
Fine–Grained Workflow Interoperability in Life Sciences

Dissertation

der Mathematisch–Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

M.Sc. Luis Javier de la Garza Treviño

aus Monterrey, Mexiko

Tübingen

2019

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der

Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 13.05.2020

Dekan: Prof. Dr. Wolfgang Rosenstiel

1. Berichterstatter: Prof. Dr. Oliver Kohlbacher

2. Berichterstatter: Prof. Dr. Thomas Walter

Erklärung

Ich erkläre hiermit, dass ich die zur Promotion eingereichte Arbeit mit dem Titel:

Fine–Grained Workflow Interoperability in Life Sciences

selbständig verfasst, nur die angegebenen Quellen und Hilfsmittel benutzt und wörtlich oder in-

haltlich übernommene Stellen als solche gekennzeichnet habe. Ich erkläre, dass die Richtlinien

zur Sicherung guter wissenschaftlicher Praxis der Universität Tübingen (Beschluss des Senats

vom 25.5.2000) beachtet wurden. Ich versichere an Eides statt, dass diese Angaben wahr

sind und dass ich nichts verschwiegen habe. Mir ist bekannt, dass die falsche Abgabe einer

Versicherung an Eides statt mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft

wird.

Datum: Tübingen, den 13.05.2020 Unterschrift: Luis de la Garza

A mis padres.

Abstract

Recent decades have witnessed an exponential increase of available biological data due to

advances in key technologies for life sciences. Specialized computing resources and scripting

skills are now required to deliver results in a timely fashion: desktop computers or monolithic

approaches can no longer keep pace with neither the growth of available biological data nor

the complexity of analysis techniques.

Workflows offer an accessible way to counter against this trend by facilitating parallelization

and distribution of computations. Given their structured and repeatable nature, workflows

also provide a transparent process to satisfy strict reproducibility standards required by the

scientific method.

One of the goals of our work is to assist researchers in accessing computing resources

without the need for programming or scripting skills. To this effect, we created a toolset able to

integrate any command line tool into workflow systems. Out of the box, our toolset supports

two widely–used workflow systems, but our modular design allows for seamless additions in

order to support further workflow engines.

Recognizing the importance of early and robust workflow design, we also extended a

well–established, desktop–based analytics platform that contains more than two thousand

tasks (each being a building block for a workflow), allows easy development of new tasks and

is able to integrate external command line tools. We developed a converter plug–in that offers

a user–friendly mechanism to execute workflows on distributed high–performance computing

resources—an exercise that would otherwise require technical skills typically not associated

with the average life scientist's profile.

Our converter extension generates virtually identical versions of the same workflows, which

can then be executed on more capable computing resources. That is, not only did we leverage

the capacity of distributed high–performance resources and the conveniences of a workflow

engine designed for personal computers but we also circumvented computing limitations of

personal computers and the steep learning curve associated with creating workflows for dis-

tributed environments. Our converter extension has immediate applications for researchers

and we showcase our results by means of three use cases relevant for life scientists: structural

bioinformatics, immunoinformatics and metabolomics.

vii

Zusammenfassung

In den vergangenen Jahrzehnten führten Fortschritte in den Schlüsseltechnologien der Lebens-

wissenschaften zu einer exponentiellen Zunahme der zur Verfügung stehenden biologischen

Daten. Um Ergebnisse zeitnah generieren zu können werden sowohl spezialisierte Rechensys-

tem als auch Programmierfähigkeiten benötigt: Desktopcomputer oder monolithische Ansätze

sind weder in der Lage mit dem Wachstum der verfügbaren biologischen Daten noch mit der

Komplexität der Analysetechniken Schritt zu halten.

Workflows erlauben diesem Trend durch Parallelisierungsansätzen und verteilten Rechen-

systemen entgegenzuwirken. Ihre transparenten Abläufe, gegeben durch ihre klar definierten

Strukturen, ebenso ihre Wiederholbarkeit, erfüllen die Standards der Reproduzierbarkeit,

welche an wissenschaftliche Methoden gestellt werden.

