deprivation of SurA and consequent reduction of the amount of several 

virulence factors in the OM therefore lead to reduced virulence in vivo. Galleria 

mellonella larvae injected with the conditional surA mutant grown in presence of 

arabinose prior to infection showed very similar survival curves compared to larvae 

injected with the conditional surA mutant grown without arabinose. This indicates that 

the level of SurA after injection and thereby removal of the inductor quickly declines 

in the complementation strain. For in vivo complementation, arabinose would have to 

be continuously administered to the larvae, which was not feasible in our 

experimental setting (Klein et al., 2019). In conclusion, SurA is important for virulence 

while the changes induced by the deletion of bamB, bamC or hlpA are not sufficient 

to reduce virulence. 

The OM integrity is especially important for high intrinsic antibiotic resistance in Pa 

since many antibiotics are not able to cross the OM barrier. To investigate whether 

the reduced OM integrity leads to a higher sensitivity to antibiotics, we analysed the 

MICs of various antibiotics for the ΔbamB and the conditional surA mutant using E-

tests. Since we aimed to restore antibiotic susceptibility in MDR Pa strains, we 

additionally tested a conditional surA mutant in a MDR clinical isolate called ID72. In 

PA14, the MICs of all tested antibiotics except carbapenems and erythromycin (in the 
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conditional surA mutant), namely for ampicillin/sulbactam, piperacillin/tazobactam, 

ticarcillin/clavulanate, cefotaxime, cefepime, ceftazidime, levofloxacin, ciprofloxacin, 

fosfomycin, vancomycin and trimethoprim/sulfamethoxazole were reduced for the 

ΔbamB and the conditional surA mutant (Klein et al., 2019). Vancomycin served as a 

marker for OM integrity defects as shown for corresponding mutants in different 

species (Ruiz et al., 2005; Weirich et al., 2017). Complementation by the addition of 

arabinose revealed similar MICs like the WT. For doripenem and meropenem in 

contrast a slightly higher MIC was observed (Klein et al., 2019). This is consistent 

with the reduced amount of OprD found in the OM of the mutants, since OprD serves 

as an entry site for carbapenems into the bacterial cell and carbapenem resistance is 

often caused by mutation or downregulation of OprD (Wolter et al., 2008; Yoneyama 

and Nakae, 1993; El Amin et al., 2005; Pirnay et al., 2002). The ID72 strain was 

highly resistant against all tested antibiotics except ciprofloxacin. In the conditional 

surA mutant, the MICs of ticarcillin/clavulanate, cefepime, ceftazidime, ciprofloxacin, 

levofloxacin, fosfomycin and vancomycin were reduced. In case of cefepime, 

ceftazidime and levofloxacin, the sensitivity of ID72 could be restored (Klein et al., 

2019). Therefore, the global effect on OM integrity by deprivation of SurA allows a 

wide variety of antibiotics to better cross the OM. This resulted in reduced MICs of 

almost all tested antibiotics. The data obtained from the conditional surA mutant in a 

MDR Pa isolate demonstrate that deprivation of SurA is a possibility to restore 

sensitivity against various clinically important antibiotics. 

In conclusion, SurA is an important protein for proper OM composition and integrity. 

The non-essential BAM complex components BamB and BamC as well as the Skp-

homologue HlpA on the other hand are not suitable as targets since the effects in the 

ΔbamB and the ΔbamC strain are very small. For the ΔhlpA mutant, no change in 

OM composition and integrity could be observed indicating that Skp plays an even 

minor role in Pa than in other Gram-negative species. This is supported by our 

finding that SurA seems to be essential in Pa and Skp and DegP are obviously not 

able to rescue a complete loss of SurA. Deprivation of SurA however causes global 

effects like reduced OM integrity, reduced fitness in human serum due to high 

susceptibility to the complement system, impaired virulence in vivo and enhanced 

sensitivity to various antibiotics. Therefore, SurA is a promising target for the 

development of an antibiotic adjuvant which could restore sensitivity of MDR strains 

and in addition reduce in vivo fitness and virulence.  
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Abstract 34 

With the aim to identify potential new targets to restore antimicrobial susceptibility of 35 

multidrug-resistant (MDR) Pseudomonas aeruginosa (Pa), we generated a high-36 

density transposon (Tn) insertion mutant library in a MDR Pa bloodstream isolate 37 

(ID40). The depletion of Tn insertion mutants upon exposure to cefepime or 38 

meropenem was measured in order to determine the common resistome for these 39 

clinically important antipseudomonal β-lactam antibiotics. The approach was 40 

validated by clean deletions of genes involved in peptidoglycan synthesis/recycling 41 

such as the lytic transglycosylase MltG, the murein endopeptidase MepM1, the 42 

MurNAc/GlcNAc-kinase AmgK and the uncharacterized protein YgfB that all were 43 

identified in our screen as playing a decisive role for survival of treatment with 44 

cefepime or meropenem. We found that the antibiotic resistance of Pa can be 45 

overcome by targeting usually non-essential genes that turn essential in the 46 

presence of therapeutic concentrations of antibiotics. For all validated genes, we 47 

demonstrated that their deletion leads to the reduction of ampC expression, resulting 48 

in a significant decrease of β-lactamase activity and consequently these mutants 49 

partly or completely lost resistance against cephalosporins, carbapenems and 50 

acylaminopenicillins. In summary, the determined resistome may comprise promising 51 
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targets for developing drugs that could be used to restore the sensitivity towards 52 

existing antibiotics specifically in MDR strains of Pa.  53 

 54 

Introduction 55 

Pa is one of the most important pathogens involved in nosocomial infections, such as 56 

pneumonia, urinary tract infection, wound infections and potentially life threating 57 

blood stream infection. In particular, intensive care and immunocompromised 58 

patients are at risk to develop severe infections. MDR strains are emerging which 59 

makes treatment of Pa infection even more difficult. For this reason, the WHO ranked 60 

carbapenem-resistant Pa into the top class of its list of priority pathogens for which 61 

new antibiotics are urgently needed (1). For an increasing number of cases colistin is 62 

the last treatment option despite its neuro-and nephrotoxic side effects. 63 

Pa employs various intrinsic and acquired antibiotic resistance mechanisms. The 64 

high intrinsic resistance is mainly caused by a very low permeability of the outer 65 

membrane (2) and the inducible expression of efflux pumps and enzymes mediating 66 

resistance like AmpC (3). ampC is expressed at a low level in wildtype strains but can 67 

be strongly increased in strains in which ampC is derepressed. Derepression of 68 

ampC is often caused by mutations in the transcriptional regulator AmpR, in AmpD 69 

(4, 5) or in the dacB gene encoding muropeptide amidase and penicillin-binding 70 

protein 4 (PBP4), respectively (6), leading to an increased pool of 1,6-71 

anhydromuropeptides originating from the peptidoglycan (PG) recycling pathway (7). 72 

Moreover, ampC expression can be induced by β-lactam antibiotics and β-lactamase 73 

inhibitors leading to resistance against most β-lactam antibiotics (8). 74 

One strategy to reconsider antibiotics that have become ineffective caused by the 75 

development of resistance is the inactivation of the primary resistance mechanism. 76 

Thus, the combination of β-lactam antibiotics with β-lactamase inhibitors such as 77 
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tazobactam, which block the activity of β-lactamases, makes it possible to reconsider 78 

antibiotics such as piperacillin. However, often such combinations fail again to kill 79 

microbial pathogens because of β-lactamases which are resistant against the β-80 

lactamase inhibitors (9-11). One upcoming strategy is to use a different class of 81 

antibiotic adjuvants. Such adjuvants would not inactivate a primary resistance 82 

mechanism but would rather act on a secondary resistance gene. Several examples 83 

for such a strategy have been described (12-16). In this study, we wanted to find out 84 

which proteins could serve as targets to resensitize MDR Pa strains to treatment with 85 

β-lactam antibiotics. 86 

To answer this question we performed Transposon-Directed Insertion Sequencing 87 

(TraDIS) using the clinical bloodstream isolate ID40, which is resistant against many 88 

β-lactam antibiotics, to assess the resistome of Pa in a similar approach described by 89 

Jana et al. (17). TraDIS has been shown to be a valuable tool under particular 90 

conditions and in various approaches to find genes responsible for growth (18-21). 91 

We constructed a Tn mutant library in the MDR ID40 strain and subjected it to 92 

cefepime (FEP) or meropenem (MEM). TraDIS revealed non-essential candidate 93 

genes including well-known as well as so far unknown genes whose inactivation 94 

breaks resistance against these antibiotics. Some candidates were verified by testing 95 

respective deletion mutants for their antibiotic sensitivity, β-lactamase activity and 96 

ampC expression. The presence of these genes seems to be crucial to achieve or 97 

maintain antibiotic resistance. These genes may comprise the most promising non-98 

essential target genes for the development of novel antibiotic adjuvants to reconsider 99 

β-lactam antibiotics in resistant strains of Pa. 100 

 101 

Results 102 

ID40 sequence and resistance profile 103 
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To determine the resistome of a MDR Pa strain against β-lactam antibiotics, we used 104 

the bloodstream isolate ID40 (22). ID40 belongs to the sequence type ST-252 105 

(determined by MLST 2.0, Center for Genomic Epidemiology, DTU, Denmark (23)) 106 

and is resistant against piperacillin (PIP), piperacillin/tazobactam (TZP), cefepime 107 

(FEP), ceftazidime (CAZ), aztreonam (ATM), levofloxacin (LEV), ciprofloxacin (CIP) 108 

and imipenem (IMP). Moreover, ID40 is intermediate for meropenem (MEM) and 109 

sensitive against amikacin (AMI), gentamicin (GEN), tobramycin (TOB) and colistin 110 

(COL) (Table S1). The whole genome and the plasmid sequence were annotated 111 

and submitted to the European Nucleotide Archive (ENA) (https://www.ebi.ac.uk/ena; 112 

accession number PRJEB32702). 113 

The ID40 chromosome is 6.86 Mbp in size and encodes 6409 open reading frames 114 

and carries a plasmid of 57446 bp comprising 59 putative genes. Resistance genes 115 

were searched using ResFinder (24) revealing the following resistance genes: 116 

aph(3')-IIb (neo) for aminoglycoside resistance, blaOXA-486 (bla) and OxaPAO1 117 

(ampC, PDC-3) for β-lactam resistance, crpP (crpP) for fluoroquinolone resistance 118 

and fosA (fosA_1) for fosfomycin resistance. Additionally, we found a point mutation 119 

in the dacB gene (PBP4; G-A nt1310, G437D), which is known to be responsible for 120 

resistance against β-lactam antibiotics as shown by an increased MIC for CAZ from 1 121 

µg/ml to 32 µg/ml in Pa PAO1 (6). Therefore, most likely the mutation in dacB 122 

rationalizes the different resistance level of ID40 in comparison to strain PA14, which 123 

comprises the same resistance genes but is sensitive to all β-lactam antibiotics. 124 

Other resistance mechanisms like reduced expression of oprD and overexpression of 125 

efflux pumps were not specifically addressed, but their contribution to resistance 126 

cannot be finally excluded. Analysis of the OprD sequence and comparison to the 127 

literature did not provide any clear evidence that OprD of ID40 is dysfunctional (25-128 

28). 129 
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 130 

Construction of a high-density mutant library and TraDIS sequencing  131 

Growth of the Tn library in LB revealed approximately 100000 unique Tn insertions 132 

distributed across the genome with an average of 18 Tn insertion sites per 1 kbp of 133 

coding sequences. Homogenous distribution of Tn insertions and homogenous 134 

coverage of the whole genome are shown in Figure S1.  135 

Analysis of the unchallenged Tn library showed that from 6468 genes 697 genes 136 

were determined to be essential for viability (10.8 %) (Data set S1) and 9 were 137 

determined to be ambiguous (0.14 %) (Data set S2). Among these, many genes 138 

were previously described to be essential, for example dnaA, gyrB or lolA (29, 30).  139 

 140 

Identification of genes important for resistance against meropenem and 141 

cefepime 142 

The contribution of non-essential genes to antimicrobial resistance was measured by 143 

quantifying the depletion of Tn insertion mutants upon exposure with FEP and MEM 144 

at the respective breakpoint concentration defining a Pa strain as sensitive according 145 

to EUCAST (FEP: 8 µg/ml, MEM: 2 µg/ml). For analysis of the TraDIS results we 146 

chose only genes in which the read number in LB control was > 10 in all three 147 

independent experiments and additionally showed a significant change in read 148 

counts upon treatment and had an adjusted p value < 0.05 (Data set S3). Genes that 149 

showed a significant change in read counts in comparison to the untreated sample 150 

are visualized in Figure 1. In total, 140 genes fulfilled these criteria upon MEM 151 

treatment and 102 genes upon FEP treatment.  152 

Non-essential genes in which the read counts for Tn insertion were at least 5-fold 153 

reduced with a high level of significance (adjusted p value < 0.05) are listed in 154 

Table 1. In total, 24 such genes were identified. 13 of those genes fulfilled these 155 
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criteria for both MEM and FEP, 5 only for MEM and 6 only for FEP. Most genes were 156 

found to be involved in PG synthesis and recycling. The most interesting genes 157 

identified in this screening were those which showed significant reduction in read 158 

counts after both MEM and FEP treatment. All TraDIS sequence data were uploaded 159 

to ENA (https://www.ebi.ac.uk/ena; accession number PRJEB32702). 160 

We found several genes dedicated to the PG recycling metabolism such as ampG 161 

and nagZ, known to be important for resistance against β-lactam antibiotics (31-36). 162 

In addition, the efflux pump genes mexA and mexB (Data set S3) as well as the porin 163 

OprF were also identified in our screen and have been described to be involved in 164 

antibiotic resistance (37) (Table 1). This points out that our approach can identify 165 

non-essential genes involved in antibiotic resistance. 166 

A pathway that connects cell wall recycling to PG de novo biosynthesis is responsible 167 

for the intrinsic resistance of Pa to fosfomycin, inhibiting the synthesis of PG by 168 

blocking the formation of N-acetylmuramic acid (MurNAc) (38-41). This cell wall 169 

salvage pathway comprises anhydro-MurNAc kinase (AnmK), an anomeric cell wall 170 

amino sugar kinase (AmgK), MurNAc-6-phosphatase (MupP) and an uridylyl 171 

transferase (MurU), together converting 1,6-anhydro-N-acetylmuramic acid 172 

(AnhMurNAc) to uridine diphosphate (UDP)-MurNAc, thereby bypassing the 173 

fosfomycin-sensitive de novo synthesis of UDP-MurNAc. We identified all these four 174 

genes (Table 1) and conclude that the anabolic recycling pathway may play a critical 175 

role to maintain resistance against β-lactam antibiotics at least in strains with high β-176 

lactamase activity. 177 

Moreover, genes encoding the lytic transglycosylases (LTs) Slt and MltG were found 178 

to be associated with resistance upon treatment with MEM and FEP (Table 1). Loss 179 

of Slt was shown to reduce resistance against β-lactam antibiotics in PAO1 (42). 180 

MltG was described as one of several LTs to be inhibited by bulgecin, a sulfonated 181 
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glycopeptide originally isolated from P. acidophila and P. mesoacidophila, resulting in 182 

a slightly reduced MIC of CAZ and MEM (16). 183 

MepM1 (YebA, PA0667) belongs to a group of murein endopeptidases (EPs) which 184 

putatively modulate PG crosslinking (43). A study revealed that the protease CtpA 185 

(PA5134) inactivates various EPs, namely PA0667/TUEID40_04290/mepM1, 186 

PA4404/TUEID40_02316, PA1198/TUEID40_01415, PA1199/TUEID40_01414 and 187 

thereby controls the level of PG crosslinking (43). TUEID40_01415 showed also 188 

reduced read counts upon treatment with MEM and/or FEP, but to a much lesser 189 

extent than MepM1 (Data set S3). In addition, the EP MepM2, which is not regulated 190 

by CtpA at least in the Pa PAK strain (43) seems also to be involved in maintaining 191 

antibiotic resistance (Table 1).  192 

Furthermore, we identified two so far unknown or uncharacterized candidate genes 193 

putatively involved in antibiotic resistance against both MEM and FEP: 194 

TUEID40_05543/tuaC belongs to the glycosyltransferase 1 family, and 195 

TUEID40_03245 encodes an YgfB-like protein with so far unknown function which 196 

will be referred here to as YgfB. 197 

 198 

Confirmation of selected genes involved in antimicrobial resistance 199 

To validate our TraDIS results, deletion mutants for mltG, mepM1, amgK, ygfB, tuaC 200 

as well as ctpA and a ctpA/mepM1 double mutant were tested for their sensitivity 201 

against β-lactam antibiotics. Microbroth dilution assays indicated that deletion of 202 

mltG, mepM1, ygfB and amgK reduced the MIC values for all tested β-lactam 203 

antibiotics (Table 2) except for IMP (ΔmepM1) and MEM (ΔmepM1, ΔamgK), while 204 

deletion of tuaC showed only a slight reduction in MIC for TZP. The MIC values were 205 

reduced below the breakpoint for FEP and ATM in ΔmltG, ΔmepM1, ΔygfB and 206 

ΔamgK and for CAZ in ΔmltG and ΔamgK. Additionally, ΔmltG showed MICs below 207 
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the breakpoint for for PIP, TZP and IMP. These data confirm the validity of the 208 

TraDIS screen and demonstrate the contribution of these genes to resistance against 209 

β-lactam antibiotics in the ID40 strain.  210 

Deletion of ctpA increased MIC values for MEM, FEP, PIP and ATM. Thus, we 211 

hypothesize that increased activity of MepM1 and other CtpA substrates leads to 212 

increased resistance. The MIC values of the double mutant ΔctpAΔmepM1 for PIP 213 

and ATM were lower compared to those of ΔctpA but higher compared to those of 214 

the ΔmepM1 deletion mutant, indicating that the other substrates of CtpA might also 215 

contribute to resistance against β-lactam antibiotics and compensate for the loss of 216 

MepM1 without the inactivation of CtpA. According to the TraDIS data the most 217 

promising CtpA-regulated substrates which may, in combination with MepM1, 218 

contribute to β-lactam resistance are TUEID40_02316 and TUEID40_01415 (Data 219 

set S3). Furthermore, it could be confirmed that deletion of amgK results in reduced 220 

resistance against fosfomycin as previously described (Table 2 and S1) (39). 221 

For complementation, conditional mutants (ΔmltG::mltG, ΔmepM1::mepM1, 222 

ΔctpA::ctpA, ΔygfB::ygfB) under control of a rhamnose-inducible promoter were 223 

generated. In the presence of 0.1% rhamnose complementation could be achieved 224 

(Table S1).  225 

 226 

MltG, MepM1, AmgK and YgfB contribute to β-lactam resistance in ID40 by 227 

promoting ampC expression 228 

To assess in more detail the reason why the mutants show restored susceptibility to 229 

β-lactam antibiotics, we measured the β-lactamase activity of ID40, the different 230 

deletion mutants as well as of the laboratory strain PA14, which is sensitive to all 231 

tested antibiotics (Table 2). As determined by a nitrocefin-based assay, β-lactamase 232 

activity was strongly reduced in ΔmltG, ΔmepM1, ΔygfB, and ΔamgK with the most 233 
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profound reduction in ΔmltG showing a β-lactamase activity almost as low as the 234 

PA14 strain (Figure 2A), and being sensitive to all tested β-lactam antibiotics (Table 235 

S1). The β-lactamase activity corresponds directly to the MIC values of the different 236 

mutants. Similarly, a higher β-lactamase activity was found in the hyperresistant 237 

ΔctpA mutant. Therefore, the changes in MICs are presumably caused by an altered 238 

β-lactamase activity in the mutants compared to ID40 wildtype. No significant change 239 

in β-lactamase activity was found in ΔctpAΔmepM1 compared to ΔctpA, indicating 240 

that the uncontrolled levels of other CtpA substrates can compensate the lack of 241 

MepM1. 242 

In the ID40 genome, two β-lactamases are encoded (ampC and OXA-486/bla/poxB). 243 

For PoxB it has been shown that it does not contribute to β-lactam resistance (44). 244 

We quantified the expression level of ampC to investigate whether the lower β-245 

lactamase activity is due to reduced ampC expression. Semi-quantitative RT-PCR 246 

revealed that deletion of mltG, mepM1, amgK or ygfB significantly decreased ampC 247 

mRNA expression (Figure 2B). Deletion of ctpA, presumably resulting in a higher 248 

level of MepM1 and its other substrates, caused an increase in ampC expression. 249 

The expression level of ampC in the different mutants is in agreement with the levels 250 

of β-lactamase activity and the MICs of β-lactam antibiotics that we have measured. 251 

These results indicate that the different levels of resistance of the ID40 mutants are 252 

due to different levels of ampC expression. 253 

 254 

4 Discussion 255 

Here, we report the - to our knowledge - first application of TraDIS in a MDR 256 

Pseudomonas aeruginosa strain and the evaluation of its non-essential resistome 257 

upon exposure to two clinically relevant β-lactam antibiotics. The identified genes 258 
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might represent targets that could be exploited to resensitize resistant strains for 259 

treatment with β-lactam antibiotics. 260 

Many of the genes important for high β-lactam resistance found in the TraDIS 261 

approach are part of the PG recycling pathway of Pa (45) showing its critical role for 262 

β-lactam resistance in ID40 (46). A simplified scheme of the PG recycling and 263 

synthesis pathway of Pa and the genes identified by the TraDIS approach as well as 264 

genes described to modulate resistance against β-lactam antibiotics is summarized 265 

in Figure 3.  266 

 267 

Players in the periplasm 268 

The precursors of the PG catabolites contributing to transcriptional regulation of 269 

ampC are generated in the periplasm. LTs (such as MltG and Slt) together with low 270 

molecular mass penicillin-binding proteins, EPs (such as MepM1) and amidases 271 

(such as AmpDh2 and 3) cleave the PG layer to facilitate the insertion of new glycan 272 

strands and simultaneously release PG degradation products from the matrix into the 273 

cytoplasm (45). 274 

Upon treatment with antibiotics, the strongest impact on LTs in the screening was 275 

found for mltG and slt. In addition, and in agreement with previous studies (16, 42, 276 

47), we also found the LTs mltF and mltD to maintain resistance, but to a lesser 277 

extent compared to slt and mltG (Data set S3). On the other hand, sltB and sltH 278 

seem to counteract resistance (Data set S3). The recently described MltG may act 279 

as a terminase and determine PG chain length (48). Deletion of mltG in ID40 280 

significantly reduced ampC expression and consequently β-lactamase activity and 281 

broke resistance against IMP, FEP, CAZ, PIP, TZP and ATM. These findings confirm 282 

the validity of our study and underline the importance of MltG for induction of ampC 283 

expression in ID40. As previously demonstrated, MltG, Slt and MltD are targets of the 284 
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LT inhibitor bulgecin reducing the MIC against β-lactam antibiotics (16). According to 285 

our data, LTs represent one of the most promising targets for re-sensitization for 286 

treatment with β-lactam antibiotics. 287 

EPs may also contribute to the induction of ampC expression. As demonstrated, the 288 

protease CtpA inactivates and thereby determines the levels of four EPs that control 289 

PG crosslinking (43). Of this group, mepM1 showed the highest reduction of Tn 290 

insertion read counts when comparing treatment with antibiotics and control, while Tn 291 

insertions in PA1198/TUEID40_01415 had a minor impact on growth in the presence 292 

of MEM. In addition, mepM2/TUEID40_04881, a further EP which is not regulated by 293 

CtpA in PAK (43), also seems to contribute to resistance against β-lactam antibiotics. 294 

While deletion of mepM1 leads to reduced MIC values of β-lactam antibiotics, 295 

deletion of ctpA leads to hyperresistance probably by deregulating the levels of its 296 

substrates. The role of deleted or non-functional CtpA in mediating hyperresistance is 297 

further supported by Sanz-García et al. who showed that upon ceftazidime/avibactam 298 

treatment, mutations in the ctpA gene emerge which leads to resistance (49). 299 

Additional deletion of mepM1 in the ctpA mutant reduces MIC values compared to 300 

∆ctpA for PIP and ATM, but results in still higher MIC values compared to the mepM1 301 

deletion mutant, indicating that other CtpA-dependent EPs also contribute to 302 

upregulation of ampC expression. These data suggest that high activity of MepM1 303 

promotes increased ampC expression. Thus, inhibition of several of these EPs could 304 

be a possibility to break antibiotic resistance. 305 

 306 

Players in the cytoplasm 307 

After PG catabolites have been formed in the periplasm, they are transported into the 308 

cytoplasm by the permease AmpG and partly by AmpP (50). In the following the 1,6-309 

anh-MurNAc-peptides are degraded by LdcA, NagZ and AmpD. The amidase AmpD 310 
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cleaves the peptide chain attached to 1,6-anhMurNAc so that the generated 1,6-311 

anhMurNAc can subsequently be recycled to UDP-MurNAc by the so-called cell wall 312 

salvage pathway via AnmK, MupP, AmgK and MurU which bypasses de novo 313 

biosynthesis of UDP-MurNAc (38, 39). Finally, UDP-MurNAc is modified by the Mur 314 

enzymes to form UDP-MurNAc-pentapeptide (45). Both 1,6-anhMurNAc-peptides 315 

and UDP-MurNAc-pentapeptide can bind to the ampC regulator AmpR. Thereby, 1,6-316 

anhMurNAc-peptides induce ampC expression, while UDP-MurNAc-pentapeptide 317 

bound to AmpR represses ampC expression. 318 

As observed in our TraDIS data and also shown previously loss of AmpG or NagZ 319 

results in decreased amounts of 1,6-anhMurNAc peptides and hence results in 320 

increased susceptibility towards β-lactam antibiotics (32, 47). On the other hand, loss 321 

of AmpD leads to accumulation of 1,6-anhMurNAc-peptides and therefore an 322 

increased ampC expression (51) and is a frequent cause of high ampC expression in 323 

clinical isolates of Pa (52, 53). 324 

 325 

Players of the cell wall salvage pathway 326 

The individual deletion of each of the 4 (anmK, mupP, amgK and murU) genes of the 327 

cell wall salvage pathway in PAO1 has been shown to lead to increased β-lactamase 328 

activity and a subtle increase of resistance against cefotaxime and CAZ (41). 329 

Although this effect could not be explained so far, it was proposed that it might be 330 

due to the reduction of the steady state level of the ampC repressor UDP-MurNAc-331 

pentapeptide. Consequently, 1,6-anhMurNAc-peptides would be more likely to bind 332 

to AmpR and thereby induce ampC expression (41). In contrast, another study 333 

showed that the deletion of amgK also in Pa PAO1 had no impact on CAZ and IMP 334 

resistance (39), which could be confirmed in our study for all tested β-lactam 335 

antibiotics (Table S1). Interestingly, in our study we observed that Tn insertions in all 336 
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genes of the MurU pathway reduce β-lactam resistance. Validation of the screening 337 

results using an amgK deletion mutant confirmed these results. This finding is indeed 338 

counterintuitive and more detailed explorations are necessary to clarify this issue. 339 

Presumably, the anabolic recycling pathway somehow counteracts derepression of 340 

ampC in the dacB background of ID40.  341 

 342 

Uncharacterized players 343 

Additionally, we identified several uncharacterized genes in the presented TraDIS 344 

screening. Since deletion of the gene tuaC showed only a slight reduction in the 345 

MICs against some β-lactam antibiotics, we focused on TUEID40_03245, which we 346 

termed ygfB due to its similarity to the homologous gene in Ec. Deletion of ygfB 347 

resulted in decreased ampC expression and β-lactamase activity and broke 348 

resistance against FEP and ATM in ID40. To our best knowledge, this gene was so 349 

far not described in the context of antibiotic resistance. ygfB is located in an operon 350 

together with the pepP, ubiH, PA14_68970 orthologue and ubiI. ubiI and ubiH are 351 

essential genes important for ubiquinone biosynthesis. Similar operon structures are 352 

found also in Ec, Acinetobacter baumannii (Ab) and Legionella pneumophila (Lp). Pa 353 

YgfB shares 33 % identical amino acids with Ec and Ab YgfB and 32 % with Lp YgfB. 354 