Eines der Ziele unserer Arbeit ist es Forschern beim Bedienen von Rechensystemen zu

unterstützen, ohne dass Programmierkenntnisse notwendig sind. Dafür wurde eine Samm-

lung von Tools entwickelt, welche jedes Kommandozeilenprogramm in ein Workflowsystem

integrieren kann. Ohne weitere Anpassungen kann unser Programm zwei weit verbreitete

Workflowsysteme unterstützen. Unser modularer Entwurf erlaubt zudem Unterstützung für

weitere Workflowmaschinen hinzuzufügen.

Basierend auf der Bedeutung von frühen und robusten Workflowentwürfen, haben wir

außerdem eine wohl etablierte Desktop–basierte Analyseplattform erweitert. Diese enthält

über 2.000 Aufgaben, wobei jede als Baustein in einem Workflow fungiert. Die Plattform

erlaubt einfache Entwicklung neuer Aufgaben und die Integration externer Kommandozeilen-

programme. In dieser Arbeit wurde ein Plugin zur Konvertierung entwickelt, welches nutzerfre-

undliche Mechanismen bereitstellt, um Workflows auf verteilten Hochleistungsrechensystemen

auszuführen—eine Aufgabe, die sonst technische Kenntnisse erfordert, die gewöhnlich nicht

zum Anforderungsprofil eines Lebenswissenschaftlers gehören.

Unsere Konverter–Erweiterung generiert quasi identische Versionen desselben Workflows,

welche im Anschluss auf leistungsfähigen Berechnungsressourcen ausgeführt werden können.

Infolgedessen werden nicht nur die Möglichkeiten von verteilten hochperformanten Rechen-

systemen sowie die Bequemlichkeit eines für Desktopcomputer entwickelte Workflowsystems

ausgenutzt, sondern zusätzlich werden Berechnungsbeschränkungen von Desktopcomputern

ix

und die steile Lernkurve, die mit dem Workflowentwurf auf verteilten Systemen verbunden

ist, umgangen. Unser Konverter–Plugin hat sofortige Anwendung für Forscher. Wir zeigen dies

in drei für die Lebenswissenschaften relevanten Anwendungsbeispielen: Strukturelle Bioinfor-

matik, Immuninformatik, und Metabolomik.

x

Acknowledgments

Progress is often oversimplified as a linear sequence of refinements. Hans Lippershey improved

upon reading stones to craft quality spectacles, and his patent application for “an instrument

for seeing things far away as if they were nearby” would soon inspire Galileo Galilei—allegedly.

This thesis and the work it documents are certainly no different. I am ever so grateful to Prof.

Oliver Kohlbacher for giving me the opportunity to rightfully refer to him as mein Doktorvater.

His patience, knowledge and guidance helped me see things far away as if they were nearby.

More accurately, though, progress is a directed acyclic graph of events1, a workflow of sorts.

There are countless people I am thankful to, but a single page would not be enough to mention

them, for I would have to thank gods and titans (thanks for the [BBQ] fire, Prometheus), bus

and train drivers showing up sober for work, long–gone inventors of hand axes, and so it goes.

In the spirit of fairness, I should mention those whose omission would be outright insulting.

I would like to thank my parents and sister. They make me feel as if I had won the galactic

lottery by being born into a loving, caring family that always knew how to foster curiosity during

my formative years. Thanks to Alexander Fillbrunn, Peter Ohl, Bernd Wiswedel, Thorsten Meinl

and Stephan Aiche for showing me KNIME's guts. Kitty Vargas, Ákos Balaskó, István Márton

and Zoltán Farkas deserve my gratitude for their constant help and pointers that shaped me into

the university's resident expert on WS–PGRADE/gUSE—a trophy that I never truly deserved.

Thanks to colleagues and friends who made my doctoral experience the best I could have

wished for: from the cat–lovers to the dog–lovers; from the Mensa naysayers to the Mensa

club2; from the Voronoi cartographers and Nexus listeners to those that helped me write those

words that, upon reading them, would prompt Mark Twain to remind us of that Californian

student in Heidelberg who would rather decline two drinks than one German adjective; from

those who asked too often about my writing to the ones that never asked, lest I asked them

about the status of their own projects; from the sister in arms who showed me the ropes of

molecular docking to the brother in arms who showed me that iconic line from őszödi beszéd, a

line that opened doors that, more often than not, I would not know how to close afterwards. I

am even thankful to those who have—jokingly or seriously—demanded to be acknowledged.