Interestingly, the aminopeptidase gene pepP, which is encoded adjacent to ygfB, 355 

was also identified in the TraDIS screening, but Tn insertion read counts indicate that 356 

lack of pepP might contribute to hyperresistance.  357 

Moreover, experiments with PAO1 Tn mutants suggested that Pa YgfB may 358 

contribute to virulence in a C. elegans infection model (54). In addition, a TraDIS 359 

experiment suggested that the ygfB orthologue PA14_69010 may play a role for 360 

effective colonization in the caecum of mice (55). Thus, the possible role in virulence 361 

as well as the ability to modulate antibiotic resistance could mean that this gene is of 362 
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interest as a target to develop antibiotic adjuvants which might additionally reduce 363 

virulence. In further studies we will address the function of YgfB and its specific role 364 

in mediating antibiotic resistance. 365 

In conclusion, using TraDIS we identified a set of nonessential genes which are 366 

crucial for the induction of ampC expression and β-lactam resistance. As shown in a 367 

recent study, overexpression of ampC is the most frequent cause for the 368 

development of resistance in strains capable of expressing ampC as shown by the 369 

acquisition of mutations in dacB, ampD and mpl after exposure of Pa PAO1 WT to 370 

increasing concentrations of ceftazidime (56). However, there are additional 371 

mechanisms to develop resistance against β-lactam antibiotics which gain more 372 

importance when ampC expression is hindered. Mutations in ftsI leading to 373 

modification of PBP3, the target of β-lactam antibiotics, mutations or overexpression 374 

of the efflux pump MexAB-OprM as well as large chromosomal deletions led to 375 

resistance against ceftazidime albeit to a lower level compared to β-lactamase-376 

dependent resistance (56). This aspect will have to be considered for the 377 

development of adjuvants leading to decreased expression of ampC. 378 

Nevertheless, the genes identified in our study provide promising candidates as 379 

targets to develop novel adjuvants to restore the function of β-lactam antibiotics in 380 

MDR Pa strains with high AmpC activity. 381 

 382 

Material and Methods 383 

Bacterial strains and culture conditions 384 

Bacterial strains and plasmids used in this study are listed in Table S2. Bacteria were 385 

cultivated overnight at 37 °C with shaking at 200 rpm in lysogeny broth (LB) 386 

containing suitable antibiotics if necessary. Overnight cultures were diluted 1:20 into 387 

LB broth containing suitable antibiotics or additives like L-rhamnose and grown for 388 
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3 h at 37 °C and 200 rpm. The growth of bacteria in LB at 37 °C in a 24-well-plate 389 

was measured using a Tecan Infinite® 200 PRO. 390 

 391 

WGS of the ID40 isolate 392 

DNA isolation, library preparation and Illumina sequencing of the ID40 strain are 393 

described in Willmann et al. (22). 394 

For Nanopore sequencing, the DNA was isolated using the DNeasy UltraClean 395 

Microbial Kit (Qiagen). Library preparation was conducted using the Ligation 396 

Sequencing Kit (Oxford Nanopore Technologies). Sequencing was performed on a 397 

PromethION sequencer (Oxford Nanopore Technologies) on a FLO-PRO002 flow 398 

cell, version R9.  399 

The ID40 genome was assembled using a hybrid assembly approach that combines 400 

the Nanopore long reads with exact Illumina short reads. We used the hybrid 401 

assembly pipeline pathoLogic (57) with default settings and selected Unicycler (58) 402 

as the main assembly algorithm. Further manual scaffolding yielded a single circular 403 

plasmid and a circular chromosome. The assembled genome as well as the plasmid 404 

sequence was annotated using Prokka (version 1.11) (59, 60). 405 

 406 

Generation of the ID40 Tn library 407 

The ID40 Tn mutant library was generated as described previously (55, 61) with 408 

some modifications. The donor strain Ec SM10 λ pir containing pBT20 was grown in 409 

LB broth containing 15 µg/ml gentamicin (Gm) and the recipient strain ID40 in LB 410 

broth. Cell suspensions of both strains were adjusted to an OD600 of 2.0, mixed, and 411 

droplets of 100 µl were spotted onto pre-warmed LB agar plates. After incubation at 412 

37 °C for 3 h, mating mixtures were scraped off the plate and resuspended in 12 ml 413 

LB broth. 100 µl aliquots were plated onto 100 LB agar plates containing 25 µg/ml 414 
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irgasan and 75 µg/ml Gm. After overnight growth at 37 °C, all colonies 415 

(approximately 5000 per plate) were scraped off the LB agar, resuspended and 416 

washed once in LB broth. To eliminate satellite colonies 1 l LB broth containing 75 417 

µg/ml Gm was inoculated with the suspension to an OD600 of 0.1 and grown to an 418 

OD600 of 1.2. The bacteria were washed once, adjusted to an OD600 of 22 in LB broth 419 

containing 20 % glycerol and finally aliquots of 1 ml were frozen at -80 °C. 420 

 421 

Tn library antibiotic exposure 422 

One aliquot of the Tn library was centrifuged, resuspended in LB broth and grown in 423 

100 ml LB broth overnight. The overnight cultures were diluted 1:100 into 100 ml LB 424 

broth with or without 8 µg/ml FEP or 2 µg/ml MEM and grown at 37 °C. After 24 h, the 425 

cultures were diluted 1:100 into fresh LB broth and grown for another 24 h at 37°C to 426 

enrich viable bacteria. 427 

 428 

Library preparation for TraDIS 429 

Genomic DNA of 5 x 109 bacteria per sample was isolated using DNeasy® 430 

UltraClean® Microbial Kit (Qiagen).  431 

2 µg DNA per sample were sheared into fragments of 300 bp with a M220 Focused-432 

ultrasonicatorTM (Covaris) and a clean-up was conducted with a 1.5-fold volume of 433 

Agencourt AMPure XP Beads (Beckman Coulter). End repair, A-Tailing and adapter 434 

ligation were done using NEBNext® UltraTM II DNA Library Prep Kit for Illumina® 435 

(NEB). A splinkerette and the P7 indexed primer were used as adapters leading to an 436 

enrichment of Tn containing fragments in the PCR (62-64). Fragments were size-437 

selected using Agencourt AMPure Beads and amplified by PCR with one Tn specific 438 

and one index primer (Illumina®) in 20 cycles using Kapa HiFi HotStart ReadyMix 439 

(Kapa Biosystems). Proper size distribution and quality of the samples were 440 
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assessed with the Agilent DNA High Sensitivity Kit on a 2100 Bioanalyzer (Agilent 441 

Technologies). After a final clean-up, concentration of total fragments and of Tn-442 

containing fragments was measured by qPCR using Kapa SYBR® FAST qPCR 443 

Master Mix (2X) Kit (Kapa Biosystems) with one P5- and one P7-specific or one Tn- 444 

and one P7-specific primer, respectively. 445 

 446 

Sequencing 447 

Samples were adjusted to 4 nM in resuspension buffer (Illumina®), pooled and 448 

denatured with 0.2 N NaOH. Subsequently, the library was diluted to 8 pM in 449 

hybridization buffer (Illumina®) and sequenced with the MiSeq Reagent Kit v2 (50 450 

cycles) on a MiSeqTM (Illumina®) with a PhiX (Illumina®) spike-in of 5 % and dark 451 

cycles (62). 452 

 453 

TraDIS data analysis 454 

Sequencing reads containing the Tn tag were mapped against the ID40 reference 455 

genome, using the Bio::TraDIS pipeline (62) in order to determine the locations and 456 

numbers of Tn insertions. For each gene, an ‘insertion index’ was calculated by 457 

dividing the number of insertions in a gene by total gene length. The bimodal 458 

distribution of insertion indices allows the determination between essential and non-459 

essential genes as recently described (15, 65). Genes that fulfilled the cut-off criteria 460 

of an insertion index < 0.0019 for essential or > 0.0026 for nonessential genes were 461 

categorized in these groups. All other genes were considered as ambiguous (Data 462 

set S2).  463 

Statistical analysis was performed using DESeq2 (https://bioconductor.org) (66). 464 

Differential genes expression analysis was performed for group comparisons MEM 465 
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vs. control and FEP vs. control. Genes were categorized as differentially enriched or 466 

depleted if the adjusted p value was < 0.05. 467 

 468 

Generation of in-frame deletion mutants  469 

In-frame deletion mutants were generated using the suicide plasmid pEXG2 (67) as 470 

described in Klein et al. (68). Primers used in this study are listed in Table S3.  471 

 472 

Generation of complementation constructs 473 

For complementation of the ctpA, mepM1, mltG and ygfB mutant strains, the coding 474 

sequences were amplified by PCR from genomic DNA of ID40 and were assembled 475 

with the plasmid pJM220 (pUC18T-miniTn7T-gm-rhaSR-PrhaBAD) (69) by Gibson 476 

cloning. The constructed plasmids were transformed into Ec SM10 λ pir and 477 

mobilized by conjugation into the mutant strains as described (70) with some 478 

modifications. A triparental mating was conducted by combining the recipient strain 479 

together with the mini-Tn7T harbouring SM10 λ pir strain and SM10 λ pir pTNS3, 480 

harbouring a Tn7 transposase. Insertion of the mini-Tn7T construct into the attTn7 481 

site was monitored by PCR. Excision of the pJM220 backbone containing the Gm 482 

resistance cassette was performed by expressing Flp recombinase from a 483 

conjugative plasmid, pFLP2. Finally, sucrose resistant, but Gm and Cb sensitive 484 

colonies were verified by PCR.  485 

 486 

RNA isolation and qRT-PCR 487 

RNA isolation and qRT-PCR were performed as previously described (68).  488 

 489 

β-lactamase activity assay 490 
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β-lactamase colorimetric activity assay (BioVision) based on nitrocefin turnover was 491 

performed according to manufacturers’ instructions after dissolving the bacteria in 492 

5 µl/mg β-lactamase assay buffer and diluting the supernatant of sonified bacteria 493 

1:50 in β-lactamase assay buffer. 494 

 495 

Antibiotic susceptibility testing 496 

For antibiotic susceptibility testing by microbroth dilution, bacterial strains were grown 497 

overnight at 37 °C in LB medium with or without 0.1 % rhamnose. Physiological NaCl 498 

solution was inoculated to a McFarland standard of 0.5 and subsequently 62.5 µl of 499 

the suspension were transferred into 15 ml MH broth (+ 0.1 % rhamnose for 500 

complementation strains) and mixed well. According to the manufacturers instruction 501 

50-100 µl of the suspension was transferred into each well of a microbroth dilution 502 

microtiter plate (Micronaut-S MHK Pseudomonas-2 #E1-099-100, Micronaut-S β-503 

Lactamases #E1-111-040 (Merlin Diagnostika); SensititreTM GN2F, SensititreTM 504 

EUX2NF (Thermo Fisher Scientific)). Microtiter plates were incubated for 18 h at 505 

37°C and OD600 was measured using the Tecan Infinite® 200 PRO. Bacterial strains 506 

were considered as sensitive to the respective antibiotic concentration if an OD600 507 

value below 0.05 was measured. 508 

E-Tests (Liofilchem) were conducted as previously described (68). 509 

 510 

Statistics 511 

Statistics were performed using GraphPad Prism 7.04 software as described for each 512 

experiment in the table or figure legends. 513 

 514 

Data availability 515 
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The whole genome and the plasmid sequence were annotated and submitted to the 516 

European Nucleotide Archive (ENA) (https://www.ebi.ac.uk/ena; accession number 517 

PRJEB32702. In similar all TraDIS sequence data were uploaded to ENA 518 

(https://www.ebi.ac.uk/ena; accession number PRJEB32702). A more detailed 519 

description of the files is shown in Table S4. 520 
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Figure legends 865 

Figure 1. Resistome of the MDR ID40 determined by TraDIS. 866 

The ID40 Tn library was grown in LB broth with or without 2 µg/ml MEM (A) or 8 867 

µg/ml FEP (B) in 3 independent experiments and then the DNA of the surviving 868 

bacteria was used for sequencing of the Tn-genome junctions. Fold change and 869 

adjusted p value of the samples grown in antibiotics in comparison to the samples 870 

grown in LB broth were calculated with DeSeq2 for all annotated genes. All genes 871 

with significantly different (adjusted p value < 0.05) read counts in comparison to the 872 

LB control are colored in red. 873 

 874 

Figure 2. β-lactamase activity and ampC expression in selected deletion 875 

mutants. 876 

WT and deletion mutant strains were subcultured and β-lactamase activity was 877 

measured by nitrocefin turnover (A) or expression of the β-lactamase gene ampC 878 

was determined by qRT-PCR (B) in at least 3 independent experiments. Graphs 879 

depict means and SD. Student’s t-test was performed for each mutant strain in 880 

comparison to WT (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). 881 

 882 

Figure 3. Simplified scheme of PG recycling and synthesis pathway of Pa and 883 

illustration of proteins identified by TraDIS. 884 

The bacterial murein matrix is formed by chains of the two alternating amino sugars 885 

MurNAc (M) and GlcNAc (G), which are linked by β(1→4) glycosidic bonds. Attached 886 

to the MurNAc residues is a pentapeptide side chain which typically is composed of 887 

L-alanine-ɣ-D-glutamate meso-diaminopimelic acid-D-alanyl-D-alanine (L-Ala-ɣ-888 

DGlu-m-DAP-D-Ala-D-Ala). Cross-links between adjacent glycans are mainly built by 889 
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connecting m-DAP of one chain with D-Ala of the other chain. PG synthesis starts in 890 

the cytoplasm where fructose-6-phosphate is converted in several steps by GlmS, 891 

GlmM and GlmU to UDP-GlcNAc. UDP-GlcNAc is further converted to UDP-MurNAc 892 

by Mur enzymes A and B, and subsequently a peptide chain is added by Mur ligases 893 

C, D, E & F to form UDP-MurNAc-pentapeptide. An alternative route to generate 894 

UDP-MurNAc-pentapeptide starts with the transfer of GlcNAc-1,6-anhMurNAc-895 

peptides (muropeptides) along with GlcNAc-anhMurNAc into the cytoplasm by the 896 

permase AmpG. Some muropeptides (however not GlcNAc-1,6-anhMurNAc-897 

peptides) or free peptides may also be transported through AmpP, but its function in 898 

cell wall recycling has not been elucidated so far. The imported muropeptides are 899 

subsequently degraded by NagZ, L,D-carboxypeptidase LdcA and AmpD, producing 900 

D-Ala, GlcNAc, L-Ala-iso-D-glutamate-mDAP-tripeptide and 1,6-anhMurNAc. AnmK 901 

then catalyzes the phosphorylation of 1,6-anhMurNAc, generating MurNAc-6P, which 902 

is further processed by MupP and the sugar kinase AmgK to MurNAc- -1P. The 903 

uridylyltransferase MurU then converts the latter to UDP-MurNAc, following the 904 

formation of UDP-MurNAc-pentapeptide. The phospho-MurNAc-pentapeptide moiety 905 

is then transferred by the cytosolic translocase MraY to the lipid carrier undecaprenol 906 

phosphate (Und-P) to generate lipid I, which is subsequently catalyzed by MurG to 907 

lipid II by adding GlcNAc to it. Lipid II is then flipped into the periplasm (likely by the 908 

putative flippase MurJ) where GlcNAc-MurNAc peptides are integrated into the 909 

growing PG by high molecular mass penicillin-binding proteins, glycosyltransferases 910 

(GTFs) such as FtsW and RodA, transpeptidases (TPs) and DD-carboxypeptidases 911 

(CPs). Low molecular mass penicillin-binding proteins, endopeptidases (EPs) as 912 

MepM1, lytic transglycosylases as MltG and Slt and amidases as AmpDh2 and 913 

AmpDh3 finally cleave the existing PG layer to facilitate the insertion of new glycan 914 

strands and simultaneously to release the PG degradation products from the matrix 915 
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into the cytoplasm. Under normal conditions the PG precursor UDP-MurNAc-916 

pentapeptide binds to AmpR causing repression of ampC transcription. In the case of 917 

β-lactam treatment, the turnover of the muropeptides is increased (by blockage of 918 

PG-crosslinks) resulting in accumulation of 1,6- anhMurNAc-pentapeptide in the 919 

cytoplasm. The 1,6-anhMurNAc-muropeptides are able to displace UDP-MurNAc-920 

pentapeptides from AmpR causing derepression and hence activation of ampC 921 

transcription. YgfB also modulates ampC expression contributing finally to β-lactam 922 

resistance, but its specific role in mediating antibiotic resistance remains to be 923 

investigated. The proteins found via TraDIS are highlighted with a circle in red for 924 

proteins mediating repression and in green for proteins mediating derepression of 925 

ampC expression. The putative FtsW protein (so far not verified in Pa) and the 926 

unknown mechanism of YgfB are labeled with interrupted lines. OM, outer 927 

membrane; P, periplasm; IM, inner membrane; C, cytoplasm; PG, peptidoglycan; 928 

CPs, DD-carboxypeptidases; GTFs, glycosyltransferases; EPs, endopeptidases; LTs, 929 

lytic transglycosylases. *AmgK, MupP and MurU cell-wall recycling enzymes found in 930 

Pa but not in enterobacteria such as Ec (38, 40, 41). 931 

 932 
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Table 1. Meropenem and cefepime resistome in Pa ID40. Genes for which insertion sequence abundance was significantly (> 5-

fold, adjusted p value < 0.05) reduced upon exposure with 2 µg/ml MEM or 8 µg/ml FEP. Differences in insertion sequence abundance 

are expressed as mean of the ratio of normalized sequence read numbers of antibiotic treated in relation to the normalized sequence 

read numbers of the LB control culture of the Tn library. In total three independent experiments were performed. 

Category 
   

MEM vs LB FEP vs LB Orthologues 

 
ID Gene Name/Function Ratio p value Ratio p value 

 

Genes with an adjusted p value < 0.05 and ≥ 5-fold reduction for MEM and FEP 

Resistance TUEID40_04486 ampC β-lactamase 0.07 0.00052 0.05 3.87E-5 
PA14_10790; 

PA4110 

PG synthesis/ 
recycling 

 

TUEID40_05675 slt Soluble lytic transglycosylase 0.02 5.08E-12 0.03 3.61E-10 
PA14_25000; 

PA3020 

TUEID40_05736 mltG 
Endolytic murein 
transglycosylase 

0.02 1.32E-33 0.03 1.77E-41 
PA14_25730; 

PA2963 

TUEID40_04290 mepM1 Murein-DD endopeptidase 0.05 1.01E-07 0.07 2.29E-06 
PA14_08540; 

PA0667 

TUEID40_02325 ftsW 
Synthesis of septal 

peptidoglycan during cell 
division 

0.11 2.76E-05 0.20 0.0019 
PA14_57360; 

PA4413 

TUEID40_02305 ampG Permease 0.02 7.00E-24 0.03 1.01E-22 
PA14_57100; 

PA4393 

TUEID40_05690 nagZ 
β-N-acetyl-D-

glucosaminindase 
0.07 1.56E-05 0.04 6.23E-06 

PA14_25195; 
PA3005 

TUEID40_04289 anmK 
Anhydro-N-acetylmuramic 

acid kinase 
0.12 4.938E-10 0.20 1.62E-06 

PA14_08520; 
PA0666 

TUEID40_04233 amgK 
N-acetylmuramate/ 

N-acetylglucosamine kinase 
0.08 3.05E-06 0.17 0.0085 

PA14_07780; 
PA0596 

TUEID40_04234 
hddC/ 
murU 

Similar to N acetyl-muramate 
alpha-1-phosphate uridylyl-

transferase murU of 
Pseudomonas putida 

0.07 5.10E-05 0.15 0.0001 
PA14_07790; 

PA0597 

LPS TUEID40_05537 wbpE UDP-2-acetamido-2-deoxy-3- 0.10 1.58E-03 0.135 6.43E-03 PA3155 
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oxo-D-glucuronate 
aminotransferase 

Unknown 
TUEID40_03245 ygfB ygfB-like proteins, unknown 0.06 2.35E-19 0.06 5.56E

-
20 

PA14_69010; 
PA5225 

TUEID40_05543 tuaC Glycosyltransferase family 1 0.02 1.35E-09 0.02 7.79E-10 - 

Genes with an adjusted p value < 0.05 and ≥ 5-fold reduction only for MEM  

PG synthesis/ 
recycling 

TUEID40_04881 mepM2 
Murein DD-endopeptidase 
MepM, unknown function 

0.14 3.60E-12 0.37 0.002 
PA14_15100; 

PA3787 

Type IV pili 
assembly 

TUEID40_03621 tsaP 

Type IV pilus secretin-
associated protein; anchors 
the outer membrane type IV 
pili secretin complex to the 

peptidoglycan 

0.02 1.02E-28 0.31 3.61E-10 
PA14_00210; 

PA0020 

β-barrel 
assembly 

TUEID40_01638 
bepA/ 
ygfC_1 

β-barrel assembly enhancing 
protease 

0.12 2.17E-07 0.24 1.20E-06 
PA14_51320; 

PA1005 

Unknown 
TUEID40_03216  putative zinc protease 0.14 6.06E-05 0.21 0.001 

PA14_68640; 
PA5196 

TUEID40_05674 - 
Uncharacterized conserved 

protein YecT. DUF1311 family 
0.19 9.84E-05 0.74 1.0 

PA14_24990; 
PA3021 

Genes with an adjusted p value < 0.05 and ≥ 5-fold reduction only for FEP 

PG synthesis/ 
recycling 

TUEID40_05519 
gph_2/
mupP 

N-Acetylmuramic Acid 6-
Phosphate Phosphatase 

MupP 
0.27 0.14 0.185 4.12E-02 

PA14_23210; 
PA3172 

TUEID40_03006 mrcA Penicillin binding protein 1 0.73 0.40 0.05 3.15E-12 
PA14_66670; 

PA5045 

TUEID40_02335 lpoA 
Penicillin binding protein 

activator 
1.03 1 0.20 6.87E-16 

PA14_57480;PA
4423 

Cell division TUEID40_03247 zapA Cell divison protein zapA 0.39 0.00017 0.17 1.00E-07 
PA14_69030; 

PA5227 

Porin TUEID40_00776 oprF Outer membrane protein F 0,22 0.036 0.20 0.03 
PA14_41570; 

PA1777 

Unknown TUEID40_01298 - 
Uncharacterized putative 
membrane-bound PQQ-

dependent dehydrogenase 
0.45 0.0018 0.16 1.80E-08 

PA14_47350; 
PA1305 
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Table 2. Susceptibility of ID40 WT and deletion mutants against β-lactam antibiotics. Minimal inhibitory concentrations (MICs) of 

ID40 WT and deletion mutant strains were determined by microbroth dilution or by E-Test for fosfomycin. MIC values of the deletion 

mutants lower than that of ID40 WT are highlighted in green and those below the MIC breakpoint in bold green and light green 

background. MIC values higher compared to that of ID40 WT are highlighted in red. 

 

MEM, meropenem; IMP, imipenem; FEP, cefepime; CAZ, ceftazidime; PIP, piperacillin; TZP, piperacillin/tazobactam; ATM, 

aztreonam; FOS, fosfomycin; *E-test 

 

S ≤ R >

MEM 2 8 8 4 8 16 16 4 8 8 <0.125

IMP 4 4 32 4 32 32 32 8 8 32 <1

FEP 8 8 16 4 4 32 32 8 8 16 <1

CAZ 8 8 32 2 16 32 32 16 8 32 <1

PIP 16 16 128 <4 64 >128 128 32 32 128 <4

TZP 16 16 128 4 32 128 128 32 32 64 4

ATM 16 16 32 2 16 >32 32 16 8 >32 8

FOS * - - 96 96 96 96 64 128 48 96 48

DamgK DtuaC PA14
MIC Breakpoint (mg/L)

ID40 WT DmltG DmepM1 DctpA
DmepM1 
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Mirita Franz-Wachtel 2, Boris Macek 2, Thomas Trunk 3, Jack C. Leo 3, Ingo B. Autenrieth 1,
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Pseudomonas aeruginosa is one of the main causative agents of nosocomial infections

and the spread of multidrug-resistant strains is rising. Therefore, novel strategies for

therapy are urgently required. The outer membrane composition of Gram-negative

pathogens and especially of Pa restricts the efficacy of antibiotic entry into the cell

and determines virulence. For efficient outer membrane protein biogenesis, the β-barrel

assembly machinery (BAM) complex in the outer membrane and periplasmic chaperones

like Skp and SurA are crucial. Previous studies indicated that the importance of individual

proteins involved in outer membrane protein biogenesis may vary between different

Gram-negative species. In addition, since multidrug-resistant Pa strains pose a serious

global threat, the interference with both virulence and antibiotic resistance by disturbing

outer membrane protein biogenesis might be a new strategy to cope with this challenge.

Therefore, deletion mutants of the non-essential BAM complex components bamB and

bamC, of the skp homolog hlpA as well as a conditional mutant of surAwere investigated.

The most profound effects for both traits were associated with reduced levels of SurA,

characterized by increased membrane permeability, enhanced sensitivity to antibiotic

treatment and attenuation of virulence in a Galleria mellonella infection model. Strikingly,

the depletion of SurA in a multidrug-resistant clinical bloodstream isolate re-sensitized

the strain to antibiotic treatment. From our data we conclude that SurA of Pa serves as a

promising target for developing a drug that shows antiinfective activity and re-sensitizes

multidrug-resistant strains to antibiotics.

Keywords: SurA, Pseudomonas aeruginosa, virulence, multidrug resistance, antibiotics, outer membrane protein

biogenesis



Klein et al. Role of SurA in Pa

INTRODUCTION

The widespread use of antibiotics is causative for the rapid
development of multidrug-resistant strains. Particularly, the
emergence of carbapenem-resistant bacteria poses a significant
threat to public health (Pendleton et al., 2013). The Gram-
negative, opportunistic pathogen Pseudomonas aeruginosa (Pa)
belongs to the so-called ESKAPE group, comprising a group
of the most common and multidrug-resistant bacteria (Rice,
2008). Pa can cause infections in a wide range of animal and
plant hosts and is a leading cause of nosocomial infections,
which are almost exclusively found in immunocompromised
hosts (Lyczak et al., 2000; Lister et al., 2009). Pa displays
numerous intrinsic and acquired resistance mechanism against
antibiotics: (i) enzymatic and mutational resistance mechanisms
like the production of β-lactamases, (ii) overexpression of
efflux systems, and (iii) the low permeability of the outer
membrane (OM) that limits the penetration of antibiotic
molecules (Yoshimura and Nikaido, 1982).

The major challenge for drugs against Pa and Gram-negative
bacteria in general is to pass the bacterial OM. The OM
provides a highly effective barrier against foreign and harmful
molecules, allows import and export of essential substances
such as nutrients and iron, is necessary for communication
and harbors many virulence factors. The outer leaflet of the
OM is constituted mainly by lipopolysaccharides (LPS), whereas
the inner leaflet consists of phospholipids. This bilayer houses
a great variety of outer membrane proteins (OMPs) that
facilitate transport and other essential functions, and act as
virulence factors (Nikaido, 2003). Many OMPs are porins and
autotransporters. Both comprise a β-barrel domain and either
facilitate transport of molecules across the OM (Chevalier
et al., 2017) or can form cell surface exposed moieties that
shape the interaction with the host and the extracellular
environment (Leyton et al., 2012). For the insertion of these
β-barrel proteins, Gram-negative bacteria employ a conserved
transport system consisting of the periplasmic chaperones SurA,
Skp, and DegP, which protect and guide newly synthesized
proteins from the Sec translocon in the inner membrane to
the OM and the β-barrel assembly machinery (BAM) complex
(Sklar et al., 2007; Tashiro et al., 2009; Goemans et al.,
2014; Li et al., 2018). Both SurA and Skp act as chaperones
and are thought to form a partially redundant network. The
importance of SurA and Skp for the OMP biogenesis is
controversially discussed. At least in Escherichia coli (Ec) and
Yersinia enterocolitica (Ye), SurA plays the major and Skp a less
prominent role in folding and assembly of OMPs (Sklar et al.,
2007; Volokhina et al., 2011; Weirich et al., 2017). However,
in Neisseria mengitidis, Skp is more important for shaping
the OMP composition than SurA, indicating species-specific
differences (Tamae et al., 2008).

The BAM complex, which inserts the β-barrel proteins
into the OM, consists of the central component BamA
and the four lipoproteins BamB, BamC, BamD, and BamE
(Noinaj et al., 2017). Of these subunits, only BamA and
BamD are essential in most of the so far investigated Gram-
negative bacteria, except Borrelia burgdorferi and Salmonella

enterica (Wu et al., 2005; Malinverni et al., 2006; Fardini
et al., 2009; Dunn et al., 2015). BamA is a β-barrel protein
itself (Noinaj et al., 2017). Its C-terminal β-barrel domain is
connected to an N-terminal periplasmic domain which consists
of five polypeptide transport-associated (POTRA) domains.
The POTRA domains form several interactions with the other
Bam subunits, building up the BAM complex and interact
with both substrates and periplasmic chaperones such as
SurA (Gu et al., 2016). BamB directly binds to the POTRA
domains 2-5 of BamA and supports the stabilization of
nascent OMPs by binding and delivering OMP β-strands to
BamA (Heuck et al., 2011).