1Citation needed. Also, whether progress can be modeled as a tree or a forest is left as an exercise for the reader.
2Sadly, I am referring to the university's cafeteria, not to the so–called intelligent people club.

xi

General Remarks

In accordance with the standard scientific protocol, the personal pronoun we will be used

throughout this document to indicate the reader and the writer, or my scientific collaborators

and myself.

xiii

Contents

1 Introduction 1

2 Background 7

2.1 Workflows . 7

2.1.1 Workflow Layers . 9

2.1.2 Formal Representation . 10

2.1.3 Common Representation . 14

2.2 Workflow Management Systems . 15

2.2.1 The KNIME Analytics Platform . 16

2.2.2 WS–PGRADE and gUSE . 18

2.2.3 The Galaxy Project . 19

2.3 Workflow Languages . 21

2.3.1 Interoperable Workflow Intermediate Representation 22

2.3.2 Common Workflow Language . 22

3 Conversion of Workflow Nodes 23

3.1 Introduction . 23

3.2 Methods . 23

3.2.1 Definition of Workflow Nodes and Their Conversion 23

3.2.2 Main Challenges . 25

3.3 Results . 27

3.3.1 CTDConverter . 27

3.3.2 Availability . 30

3.3.3 Use Cases . 30

3.3.4 Sample Usage . 32

3.4 Discussion . 34

4 Conversion of Complete Workflows 37

4.1 Introduction . 37

4.2 Methods . 38

xv

Contents

4.2.1 Definition of Workflows and Their Conversion 38

4.2.2 Workflow Interoperability . 40

4.2.3 Main Challenges . 41

4.3 Results . 50

4.3.1 The KNIME2Grid Extension for the KNIME Analytics Platform 50

4.3.2 The WS–PGRADE Extensions . 60

4.3.3 Availability . 72

4.3.4 Use Cases . 72

4.4 Discussion . 79

5 Conclusion and Outlook 81

Bibliography 83

A Abbreviations 91

B Sample Code 93

C Contributions 105

D Publications 107

xvi

Chapter 1

Introduction

Motivation

The ability to independently replicate reported results is crucial to the scientific method. This

not only serves as a self–check mechanism to separate spurious, incorrect claims from facts,

but it also paves the way for scientists to build upon the findings of other researchers. Modern

scientific studies have become highly specialized and complex, often requiring resources or

trained personnel not available to every laboratory, so fully independent replication is often

difficult to attain. Nevertheless, the advancement of scientific endeavors requires the means

and methods to at least reproduce reported findings.

In the current scientific language, reproducibility and replicability are two intertwined but

different concepts. A scientific experiment is replicated when a separate group of scientists

reaches the same findings and conclusions after acquiring data in an independent manner, using

the same instruments and methods1 . Given that not every group of scientific investigators

has access to the same resources (e.g., not all laboratories have facilities to collect neuronal

data from mice), replication frequently becomes a taxing effort. There is, however, a minimum

standard that any experiment could attain in order to deliver reproducible results.

Reproducibility takes into account this uneven access to resources across laboratories and

expects publishers to make data and analytical methods fully available2. Independent re-

searchers could access such data and reproduce reported results. Furthermore, in the context

of computational science, reproducibility implies that experiments can be designed to keep a

detailed track of the actions taken to collect and analyze data. Given the widespread use of

software and computers in scientific fields nowadays, this bare minimum standard could be

easily met by any scientific experiment.

Even though the guidelines on design of reproducible studies are technically simple, there

have been multiple reports of a reproducibility crisis in major scientific journals and media

outlets with a wide audience3–9, suggesting that the problem does not lie in technical limitations

1

1. Introduction

but rather in either a lack of competence and training or in the attitude and behavior of

scientists. Researchers could satisfy the bare minimum of reproducibility by using tools such

as workflows.