In Ec, the deletion of one of the non-essential BAM complex
components or the related periplasmic shuttle protein SurA
may lead to an altered protein composition in the OM and/or
disturbed OM integrity and therefore to a higher susceptibility
to various antibiotics (Behrens et al., 2001; Onufryk et al.,
2005). Using Ye we have previously shown that the deletion
of surA and bamB implies a significantly decreased virulence
and more efficient clearance of Ye infection by the host in vivo
(Weirich et al., 2017).

In Pa, BamA, and the BamE-homolog OmlA have already
been recognized to play a role in the stability of the OM
and susceptibility to environmental stress (Ochsner et al., 1999;
Yorgey et al., 2001; Hoang et al., 2011). For BamB of Pa, an
enhanced susceptibility against lysozyme and cell wall targeting
antibiotics as well as a decreased growth in vivo have been
demonstrated recently (Lee et al., 2017).

Thus, it is well recognized that the BAM complex itself as well
as chaperones in delivering proteins to the outer membrane are
critical for membrane integrity as well as antibiotic resistance
and could therefore be targets for drug development (Tamae
et al., 2008; Weirich et al., 2017; Storek et al., 2018; Vij et al.,
2018). Nevertheless, previous studies revealed species-specific
differences in the importance of individual components in OMP
biogenesis such as Skp and SurA (Sklar et al., 2007; Volokhina
et al., 2011; Weirich et al., 2017). In addition, for considering
such proteins as targets for Pa it would be mandatory to
affect multidrug-resistant strains and break resistance against
commonly used antibiotics.

To identify potential targets in order to possibly develop
new strategies to treat especially infections caused by multidrug-
resistant Pa, we investigated the role of components involved
in the assembly of proteins into the OM by deletion of the
non-essential BAM complex components BamB and a BamC
homolog as well as the periplasmic shuttle proteins SurA and
HlpA (a Skp-like protein) in Pa PA14. Depletion of SurA had
the greatest impact on OM integrity and caused profound
changes in the protein composition of the OM. These changes
broadened the spectrum of antibiotics that could be used for
treatment of Pa infection, and they lowered the minimum
inhibitory concentration of clinically important antibiotics.
Additionally, depletion of SurA enhanced clearance of Pa
infection by the host. Taken together, our findings indicate
that specifically SurA could serve as a novel antivirulence
and/or resistance-breaking target even in multidrug-resistant
strains of Pa.
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MATERIALS AND METHODS

Bacterial Strains and Culture Conditions
Bacterial strains and plasmids used in this study are listed in
Table S1. Bacteria were cultivated overnight at 37◦Cwith shaking
at 200 rpm in lysogeny broth (LB) containing suitable antibiotics
but without any additives such as arabinose, if not otherwise
stated. Antibiotics were added at the following concentrations:
Tetracycline (Tet; AppliChem #A2228) 15µg/ml, ampicillin
(Amp; AppliChem #A0839) 100µg/ml and gentamicin (Gm;
AppliChem #A1492) 15µg/ml (Ec strains) or 75µg/ml for Gm
and 50µg/ml for Tet (Pa strains). If not stated otherwise,
overnight cultures were diluted 1:20 into fresh LB medium
containing suitable antibiotics (and/or additives like 0.2%
arabinose (Sigma Aldrich #A3256) for the conditional surA
mutant) and grown for 3 h at 37◦C and 200 rpm to obtain
subcultures in exponential phase (OD600 = 0.5). The growth of
bacteria in LB at 37◦C in a 24-well-plate was measured using
Tecan Infinite R© 200 PRO at 37◦C. To investigate the growth
under iron-restricted conditions, indicated concentrations of
2,2′-Bipyridyl (Sigma Aldrich #D216305) were added.

Generation of In-frame Deletion Mutants
In-frame deletion mutants were generated using the suicide
plasmid pEXG2 (Rietsch et al., 2005). The primers used in this
study are listed in Table S2. First, the flanking regions (consisting
of 30 bp at the 3′ end and 30 bp at the 5′ end of the gene of
interest plus ∼ 800 bp for each flanking region) and a pEXG2
fragment were amplified by PCR and ligated using Gibson
assembly (Gibson, 2009). In general, constructed plasmids were
verified by DNA sequencing, transformed into Ec SM10 λ pir and
subsequently mobilized by conjugation into PA14. Merodiploids
were selected on LB agar plates containing irgasan (25µg/ml;
Sigma Aldrich #72779) and Gm (75µg/ml). To achieve the
second cross-over, counter selection on no-salt lysogeny broth
(NSLB) agar containing 15% sucrose was performed (Sigma
Aldrich #S7903). Finally, the loss of the plasmid was tested by
streaking colonies on LB agar plates containing Gm (75µg/ml)
and in parallel on LB agar plates without antibiotics. In-frame
deletion mutants were confirmed by PCR using (i) a primer pair
flanking the target gene and (ii) a primer pair where one primer
binds to the coding region of the target gene.

Generation of Conditional Depletion
Mutants
As stated also in the results section, we were not able to create an
in-frame surA deletion mutant. Therefore, a conditional mutant
was generated, starting from a merodiploid PA14::pEXG2-surA
clone. For the integration of exogenous surA, the plasmid mini-
CTX1-araCPBAD-surA (PA14) was constructed. The mini-CTX1
(Hoang et al., 2000) is an optimized self-proficient integration
vector for Pa containing a ϕCTX attachment site for integration
of foreign genes into the chromosome. The coding sequence
(cds) of tolB of the vector mini-CTX1-araCPBAD-tolB (Lo Sciuto
et al., 2014) was replaced by the cds of surA using PCR
amplification and Gibson assembly. The mini-CTX1-araCPBAD-
surA construct was integrated into the attB neutral site of the

chromosome of PA14::pEXG2-surA as described recently (Hoang
et al., 2000; Lo Sciuto et al., 2014) in the presence of Tet
(50µg/ml), Gm (100µg/ml) and arabinose (0.2%). Afterwards,
the endogenous copy of the surA gene was deleted in-frame
under SurA-inducing conditions and confirmed as described
above. Excision of the mini-CTX1 backbone containing the
Tet resistance cassette was performed using Flp recombinase as
described (Hoang et al., 2000) and verified by PCR. Likewise,
a conditional surA mutant of the clinical Pa isolate ID72 was
generated, using mini-CTX1-araCPBAD-surA and the mutator
plasmid pEXG2-surA ID72. For the complementation of bamB,
the mini-CTX1 vector was used to introduce an arabinose-
inducible copy of bamB into the genome of PA14 bamB as
described for surA.

Electron Microscopy
A total of 5 x 109 bacteria were harvested and fixed in Karnovsky’s
fixative, embedded in agarose, cut in small blocks and fixed again
in Karnovsky’s fixative. After post-fixation and embedding in
glycid ether, blocks were cut using an ultramicrotome. Sections
(30 nm) were mounted on copper grids and analyzed using a
Zeiss LIBRA transmission electron microscope.

Generation of Overexpression Plasmids for
Protein Purification
The cds of PA14 surA was subcloned into the vector
pTXB1, resulting in pTXB1-surA-Intein. pET28a-bamB-His6
was generated by Genscript Inc. Both plasmids were transformed
into Ec BL21 (DE3) (Invitrogen #C600003). The sequence
encoding full-length plpD from Pa PAO1 was synthesized with
Ec codon optimization (ThermoFisher Scientific). The region
coding for the passenger and the POTRA domain (residues
18-406) were subcloned into the expression vector pET28a+
(Novagen #69864) using Gibson assembly with mutations
leading to an inactive lipase and encoding a C-terminal
hexa-histidine tag resulting in pET28a-plpD S60A/D207N-
His (Liu and Naismith, 2008).

Protein Purification and Generation of
Polyclonal Antibodies
For purification of SurA, Ec BL21 (DE3) harboring pTXB1-
surA-Intein was grown to an OD600 of 0.4, induced by the
addition of 100µM IPTG (Peqlab #37-2020) and grown for
another 4 h at 37◦C. Protein purification was performed using
the IMPACTTM kit (New England Biolab #E6901S) according to
the manufacturer’s instructions with subsequent size-exclusion
chromatography on a HiLoadTM 16/600 SuperdexTM 200 pg
column (GE Lifesciences). Fractions containing purified SurA
were pooled, concentrated and validated by SDS-PAGE. For
purification of BamB, Ec BL21 (DE3) harboring pTXB1-bamB-
His6 were grown to an OD600 of 0.6, induced by the addition
of 100µM IPTG and grown overnight at 37◦C. Bacteria
were pelleted and resuspended in buffer A [40mM HEPES
(Carl Roth #9105.4), pH 7.4; 150mM NaCl (VWR Chemicals
#27810.295)] following an incubation under stirring for 20min
at 4◦C with 10mM MgSO4 (AppliChem #A6414), 20 mg/ml
lysozyme (Sigma Aldrich #6876), protease inhibitor tablets
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(Sigma Aldrich #S8830) and a pinch of DNase (Sigma Aldrich
#DN25). Subsequently, bacteria were lysed using a French
pressure cell, followed by sequential centrifugation steps at
4◦C (4,500 × g, 15min; 20,000 × g, 20min; 40,000 × g,
1 h). Finally, the sterile-filtered (0.2µm filter, Sarstedt) His6-
tagged protein was subjected to metal affinity chromatography
(HisTrapTM HP, 5ml, GE Life Sciences) and concentrated.
Antibodies were raised in 2 rabbits each for SurA or BamB-His6
and subsequently affinity-purified against purified SurA or BamB
protein, respectively (Eurogentec).

For purification of PlpD lipase + POTRA domains, Ec BL21
Gold (DE3) cells (Agilent Technologies #230132) harboring
pET28a-plpD S60A/D207N-His were grown in autoinducing
ZYP-5052 medium (Studier, 2005) at 30◦C, harvested 24 h
post-inoculation by centrifugation and resuspended in running
buffer containing 40mM sodium phosphate (Carl Roth #K300.1),
400mM NaCl and 20mM imidazole, pH 8.0 (AppliChem
#A1073). For lysis, additional EDTA-free protease inhibitor,
1mM MgCl2 (Sigma Aldrich #M8266), 1mM MnCl2 (Merck
#8059300100), 0.1 mg/ml lysozyme and a pinch of DNase were
added to the buffer before application to a French pressure cell.
After centrifugation at 20,000 × g and 4◦C for 35min, the
sterile-filtered supernatant containing the His6-tagged protein
was applied to a HisTrapTm FF column (GE Healthcare) and
purified on an NGC Chromatography System (Bio-Rad). The
protein was eluted from the column using a gradient of imidazole
(to 0.5M) and further purified on a HiPrep 26/60 Sephacryl S200
HR size exclusion column (GE Healthcare, USA) using 20mM
Tris and 300mM NaCl at pH 7.5. The production of antibodies
was performed at the Section for Experimental Biomedicine
(University of Life Sciences, Oslo, Norway) with license of the
Norwegian Animal Research Authority (NARA) (http://www.
mattilsynet.no/dyr_og_dyrehold/dyrevelferd/forsoksdyr/).

NPN Assay
To determine changes in the OM permeability of the
generated mutants, the fluorescent, hydrophobic 1-N-
phenylnaphthylamine (NPN) (Acros organics #90-30-2)
was used as described (Konovalova et al., 2016). Subcultured
bacteria were washed and adjusted to an OD600 of 0.5 in
5mM HEPES buffer (pH 7.2). NPN was added to the bacteria
to a final concentration of 10µM. 200 µl of the bacterial
suspension were transferred to 96-well F-bottom, black, non-
binding plates (Greiner Bio-one #89089-582). Subsequently,
fluorescence (excitation and emission wavelengths 350 and
420 nm, respectively) was measured using the Tecan Infinite R©

200 PRO. Polymyxin B (PMB, Merck #A 231-40) served as
a positive control and was added to a final concentration
of 8µg/ml. Values obtained for a buffer-only control were
subtracted from all values.

Bile Salt Assay
To analyze the sensitivity to bile salts, 107 bacteria per well
were inoculated in duplicates into a 24 well microtiter plate
containing either 1ml LB or 1ml LB + 0.3 % bile salts (Sigma
Aldrich #B8756). The conditional surA mutant was additionally
supplemented with 0.2 % arabinose. The plate was incubated at

37◦C and shaking at 160 rpm for 8 h and OD600 was determined
using the Tecan Infinite R© 200 PRO.

Western Blot Analysis
5 × 108 bacteria per ml of subcultures grown for 3 h were boiled
in 2.5× Laemmli buffer (Bio-Rad #161-0747) containing 50mM
DTT (Thermo Fisher Scientific #R0861) at 95◦C for 10min.
SDS-PAGE was performed with 5 × 106 bacteria per lane using
a 10 % Mini-PROTEAN R© TGXTM Precast Protein gel (Bio-
Rad). Subsequently, proteins were transferred to a nitrocellulose
membrane. After blocking in 5% skim milk in TBS (10mM Tris-
HCL (Sigma #T1503), 150mM NaCl; pH 7.6), the membrane
was incubated with the primary antibody [rabbit anti-SurA,
1:200; rabbit anti-BamB-His6, 1:200; rabbit anti-OprD (kindly
provided by Thilo Köhler, University of Geneva; Epp et al.,
2001), 1:2,000; rabbit anti-PlpD serum 1:10,000; rabbit anti-RpoB
(Ec), 1:2,000 (Abcam #mAb EPR18704)] and afterwards with
the secondary antibody (horseradish-peroxidase-conjugated goat
anti-rabbit antibody 1:5,000, Thermo Fisher Scientific #31460).
ClarityTM Western ECL Substrate (Bio-Rad #170-5061) was
added and signals were detected using a Fusion Solo S imager
(Vilber). Protein bands were quantified via ImageJ. In contrast to
SurA and OprD, where RpoB was used as a loading control for
quantification, for PlpD the unspecific band of ∼75 kDa served
as a loading control.