Workflows offer structured, abstract recipes that help their users build a series of steps

towards more complex and specific analyses in an organized way. Each of the building blocks

of a workflow, often called job or node, is a parametrized, specific, simple action that receives

inputs and, after some calculations, produces some output. Typically, each of these building

blocks performs a domain–independent task (e.g., download a file, add a column to a data

table). The organized, collective execution of these building blocks is, in contrast, seen as a

domain–specific task (e.g., produce a list of compounds that bind to a specific protein).

With the availability of biological big data, the need to promptly process considerable

amounts of data has become a pressing matter10,11. Bioinformatic calculations are therefore

turning more complex and require more computing resources to complete in a timely manner.

Simple personal computers or monolithic approaches to solve scientific questions in bioinfor-

matics can no longer keep pace with the growth of available biological data, the complexity

of computations, and the need for faster results. Structuring solutions to scientific questions

using workflows is not only best practice, but it also helps researchers to expedite reliable

generation of repeatable results.

Modeling a scientific experiment as a structured, organized set of cooperating tasks has sev-

eral benefits. Not only intermediate results can be stored for further analysis or troubleshooting

but also bottlenecks can be easily identified. Furthermore, the domain–independent building

blocks can be reused in other pipelines, cutting down development times. The ability to per-

form sections of workflows with different values of a given setting in parallel (i.e., a parameter

sweep) is a feature often sought after12. Parallel execution of independent workflow branches

is simplified if the computations of a complex analysis are structured as a workflow.

While the capabilities of workflow engines might differ, they all—at the very least—allow

users to design, execute, and monitor workflows. Whether execution happens on the user’s

desktop computer or on a remote computing cluster is an aspect that varies among implemen-

tations. However, the best case scenario for users is to be able to design workflows in a visual,

intuitive way, while being able to seamlessly access powerful resources, such as those found

on grids or clouds, to execute their workflows.

There are several points to consider when choosing a workflow engine. In spite of the great

value of a user–friendly, responsive graphical user interface (GUI) during the construction

phase of a new pipeline, not all workflow engines feature an uncomplicated design tool suite.

Complementary to this, although access to high–performance computing (HPC) resources tends

to diminish workflow execution times, not all engines allow for a smooth transition between

designing workflows and executing them on remote, more capable computing resources. Ex-

tensibility and scaling are important additional criteria to consider. Since each workflow engine

2

was initially developed thinking of a specific user community, each engine offers a different set

of features and might lack certain capabilities. Clearly, there is a gap that can be bridged by

combining different workflow engines in order to incorporate their features and circumvent

their shortcomings.

The objective of our work is to offer friendly, intuitive, workflow design along with open

access to HPC resources for workflow execution by combining the features of different engines.

Main Challenges

Compatibility between workflow engines cannot always be guaranteed because there is no

widely–accepted language to represent all aspects of workflows. Representation of facets such

as the topology of a workflow—available in the workflow languages we have studied—is not

sufficient to fully convey details required to execute a workflow.

Interoperability across workflow management systems varies between coarse–grained and

fine–grained. The former refers to approaches in which a complete workflow is invoked from

within a single task of another workflow, the latter is accomplished when an automatic full

conversion takes place and all involved engines are able to natively execute their own versions

of the same workflow. Fine–grained approaches provide a more precise control over workflows,

hence promoting optimization (e.g., by executing several independent tasks in parallel).

Figure 1.1: Schematic view of a workflow conversion. The same abstract workflow has different
implementations across engines, each being a concrete. Conversion of full workflows happens
across workflow engines. Properly converted workflows have the same abstract as their source.
Figure adapted with permission from13.

Conversion of workflows across engines to provide fine–grained interoperability is not a

trivial task due to the fact that each engine implements similar features in a different way

3

1. Introduction

(see Figure 1.1). The first challenge in combining different engines is to understand how the

building blocks of workflows (i.e., each of the independent tasks) are represented and executed

in each of them. A correct approach must convert not only the topology of workflows but also

each of the individual tasks. Only after conversion of these has been elucidated, converting

complete workflows can be undertaken. There is no approach that works for all workflow

engines, making this a weighty challenge.