Enrichment of OM Fractions
Preparation of the OM was conducted as described (Thein
et al., 2010; Oberhettinger et al., 2015; Weirich et al., 2017).
In short, PA14 strains including the conditional surA mutant
were grown overnight in LB. Subcultures (1:20 dilution) were
then grown in LB to an OD600 of 0.5–0.7. For complementation
of the conditional surA mutant 0.2% arabinose was added
in the subculture. After centrifugation, 2.5 × 1010 bacteria
were resuspended in 0.5ml of resuspension buffer (0.2M Tris,
1M sucrose, 1mM EDTA (Applichem #A5097), pH 8.0), then
5,000U lysozyme were added and incubated for 5min at
room temperature. Subsequently, 3.2ml H2O were added and
incubated for 20min at room temperature until spheroplasts
were formed. Then, 5ml of extraction buffer (2% Triton X-
100 (AppliChem #A4975), 50mM Tris, 10mM MgCl2, pH
8.0) together with 5 µl DNase I (Roche Applied Science
#03539121103) were added and incubated on a rotator for 20min
at room temperature to solubilize the inner membrane fraction
with Triton X-100 (Schnaitman, 1971; Page and Taylor, 1988).
The lysate was centrifuged at 85,000 × g for 1 h at 4◦C and
the pellet containing the OM fraction was washed three times
in 2.5ml H2O by centrifugation at 292,000 × g for 15min at
4◦C. The pellet containing the OM fraction was resuspended
in 300 µl H2O.

NanoLC-MS/MS Analysis and Data
Processing
The protein concentration of the OM samples was measured
using the PierceTM BCA Protein Assay Kit (Thermo Fisher
Scientific #23225). 10 µg of each sample was subjected to SDS-
PAGE and stained with Roti R©-Blue Colloidal Coomassie Staining
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Solution. OM fractions were analyzed as described previously
(Weirich et al., 2017) with slight modification: Coomassie-
stained gel pieces were digested in-gel with trypsin (Borchert
et al., 2010), and desalted peptide mixtures (Rappsilber et al.,
2007) were separated on an Easy-nLC 1200 (Thermo Scientific)
system coupled to an LTQ Orbitrap Elite mass spectrometer
(Thermo Scientific). The peptide mixtures were injected onto the
column in HPLC solvent A (0.1% formic acid) at a flow rate of
500 nl/min and subsequently eluted with an 127min segmented
gradient of 5-33-50-90% of HPLC solvent B (80% acetonitrile
in 0.1% formic acid) at a flow rate of 200 nl/min. The mass
spectrometer was operated in positive ionmode, and spectra were
recorded in a mass range from m/z 300 to 2000 with a resolution
of 120,000. The 15 most intense ions were sequentially isolated
and fragmented in the linear ion trap using collision-induced
dissociation (CID) and default CID settings. The target values
for MS scans and MS/ MS fragmentation were 106 and 5,000
charges, respectively. Sequenced precursor masses were excluded
from further selection for 60 s.

Acquired MS spectra were processed with MaxQuant
software package version 1.5.2.8 (Cox and Mann, 2008) with
integrated Andromeda search engine (Elias and Gygi, 2007).
Database search was performed against a target-decoy Pa
UCBPP-PA14 database obtained from Uniprot, containing 5886
protein entries, and 285 commonly observed contaminants.
Endoprotease trypsin was defined as protease with a maximum
of two missed cleavages. Oxidation of methionine and N-
terminal acetylation were specified as variable modifications, and
carbamidomethylation on cysteine was set as fixed modification.
Initial maximum allowed mass tolerance was set to 4.5 ppm (for
the survey scan) and 0.5 Da for CID fragment ions. Peptide,
protein and modification site identifications were reported at a
false discovery rate (FDR) of 0.01, estimated by the target/decoy
approach (Elias and Gygi, 2007). The label-free algorithm was
enabled, as was the “match between runs” option (Luber et al.,
2010). The detection limit was calculated as the mean of the
lowest label-free quantification (LFQ) values of each sample.
Multiple t-tests were performed and FDR of differences in the
log2 protein amount between mutant and wild type (WT) were
assessed using the two-stage step-up method (Benjamini et al.,
2006) with GraphPad Prism 7.04 software. Differences in protein
amount with a FDR < 0.1 were considered significant.

The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the
PRIDE (Vizcaino et al., 2016) partner repository with the dataset
identifier PXD011849 (Username: reviewer54276@ebi.ac.uk,
Password: i3rXLDrr).

RNA Isolation and qRT-PCR
5 × 109 bacteria grown as described for the mass spectrometry
analyses were resuspended in 1ml TRIzolTM Reagent (Thermo
Fisher Scientific #15596018). RNA isolation and DNase digestion
were conducted as described previously (Goerke et al., 2000;
Münzenmayer et al., 2016). The RNA (0.1 µg/µl in RNA storage
solution, Invitrogen #AM7000) was diluted 1:10 with RNase-free
water (Ambion #AM9937). To exclude samples with detectable
DNA contamination, a quantitative PCR using the QuantiFast

SYBR Green PCR Kit (Qiagen # 204054) for the house keeping
gene gyrB was performed. mRNA expression was assessed by
quantitative RT-PCR using the QuantiFast SYBR Green qRT-
PCR Kit (Qiagen # 204154) according to the manufacturer. A
standard curve was generated by a serial dilution of one sample.
Efficiency of the PCR and Cp values were calculated with the help
of LightCycler480 software (Roche). Relative quantification was
conducted as described by Pfaffl (Pfaffl, 2001). The used primers
are listed in Table S2.

Serum Killing Assay
A serum killing assay was performed using the BacTiter-GloTM

Microbial Cell Viability Assay (Promega) as described (Necchi
et al., 2017) with slight modifications. Normal human serum
(NHS) from healthy donors (Transfusion medicine, University
hospital Tübingen) was stored in aliquots at −80◦C. Heat
inactivated serum (HIS) was generated by incubating the serum
at 56◦C for 30min immediately before use. 5 × 106 bacteria
were incubated at 37◦C in 100 µl 10% HIS- or 10% NHS-PBS in
a 96 well V-bottom microtiter plate (Greiner bio-one #651101)
in triplicates for various time periods. After that, plates were
centrifuged at 3,500 × g for 5min and the pelleted bacteria
were resuspended in 100 µl PBS (GibcoTM #14040-091). To
determine the number of viable bacterial cells, 50 µl bacterial
suspension and 50 µl BacTiter-GloTM reagent (Promega #G8321)
were transferred to a white lumitrac 96 well F-bottom microtiter
plate (Greiner bio-one #655075) and the ATP levels inside the
bacteria were quantified with a Tecan Infinite R© 200 PRO.

Galleria mellonella Infection Model
Galleria mellonella (TruLarvTM) larvae were purchased from
Biosystems Technology. Subcultured bacteria were serially
diluted to 103/ml in PBS. Each G. mellonella larva was injected
with 10 µl of 103/ml bacterial dilution using a 30 gauge syringe
(BD Biosciences). The larvae were then incubated at 37◦C and
monitored for 3 days after infection. Larvae were considered dead
when no movement could be triggered by touching the larvae
with a forceps. Ten microliter aliquots of the bacterial dilutions
injected into the larvae were plated in triplicates on LB agar plates
and the CFU was determined. The mean administered bacterial
dose for all experiments was 12± 2 bacteria.

Antibiotic Susceptibility Testing
For determination of antibiotic susceptibility, bacterial strains
were grown at 37◦C overnight. Physiological sodium chloride
solution was inoculated to a McFarland standard of 0.5. From
this solution, bacteria were streaked with cotton swabs onto
Mueller-Hinton agar plates with or without 0.2 % arabinose.
E-tests (Liofilchem) were conducted according to CLSI standard
protocols to test the sensitivity of the different strains for
the following antibiotics: ampicillin/sulbactam (#92070);
piperacillin/ tazobactam (#92108); ticarcillin/ clavulanic acid
(#921171); doripenem (#92040); meropenem (#920840);
cefotaxime (#920061); cefepime (#921271); ceftazidime
(#921380); levofloxacin (#92081); ciprofloxacin (#920450);
fosfomycin (#920790); vancomycin (#920570); erythromycin
(#92051); trimethoprim/ sulfamethoxazole (#921231).
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Statistics
Statistics were performed using GraphPad Prism 7.04 software as
described for each experiment in the table or figure legends.

RESULTS

Generation of Pa Strains Carrying
Deletions for BAM Complex Components
and Periplasmic Chaperones
The BAM complex and associated chaperones may be interesting
targets for developing novel drugs against Gram-negative
bacteria. Their inhibition could possibly re-sensitize Gram-
negative pathogens to antibiotics to which they are resistant or
enable the use of antibiotics typically not being able to cross the
OM barrier and thus not applicable for treatment of infection
with Gram-negative pathogens (e.g., vancomycin) (Sydenham
et al., 2000; Rolhion et al., 2005; Fardini et al., 2009;Weirich et al.,
2017). Because of the clinical importance and increasing numbers
of multidrug-resistant strains we addressed the role of Pa BamB
(PA14_14910), BamC (PA14_51260), the Skp-like protein HlpA
(PA14_17170), and SurA (PA14_07760) for fitness and virulence
of Pa in order to determine which factorsmight be the best targets
for drug development. For this purpose we generated single gene
deletions, which were verified by PCR using genomic DNA as
template. Mass spectrometry analyses of OM fractions (typically
highly contaminated with cytoplasmic proteins) of the bamB,
bamC, and hlpA deletion strains compared to wild type (WT)
revealed the absence of the corresponding proteins (highlighted
in boldface in Table S3B).

Although we initiated numerous attempts, we were not able to
generate a surA deletion mutant. As an alternative, we created a
stable and unmarked PA14 surA conditional mutant harboring
an arabinose-inducible copy of the surA coding sequence,
resulting in the conditional surAmutant 1surA araC-PBAD-surA
(Figure 1A), for convenience termed surA. Complementation
of surA was achieved by the addition of 0.2 % arabinose to
the culture media where appropriate (termed surA SurA+). To
check for expression of surA, mRNA levels were determined
by quantitative RT-PCR, using gyrB as a housekeeping gene
(Table S4). The relative number of mRNA transcripts of the
conditional surA mutant grown in the absence of arabinose
was reduced by 92 % compared to bacteria harvested after
growth in the presence of arabinose (surA SurA+). Therefore,
in the absence of arabinose surA is still expressed in a low
amount because the araC-PBAD promoter is leaky and cannot
be repressed by catabolite repression (Meisner and Goldberg,
2016). In addition, we assessed the presence of SurA protein in
whole cell lysates by Western blot analysis (Figure 1B). Using
the conditional surAmutant, SurA protein could not be detected
after growth in the absence of arabinose indicating a SurA protein
level below the detection limit of the Western blot analysis, while
production of SurA was restored in the presence of arabinose.
Growth of the (conditional) mutants was investigated at 37◦C in
LB medium (Figure 1C). Only a slight but significant reduction
in growth (p< 0.01) was observed between 6 h and 12 h after start

of the experiment for the conditional surAmutant, while all other
mutants grew comparably to the PA14 WT strain.

SurA and BamB Are Important for OM
Integrity
Integrity of the OM is a pivotal feature of Gram-negative
bacteria mediating protection against drugs and harsh
environments including mucosal surfaces with antimicrobial
peptide production. Since SurA delivers OMPs to the OM, where
they are inserted by the BAM complex, an inhibition of parts of
this pathway should result in an altered OM composition and
possibly a reduced OM integrity. To evaluate changes in OM
integrity induced by SurA depletion, or bamB, bamC or hlpA
deletion, we first performed a 1-N-phenylnaphthylamine (NPN)
assay. NPN fluoresces only in hydrophobic environments. Thus,
if the integrity of the OM is compromised in one of the mutant
strains, NPN can reach the phospholipid bilayer of the inner
OM leaflet more efficiently (Konovalova et al., 2016). Higher
fluorescence values therefore indicate a reduced OM integrity. It
was shown previously that disturbance of the OM by polymyxin
B (PMB) leads to a strong and significant increase of NPN
fluorescence. Therefore, PMB was used as a positive control in
our assay (Figure 2A). We found that the depletion of SurA,
but not the deletion of bamB, bamC or hlpA led to a significant
increase of fluorescence, compared to the wildtype strain
(WT). This means that only the depletion of SurA significantly
enhances the entry of NPN. The complementation of surA by
growing the strain in the presence of arabinose (surA SurA+)
resulted in a NPN fluorescence signal comparable to that of
PA14 WT, indicating that the phenotype can be fully restored by
the complementation.

Next we investigated the susceptibility to bile salts, which act
as physiological detergents in the intestinal tract (Merritt and
Donaldson, 2009). Treatment with 0.3% bile salts significantly
reduced the growth of the (conditional) surA, bamB, and bamC
mutants, but not of the hlpAmutant or surA SurA+ (Figure 2B).
For complementation of the bamB deletionmutant, amini-CTX1
plasmid expressing bamB under the control of an arabinose-
inducible promoter was introduced and induced with 0.2%
arabinose (bamB BamB+).

Depletion of SurA and BamB Induces
Morphological Changes of Pa
Since we had observed that both SurA and to a lesser extent
BamB have an impact on OM integrity of Pa, we were interested
if these changes result in obvious morphological changes.
For this purpose, PA14 WT, the bamB and the conditional
surA mutant strains grown in the presence or absence of
arabinose were harvested, fixed in Karnovsky’s fixative and
visualized by transmission electron microscopy (Figure S1).
The morphology of the PA14 WT strain was characterized by
regular-shaped cells with a continuous, plain surface without
any vesicles or protrusions attached. The BamB-deficient strain
very much resembled the phenotype of a corresponding Ye
mutant strain (Weirich et al., 2017). It was characterized by
numerous vesicles attached to the cell surface, probably a sign
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FIGURE 1 | Scheme of the conditional surA mutant, verification and impact of SurA, BamB, BamC and HlpA on Pa growth. (A) Schematic view of the genomic

organization of the conditional surA mutant. (B) Western blot analysis of SurA and RpoB of PA14 WT and the conditional surA mutant in the absence (surA) and

presence of 0.2% arabinose (surA SurA+). (C) Growth curves of indicated strains. Data depict the mean and SD of at least 3 experiments. Growth curve of the

conditional surA mutant is highlighted in red. ANOVA analyses revealed significant differences (p < 0.01) for both WT vs surA and surA SurA+ vs surA in the time

range between 6 and 12 h.