An interesting question arises when features of workflow engines are combined: is it

possible that a given engine properly implements or emulates missing features from another

one? Furthermore, some workflow engines make no real separation between the bare workflow

topology and the resources it needs to be executed, while some other engines separate these two

perspectives in several steps throughout the design phase. This, of course, must also be taken

into account when different engines are combined. Since this is a very specific implementation

detail of each engine—often not thoroughly documented—acquiring a solid understanding of

how workflows are represented is a demanding endeavor. The disparity of representations

poses a challenge to scientists who desire to reuse workflows. Ideally, a scientist would be

able to design and test a workflow only once and execute it on any other engine after some

transformation.

Significant work has been made to achieve interoperability across workflow engines. The

SHaring Interoperable Workflows for large–scale scientific simulations on Available distributed

computing interfaces (SHIWA) Project allows users to run previously existing workflows from

different platforms on the SHIWA Simulation Platform14. However, due to privacy concerns, sci-

entists might give a second thought to execute workflows and store sensitive data on the SHIWA

Simulation Platform. Likewise, Tavaxy, focusing on genome comparison and sequence anal-

ysis, was developed to provide interoperability between Taverna and Galaxy workflows15,16.

Similarly, the work of Grunzke et al.17 brings the Konstanz Information Miner (KNIME) Analyt-

ics Platform closer to more powerful computing resources by integrating it with the Uniform

Interface to Computing Resources (UNICORE) middleware. These approaches achieve only

coarse–grained interoperability, whereas our main interest lies in reaching fine–grained inter-

operability.

Contributions

The KNIME Analytics Platform offers over two thousand modules to build workflows and

facilitates both development of new nodes and integration of external command line tools,

yet it might be limited in computing power (i.e., it is designed to run on personal computers).

The Web Services Parallel Grid Runtime and Developer Environment Portal (WS–PGRADE),

together with the Grid and Cloud User Support Environment (gUSE), in contrast, compose a

4

framework that taps into several distributed computing interfaces (DCI), easing inclusion of

arbitrary HPC resources, but its workflow editor poses a steep learning curve to its user base.

Considering these aspects, we developed a plug–in for the KNIME Analytics Platform,

KNIME2Grid, that allows users to export KNIME workflows to WS–PGRADE/gUSE, where they

can be executed on any supported HPC. Engines such as Galaxy and gUSE utilize proxies to

represent the individual jobs that comprise a workflow. Typically, these proxies do not contain

an executable file, rather, a suitable command line pointing to the location of a binary. These

kind of nodes reference an external executable existing outside the context of a workflow

engine. The KNIME Analytics Platform, on the other hand, relies mostly on native nodes

(KNIME Nodes). These are Java classes whose code is hosted by the process executing the

KNIME Analytics Platform: a KNIME Node can be executed only inside a running instance

of the KNIME Analytics Platform. This poses quite a challenge for the proper conversion of

KNIME workflows.

Contrasting to the KNIME Analytics Platform, WS–PGRADE does not maintain a proper

application repository from which end users can simply select an appropriate version of a

required dependency. The workflow configuration process in WS–PGRADE requires users to

provide, for each workflow node, a script to invoke a remote executable, along all required

command line parameters. End users do not have the benefit of simply drag and dropping

configured visual representations of jobs. In order to alleviate this intricate procedure, we

devised an extension that provides users with the ability to manage a basic application database

in WS–PGRADE. Using our add–ons in conjunction, users are able to configure their converted

WS–PGRADE workflows using the KNIME Analytics Platform by selecting a desired version of

an executable from a list. To demonstrate the capabilities of KNIME2Grid and our application

database extension, we present the following use cases in the field of computational biology:

• Structural bioinformatics: conversion of a molecular docking workflow.

• Immunoinformatics: conversion of a population–based vaccine design pipeline.

• Metabolomics: conversion of a biomarker discovery pipeline.

Furthermore, in order to extend the capabilities of workflow management systems, we

developed a toolset able to convert Common Tool Descriptors (CTD), which are platform–inde-

pendent tool representations, to other formats. Out of the box, our toolset is able to generate

descriptors for Galaxy and in the Common Workflow Language (CWL) format, but our modular

design allows for a smooth extension to support additional formats.