FIGURE 2 | Role of SurA, BamB, BamC, and HlpA for membrane integrity and sensitivity against bile salts. (A) NPN Assay. A conditional surA and bamB, bamC, and

hlpA deletion mutants were treated with NPN. Data depict the mean and SD of 3–5 independent experiments with triplicates. The fluorescence signal derived from

matched numbers of bacteria was compared to that of WT. Polymyxin B (PMB) was used as a positive control. Asterisks indicate significant differences (p < 0.05)

compared to WT using ANOVA analysis. (B) Bile Salt Assay. Growth of the indicated Pa strains was measured in the absence or presence of 0.3 % bile salts after 8 h.

Data depict the mean and SD of the growth reduction in 0.3 % bile salts in LB compared to LB alone of at least 3 independent experiments with duplicates. Asterisks

indicate significant differences (****p < 0.0001 or *p < 0.05) as analyzed by ANOVA analysis.

for envelope stress (Kulp and Kuehn, 2010). Cells of the SurA
depletion strain grown in the absence of arabinose also appeared
rather regular-shaped, however, they looked slightly bloated and
had some vesicles attached to their surface. Taken together,
both a bamB and a conditional surA mutant of Pa showed
visible changes in cell morphology, which corroborates previous
findings obtained with Ye.

Depletion of SurA Results in a Drastically
Altered Composition of OMPs
To analyze the OMP composition, OM fractions of WT and
mutants were prepared and semi-quantitative proteomic analysis

was performed using tryptic in-gel digestion and LC-MS/MS
analysis. The ratio of label-free quantification (LFQ) intensities
between the mutants and the WT was calculated. All differences
in log2 LFQ intensities with a false discovery rate (FDR) <0.1
were considered significant. A list of all significant alterations is
found in Table S3 (S3A: OMPs, S3B: all proteins). For the raw
data please refer to http://proteomecentral.proteomexchange.
org/cgi/GetDataset with the dataset identifier PXD011849.

The deletion mutant strains for hlpA, bamC and bamB
exhibited just minor changes. In the hlpA deletion mutant, only
HlpA was reduced in abundance, as it was no longer detectable in
the OM fraction. The bamC deletion led to a significant reduction
only of OmpH. Deletion of bamB led to a reduction of quite

Frontiers in Microbiology | www.frontiersin.org 7 February 2019 | Volume 10 | Article 100



Klein et al. Role of SurA in Pa

a number of proteins (e.g. FecA, OprB, PlpD) also found to
be reduced in the SurA-depleted strain, however these changes
were not significant according to our selection criteria. The
relatively mild alterations in the OM composition may explain
the comparably weak phenotypes of the hlpA, bamC and bamB
deletion mutants with regards to OM integrity.

More interesting were the effects observed for SurA: depletion
of SurA significantly altered the level of 42 proteins predicted to
be localized in the OM (Table 1). Essentially, three groups could
be differentiated: (i) proteins highly abundant in the OM of the
WT but not detectable in the OM fraction of the conditional
surAmutant (ratio surA/WT< 0.01). This group included TonB-
dependent receptors and the siderophore receptors FpvA, FiuA
and FecA, and Type V secretion systems (autotransporters).
(ii) Proteins highly abundant in the OM fraction of WT and
significantly reduced more than 3-fold in the OM fraction of
surA. This group included proteins of the BAM complex and
porins (e.g., OprD, OprF, OprH). Finally (iii) a small group of
proteins that showed higher protein levels in the OM fraction
of the conditional surA mutant (e.g., OprM, OpmG, OpmB)
compared to the WT.

In order to find out if the changes in protein abundance
were caused on the transcriptional level, we assessed the relative
mRNA levels of selected genes from the different functional
groups of OMPs of the SurA depletion strain (grown exactly
as for the mass spectrometry analyses) by quantitative RT-PCR
and compared to the WT (Figure S2). From the genes tested,
elevated amounts of mRNA transcripts were only found for hlpA
(2.4-fold), which might be a regulatory effect to compensate
the reduced level of SurA. The transcriptional level of all other
investigated genes was comparable for all WT, the conditional
surA mutant and surA SurA+. These results indicate that the
genes including the type Vd autotransporter PlpD (Salacha et al.,
2010) and porins such as OprD seem to be true substrates of
SurA and that their reduced abundance in the OM is probably
the result of degradation within the periplasm.

Validation of MS/MS Findings: Verification
of Selected OMP Levels by Western Blot
Analyses
To further validate the proteomics data, the protein levels
of SurA, OprD, and PlpD of the WT and the mutants were
determined in whole cell lysates by Western blot analysis
(Figures 3A,B). Comparable RpoB levels in all samples
demonstrate equal loading of the lanes. Under depleting
conditions (surA), no SurA was detectable by Western
blot analysis demonstrating that the depletion worked well.
Production of SurA in the surA SurA+ sample shows at least
a partial recovery (64%) compared to the PA14 WT strain. In
accordance with the proteomics data (Table 1 and Figure 3C),
we found a decreased amount of OprD (15%) and PlpD (24%)
in the whole cell lysate of the conditional surA mutant. As
the PlpD antibody resulted in several bands in Western blot,
a plpD deletion strain was employed to identify the band
corresponding to PlpD.

Validation of MS/MS Findings: Impact of
Reduced Siderophore Receptor
Abundance
As a consequence of the highly reduced levels of siderophore
receptors (FpvA, FiuA, and FecA) under SurA-depleted
conditions we assumed that the strain might suffer from a
defective uptake of siderophore-iron complexes. Under iron-
restricted conditions this should consequently lead to a growth
reduction. Therefore, we assessed the growth characteristics
of PA14 and the surA mutant under iron limitation. This was
achieved by the addition of various amounts of the iron chelator
2,2′-Bipyridyl (BiP) to the growth medium (Figure S3). As
assumed, under iron limitation (+BiP), the SurA-depleted strain
exhibited a significantly stronger BiP dose-dependent growth
defect compared to the WT.

Depletion of SurA Increases the
Susceptibility for Killing by the
Complement System
An important first line host defense against invading bacteria
specifically in bloodstream infection is the serum complement
system. Therefore, we investigated whether serum resistance of
Pa is altered in the (conditional) surA, bamB, bamC, and hlpA
mutants. To this end, serum killing tests using human serumwere
performed. The strains were incubated in 10% heat inactivated
serum (HIS) or 10 % normal human serum (NHS). Survival
of bacteria was then quantified at indicated time points over a
maximum period of 4 h (Figure 4A). While deletion of bamB,
bamC or hlpA had no impact on survival in active serum, the
conditional surA mutant was killed rapidly when grown in the
absence of arabinose (Figure 4B), indicating that the depletion of
SurA alters the OM in a way that renders Pa highly susceptible to
killing by the serum complement system.

SurA Is Important for Virulence of Pa in the
Galleria mellonella Infection Model
To address the importance of the investigated genes for virulence,
the Galleria mellonella infection model was used. For this
purpose, 12 ± 2 cells of PA14 WT or the (conditional) surA,
bamB, bamC or hlpA mutant were injected into the hemolymph
of G. mellonella larvae. Thereafter, the survival of the larvae was
monitored (Figure 5). Neither deletion of bamB, bamC, nor hlpA
altered the survival compared to infection with theWT.However,
infection with the conditional surA mutant led to a significant
delay in the time to death. The conditional surA mutant was
grown under two growth conditions prior to infection: (i)
arabinose induced–SurA present prior to infection (SurA+) or
(ii) uninduced–SurA absent prior to infection (SurA–). However,
no significant difference was found between the survival curves
of SurA+ and SurA–. This indicates that SurA production
may decline rather quickly under in vivo conditions without
continuous application of arabinose, which was not applicable in
our experimental setting. Therefore, we could not test whether
a complementation would fully rescue virulence. Nevertheless,
our data demonstrate that SurA is critical for virulence of Pa
in G. mellonella.
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TABLE 1 | Outer membrane proteins affected by SurA depletion.

Function Gene name Ratio surA/WT β-strands PDB ID**

Type V secretion PA14_32780 <0.01 16*

PA14_32790 <0.01 –

PA14_61190 0.23 16*

PlpD <0.01 16 5F4A, 5FQU

AaaA (PA14_04290) <0.01 12*

EprS (PA14_18630) 0.04 12*

EstA 0.20 12 3KVN

Siderophore receptors and other

TonB-dependent receptors

FpvA <0.01 22 2W75, 2W16

FecA <0.01 22 1PO0, 1PO3

FiuA 0.04 22*

PA14_34990 <0.01 22*

PA14_54180 <0.01 22*

PA14_26420 0.02 22*

BAM-complex BamD/ComL 0.30 –

BamA 0.31 16 4C4V

BamE/OmlA 0.31 –

BamB 0.35 –

BamC (PA14_51260) 0.84 –

Porins OpdO <0.01 18 2Y0K, 2Y06

OpdN <0.01 18 4FSO

OprG 0.07 8 2X27

OprE 0.11 18*

Porins OpdP 0.13 18 3SYB

OprD 0.14 18 3SY7

OprB 0.22 16 4GY, 4GF

OprQ 0.25 22*

OprC 0.28 22*

OprH 0.32 8 2LHF

OpdC (PA14_02020) 0.35 18 3SY9

OprF 0.47 8 4RLC

PA14_31680 0.55 –

OprM 1.52 4 3D5K

OpmB (PA14_31920) 1.88 4*

OpmG 7.37 4*

LPS bio-synthesis LptD 0.32 26 5IVA

LptE 0.38 –

T3SS ExsB (PA14 42400) <0.01 –

Others Gbt <0.01 4*

FadL (PA14_60730) <0.01 14 3DWO

PA14_13130 0.03 –

PA14_24360 0.04 –

PA14_36020 7.28 –

FusA (PA14_13520) >20.40 4*

OM fractions of PA14 WT and the conditional surA mutant derived from three independent experiments were analyzed by mass spectrometry. Table depicts proteins which are described

to be located in the OM and are significantly reduced or increased due to SurA depletion. Multiple t-testing was performed. Significant differences (FDR < 0.1) are shown in bold face.

Number of β-strands of β-barrel proteins is indicated. *Predicted with Boctopus (Hayat and Elofsson, 2012); **Accession number of protein data bank (www.rcsb.org) of indicated

proteins or orthologs.

Susceptibility to Antibiotics
The impermeability of the OM is the main reason that
many antibiotics are not effective against Gram-negative
bacteria, since they cannot pass the OM to reach their
target. To investigate whether the depletion of SurA or
BamB influences antibiotic susceptibility, we performed a

comprehensive analysis with E-tests using the bamB deletion
mutant, the conditional surA strains of PA14 and the clinical
multidrug-resistant Pa bloodstream isolate ID72 (Willmann
et al., 2018) [resistant against 3 classes out of the following:
(I) 3rd and 4th generation cephalosporines (e.g., cefotaxim,
ceftazidim), (II) acylureidopenicillins (e.g., piperacillin), (III)
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FIGURE 3 | Validation of proteome analysis by Western blot. (A) Comparison of protein levels between WT and mutants. Bacteria as indicated were sub-cultured for

3 h in the presence or absence of arabinose and samples were harvested for preparation of whole cell lysates. Western blot analysis was performed for RpoB, SurA,

OprD, and PlpD. (B) Quantification of immunoblots from 3 to 5 independent experiments using ImageJ software. Pixel intensity corresponds to protein levels.

Asterisks indicate significant differences (*p < 0.05, **p < 0.01, ***p < 0.001) between compared groups using ANOVA analysis. (C) Quantification of mass

spectrometry analysis for OprD and PlpD. Graph indicates the LFQ intensity of OM fractions of indicated proteins. Asterisks indicate significant differences compared

to WT by performing multiple t-tests with a FDR < 0.1 (n = 3).

FIGURE 4 | SurA deletion leads to increased serum sensitivity. Indicated bacterial strains were grown for (A) various time periods or (B) 2 h and subsequently,

luciferase activity (which is directly proportional to the ATP levels of viable cells in a sample) was measured. Data depict the mean and SD of luciferase activity

measured of 3 independent experiments performed in triplicates. Asterisks indicate significant differences (p < 0.0001) analyzed by one way ANOVA analysis.

fluorchinolones (e.g., ciprofloxacin), and (IV) carbapenems (e.g.,
imipenem, meropenem)] (Figure S4) and the corresponding
complemented strains compared to the WT control strains.
Our test set additionally included several antibiotics not
applicable for treatment of Gram-negative pathogens. However,
these substances (vancomycin, erythromycin) can be used
to detect OM defects in Gram-negatives (Wu et al., 2005).
The deletion of bamB reduced the MIC values at least 4-
fold for ampicillin/sulbactam, ceftazidime, fosfomycin and
vancomycin (Table 2). The complementation with arabinose-
induced BamB (bamB BamB+) restored the resistance
against these antibiotics with the exception of fosfomycin.
In summary, our data demonstrate that bamB deletion leads

to a moderate increase in antibiotic susceptibility against
several antibiotics.

Interestingly, for some of the tested antibiotics, we could
observe at least a 4-fold reduction of the MIC for both the
PA14 and the ID72 conditional surA mutant. This was the case
for ticarcillin/clavulanate (PA14 32→6 mg/l; ID72 >256→64
mg/l), ceftazidime (PA14 2→0.5 mg/l; ID72 >256→8 mg/l),
levofloxacin (PA14 0.38→0.094 mg/l; ID72 1.5→0.064 mg/l),
ciprofloxacin (PA14 0.19→0.038 mg/l; ID72 0.38→0.064 mg/l)
and vancomycin (PA14 >256→12 mg/l; ID72 >256→64 mg/l).
For the SurA-depleted strain in the PA14 background, we
additionally observed a reduced MIC for ampicillin/sulbactam
(PA14 >256→24 mg/l). Moreover, the mutant in the ID72
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FIGURE 5 | SurA deletion leads to attenuated virulence in the Galleria

mellonella infection model. In total, 60 G. mellonella larvae per group were

infected in 3 independent experiments with a CFU of 12 ± 2 for the indicated

time period and survival of larvae was monitored by touching with a forceps.

The conditional surA mutant strain was tested both when expressing SurA

(SurA+) and after depletion of SurA (SurA–) at the time point of infection.

Please note that the survival curves of WT, bamB, bamC, and hlpA are

identical. Statistical analysis was performed using a log rank test (Mantel-Cox

test). A significant difference between WT and the conditional surA mutant was

observed (p < 0.0001).

background displayed a reduced MIC for cefepime (>32→3
mg/l). Strain-specific differences mediated by SurA depletion
were found for ampicillin/sulbactam (increased sensitivity of
PA14 surA but not ID72 surA) and cefepime (increased sensitivity
of ID72 surA but not PA14 surA). Strikingly, in the SurA-depleted
multidrug-resistant clinical bloodstream isolate ID72, the MIC
values for cefepime, ceftazidime and levofloxacin were reduced
to such an extent that according to the current EUCAST Clinical
Breakpoint Tables (v. 8.1.), ID72 was re-sensitized to treatment
with these antibiotics. In the case of ticarcillin/clavulanate, the
MIC value was reduced. However, it did not drop below the
critical breakpoint. Taken together, our data demonstrate that
SurA depletion leads to an increased susceptibility against some
representatives of clinically relevant antibiotics, even in the case
of a multidrug-resistant Pa strain. Thus, SurA could possibly
be used as a drug target to re-sensitize resistant strains to
antibiotic therapy.

DISCUSSION

Pa is a difficult-to-treat pathogen and, compared to other Gram-
negative bacteria, associated with a higher mortality that cannot
be attributed to resistance only (Aloush et al., 2006; Willmann
et al., 2014; Thaden et al., 2017). Often colistin is considered as a
last resort antibiotic to defeat infections caused by Pa, however,
it has severe side effects and is rather nephrotoxic (Jeannot et al.,
2017). Therefore, novel drugs and drug targets are required to
control Pa infections (Perez et al., 2016).

The BAM complex and associated chaperones are responsible
for the transport and insertion of the great majority of OMPs
into the Gram-negative OM. Previous studies already highlighted T
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the importance of the BAM complex as a putative drug target
for several Gram-negative bacteria (Vertommen et al., 2009;
Namdari et al., 2012; Hagan et al., 2015; Krachler, 2016; Weirich
et al., 2017; Storek et al., 2018). The delivery of OMPs to the BAM
complex is performed by the well-known chaperones SurA and
Skp. Interestingly, according to the literature there are striking
differences in the importance of these chaperones for OMP
biogenesis. In Ec and Ye, SurA seems to play a major and Skp
only a minor role for OMP biogenesis (Sklar et al., 2007). In
contrast, in Neisseria meningitidis Skp but not SurA seems to
play the major role for OMP biogenesis (Volokhina et al., 2011).
According to the importance of Pa in clinical settings, we wanted
to know which of the components of the BAM complex might be
more useful as a target.

Therefore, we analyzed the role of distinct components of
the BAM complex and the periplasmic chaperones HlpA/Skp
and SurA for OM integrity and composition, virulence and
antibiotic resistance. The main findings of this study are that
depletion of SurA severely alters Pa OMP composition, which
in consequence strongly influences OM integrity as well as
resistance to bile salts, complement activity and antibiotics,
which altogether leads to attenuated virulence and enhanced
susceptibility to several antibiotics even in a multidrug-resistant
bloodstream isolate of Pa.

A comparably lower impact of the bamB deletion on Pa
sensitivity against antimicrobial substances is perfectly in line
with the milder phenotypes and minor changes in OMP
composition of the bamB mutant. Similar findings have been
made with Ec and Ye (Charlson et al., 2006; Weirich et al.,
2017). Deletion of the skp homolog hlpA and the BAM complex
component bamC did not result in obvious phenotypes in our
hands. In addition, none of these deletion mutants showed
attenuation of virulence in theG.mellonella infectionmodel. This
is in line with previous studies on Skp in Ec where it was shown
that Skp/HlpAmay play only a minor role as chaperone to deliver
OMPs to the BAM complex (Sklar et al., 2007).

Recently, it was asked whether BamB might be the achilles’
heel for targeting Klebsiella pneumoniae (Kp) infection (Krachler,
2016). It was found that deletion of bamB led to a 15-fold
decrease in Kp adherence to retinal, intestinal and lung epithelial
cells and consequently decreased invasion. bamB deletion had a
pleiotropic effect on the profile of OMPs including a decrease
of some porins as well as of type I fimbriae. Moreover,
bamB deletion led to a significant attenuation of virulence
in mice challenged intraperitoneally with Kp (Hsieh et al.,
2016). Attenuation of virulence of a bamB deletion mutant
was also found during Ye infection (Behrens et al., 2001). In
vitro assays showed increased sensitivity against antimicrobial
components such as bile salts and complement activity. In
addition, bamB deletion mutants of Ye were sensitized to various
antibiotics (typically not active against Gram-negative bacteria),
such as vancomycin (Weirich et al., 2017). Like in Kp, several
porins as well as the autotransporter invasin were significantly
decreased in Ye. Another study addressing the role of BamB
in Pa PAO1 already showed that bamB deletion also leads to
sensitization against lysozyme, vancomycin and cefotaxime (Lee
et al., 2017), which could be confirmed in our study. However,

in contrast to Ye or Kp, neither increased sensitivity against
human serum nor attenuation of virulence was observed. A
common impact of bamB deletion in various species seems to
be the reduction of the abundance of some porins (Malinverni
et al., 2006; Hagan et al., 2010). In line with this, in the Pa
bamB deletion mutant, porins such as OpdO (>93% reduced)
and OprB (45% reduced) were found in lower levels in the
OM. Some autotransporters like AaaA (67% reduced) and PlpD
(52% reduced) were also found in lower levels in the OM. This
is in agreement with previous studies, where it was observed
that BamB-dependency of autotransporter proteins seemed to be
correlated with the number of β-strands contained. Especially
those proteins possessing a large number of β-strands were
negatively affected by the absence of BamB, whereas others were
not (Rossiter et al., 2011; Weirich et al., 2017). However, these
effects were rather moderate. Thus, BamB may contribute to the
assembly of porins and autotransporters in Pa, but in contrast to
the function of BamB in Kp or Ye, the rather mild phenotypes
we found upon deletion of bamB in Pa PA14 do not justify
considering it as a promising target for drug development from
our point of view. Nonetheless, given the results that have been
obtained with e.g., Pa PAO1 and Salmonella (Namdari et al.,
2012; Lee et al., 2017), it cannot be ruled out that the importance
of BamB for OM composition and consequently the resulting
phenotypes might vary significantly between strains and species.

The most interesting candidate as a putative drug target
addressed in this study was found to be SurA. We recognized
quite early during our studies that SurA might play an important
role in Pa PA14, because it was not feasible to generate an in-
frame deletion mutant of surA. This indicated that surA might
be essential in PA14, which would be in line with the findings of
various other groups since there was no viable surA transposon
mutant detected in their transposon libraries of different Pa
strains (Skurnik et al., 2013; Lee et al., 2015; Turner et al.,
2015) and also with own unpublished observations. Nevertheless,
there is one transposon library in PA14 that contains three
different mutants with transposons inserted into surA (Liberati
et al., 2006). The transposon mutant with the ID38436 included
in the available PA14NR set showed a similar phenotype like
the conditional surA mutant in various assays and no SurA
was detectable by Western blot analysis (data not shown). The
insertion site of this mutant is located at the very beginning of
the gene (at base pair 17), indicating inactivation of the gene.
One possible explanation that this mutant is viable might be that
compensatory mutations occurred in this transposon mutant.
Altogether, we assume that SurA in Pa is essential in contrast
to other Gram-negative bacteria. Nevertheless, the phenotypes
observed in the SurA depletion strain of Pa are very similar to
those of the deletion mutant in Ye (Weirich et al., 2017).

While bamB deletion only leads to mild alteration in the
OM composition, the depletion of SurA disturbed the insertion
of a wide variety of OMPs of different functions, resulting
in a drastically altered OM composition. Since the proper
composition of the Gram-negative OM is important for its
function as an impermeable barrier for many substances, it is
reasonable that the reduced amount of several OMPs resulted in
a higher permeability to the fluorescent dye NPN.
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The permeability barrier of the OM and the export of
substances by efflux pumps are the main reasons for the high
intrinsic resistance of Pa against many antibiotics (Nikaido, 1989;
Poole, 2001). The reduced integrity of the OM could be an
important reason, why the conditional surAmutants of PA14 and
ID72were better accessible to antibiotics such as vancomycin that
are usually not able to cross the OM of Pa and reach their target
inside the bacterial cell. Nevertheless, it cannot be excluded that
other effects such as alteration in OMP composition or stress
response may contribute to the increased antibiotic sensitivity.
Thus, an inhibition of SurA could possibly permit a re-purposing
of approved antimicrobials, currently active only against Gram-
positive pathogens, for use in Gram-negative bacteria. Of course
this could work only if (i) the current limitation of use is a
result of the inefficient entry and if (ii) the antimicrobial target is
conserved and also present in the Gram-negative species. These
data are in line with previous data found for the commensal Ec
K12 as well as Ye (Tamae et al., 2008; Weirich et al., 2017).

However, a critical precondition to consider SurA as a
target specifically in species like Pa would be to break the
resistance against therapeutically used antibiotics of multidrug-
resistant strains. By using a conditional ID72 surA mutant this
could indeed be demonstrated for various antibiotics such as
cephalosporins and fluoroquinolones.

In summary, from all the investigated factors, SurA was
identified as the best target candidate to restore the sensitivity
against some antibiotics by distortion of the OM specifically
in multidrug-resistant strains. In the surA conditional mutant
we found that the OM contained a higher amount of some
single proteins like the OprM family porins OprM, OpmB and
OpmG that are associated with the MexAB and MexXY efflux
pumps (Poole, 2000). They are involved in mediating resistance
against β-lactams, chloramphenicol, macrolides, quinolones
and tetracycline (Li et al., 1995; Masuda et al., 2000), and
aminoglycosides (Mao et al., 2001), respectively. Their increased
abundance indicates that these porins are no dedicated substrates
of SurA and their insertion into the OM may be facilitated in
a different way, independent of SurA. OprM actually assembles
into a trimer (Akama et al., 2004). It has been previously
observed that a distinct subset of OMPs belonging to the
TolC-like BAM substrates (i.e., multimeric with each monomer
having only few β-strands) were affected only weakly by the
absence of the non-essential Bam proteins and periplasmic
chaperones. However, they were highly dependent on the
essential Bam proteins BamA and BamD (Mahoney et al.,
2016; Weirich et al., 2017). This might also apply to OprM
family porins. Also the associated efflux pumps were found
in a relatively higher amount in the OM of the conditional
surA mutant, but this does not seem to influence its antibiotic
sensitivity (Table 2).

With the exception of OprM, OpmG, andOpmB,many porins
were detected in a significantly lower amount in the OM of the
conditional surA mutant, including the most striking reduction
observed for members of the OprD family (OpdO, OpdN,
OpdP, and OprD). This may lead to a deprivation of nutrients,
since most of these porins are specific transporters for different
nutrients like pyroglutamate (OpdO), glycine-glutamate (OpdP),

arginine (OprD and OprQ) and glucose (OprB) (Chevalier et al.,
2017) and could also contribute to attenuation.

Besides the porins, also other groups of OMPs were strikingly
affected by the depletion of SurA. We found that especially
siderophore receptors and other TonB-dependent receptors (e.g.,
FpvA or FecA) (Pederick et al., 2015; Luscher et al., 2018) as well
as different autotransporter proteins (e.g., PlpD or AaaA) were
absent or less abundant in the OM upon depletion of SurA. The
mRNA expression analysis suggested that the autotransporter
protein PlpD is also a true substrate of SurA, similar to the
autotransporter Inv of Ye (Weirich et al., 2017). This means that
these proteins are reduced in abundance because they cannot use
any alternative insertion pathway when SurA is depleted. Thus
they presumably are degraded by periplasmic proteases such as
DegP (Sklar et al., 2007).

The finding that so many proteins involved in iron acquisition
and transport were completely or almost completely absent in
the conditional surA mutant, including the pyoverdine receptor
FpvA, the ferric citrate transporter FecA and the ferrichrome
receptor FiuA, suggests a reduced fitness of the conditional
surA mutant under iron-limited conditions. This is in line with
our findings that SurA depletion strongly affects growth in LB
medium under iron-restricted conditions. In addition, it was
previously shown that deletion of fiuA, besides its involvement
in iron acquisition, leads to pleiotropic effects such as reduction
of elastase levels and reduced virulence in an airway infection
model (Lee et al., 2016). Therefore, the reduced abundance of
siderophore receptors and the associated downstream effects
could also contribute to attenuation of the SurA-depleted PA14
in the G. mellonella infection model.

Furthermore, the significantly reduced amount of the LptD/E
complex (Chimalakonda et al., 2011) in the conditional surA
mutant might result in an altered level of LptD in the OM (Lo
Sciuto et al., 2018). The stable LptD/E complex is present at
the OM and functions in the final stages of LPS assembly. The
lipopolysaccharide transport (Lpt) is responsible for transporting
LPS from the periplasmic side of the OM to the cell surface
(Balibar and Grabowicz, 2016; Andolina et al., 2018). In line with
previous studies (Vertommen et al., 2009; Weirich et al., 2017),
LptD was shown to be a true substrate of SurA. Furthermore,
it was shown that LptE depletion leads to reduced functionality
of LptD resulting in impaired cell envelope integrity, reduced
virulence and decreased antibiotic resistance (Lo Sciuto et al.,
2018), which identifies LptD as a promising target for drug
development. Actually, LptD is already addressed as a drug target
by the macrocyle inhibitor Murepavadin (Polyphor POL7080),
which is currently tested in a phase III clinical trial (Martin-
Loeches et al., 2018). This fact renders the concept of a SurA
inhibitor -which is able to significantly reduce the cellular LptD
protein levels- even more attractive.

The global changes in the OM composition of the conditional
surA mutant including the reduced levels of many porins
important for nutrient uptake, iron transport systems and
proteins involved in LPS transport may in sum accumulate in
reduced fitness. This is in line with the results of theG. mellonella
infection model, since the larvae showed a prolonged time to
death when infected with the conditional PA14 surAmutant. For
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the in vivo experiments, the leakiness of the araC-PBAD promoter
(Meisner and Goldberg, 2016), still resulting in some mRNA
expression, was actually a convenient feature: a partial reduction
of SurA simulates the potential inhibition of the protein by a
putative SurA inhibitor more realistically than a clean deletion.

Taken together, SurA is an important protein in Pa
determining proper composition of the OM and seems to be an
attractive target for an antiinfective drug. Its inhibition may lead
to reduced fitness, may dampen multidrug resistance and could
simultaneously render Pa accessible to various antibiotics that are
usually not effective because of the OM barrier.
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