5

1. Introduction

Outline

The Background section formerly defines what a workflow is and also introduces some selected

workflow engines we found to be commonly used in the bioinformatics field. We close this sec-

tion by briefly discussing workflow languages, which are important in the context of workflow

interoperability.

Chapters 3 and 4 present the detailed account of the development of an open–source suite of

software solutions designed to provide fine–grained workflow interoperability across platforms.

The subsections range from the introduction of a platform–independent job representation and

its applications to the description of the features we implemented into existing workflow

engines. Each of these subsections presents work that satisfies the needs of the scientific

community. Each chapter contains a discussion comparing our work with other available

technologies.

Our closing remarks and an outlook are presented on Chapter 5.

6

Chapter 2

Background

2.1 Workflows

The abstraction of processes was originally developed to increase productivity and decrease

costs in the workplace by focusing on the optimization of routine work activities18. Early

literature introduced so–called process charts in order to visualize operations with the pur-

pose of improving them19. The importance of enforcing the standards derived from these

diagrams was soon recognized. Process charts also support the notion that any given detail of

a procedure is more or less unaffected by every other detail, allowing adopters to effectively

identify profitable adjustments, preventing inventing downward (i.e., detrimental changes) and

stimulating cumulative inventions of permanent value19.

Before the widespread use of information technologies these processes were exclusively

carried out by humans, who, in turn, operated machinery or simple tools to assist them in the

executions of these tasks18. Nowadays, and since the use of computing technologies in the

workplace, these processes have been partially or fully automated by computer software able

to execute tasks and oversee the enforcement of a defined set of rules. The nature of these

processes can be categorized in three areas20:

• Material processes: activities in which physical components are transformed and assem-

bled into products, such as classical manufacturing and transportation of goods.

• Information processes: the current ubiquitous usage of computers and the high availabil-

ity of information at almost all times blurs the boundaries of this category of processes.

These processes are related to automated tasks performed by software whose purpose

is to transform, create, manage and provide information, such as payroll management

software and search engines.

• Business processes: these combine both material and information processes in order to

satisfy specific needs. Online shopping is an example of a business process that involves

7

2. Background

both information processes (e.g., customers ordering items through their web browsers)

and material processes (e.g., shipping orders).

The first applications of process flows, or workflows, were found in the context of office

and manufacturing tasks19. Workflows represent business processes and offer a well–defined

paradigm to execute complex, domain–specific tasks in a structured, repeatable fashion, making

them ideal not only for industry but also for scientific applications. The execution order of each

individual step in a process is determined by the workflow's structure (i.e., its topology). Each

individual step, often referred to as job, can take inputs, produce outputs and be configured

using parameters.

(a) A workflow seen as a black box. From a user’s perspective, withdrawing cash is a simple
activity.

(b) Detailed view of the same operation using flowchart elements. Each task executes a very
specific action that could be reused in other workflows. Some tasks have been either left
out or grouped together for the sake of brevity.

Figure 2.1: A cash withdrawal operation represented using two different levels of detail.

A single workflow addresses a domain–specific problem and could be treated as a black

box that takes some input data, has some parameters and produces some output. On the other

hand, the individual jobs that constitute a workflow are often domain–independent. Figure 2.1

depicts the relationship between a workflow, seen as a whole, and its comprising building

blocks.

8

Workflows

An advantage of structuring complex activities into workflows is the reusability of high-

ly–specialized building blocks. In the example provided in Figure 2.1b, manufacturers could,

for instance, reuse components represented by the task labeled Read card number in other

machines. Splitting the work into simple tasks means that several teams could work in parallel

to design, support and improve these.

2.1.1 Workflow Layers

Processes represented with workflows contain three different dimensions or layers, i.e., case,

process and resource dimension21. These can be summarized as follows22,23:

• The process dimension, also referred to as the abstract layer, deals with the application

domain. Technical details such as architecture, platform, libraries, implementation and

programming language, are not present in this dimension. Only the structure and pur-

pose of the workflow are available in this dimension. This layer is, so to speak, the

foundation of a workflow.

• The resource dimension, often called concrete layer, encompasses all technical aspects

required to execute the desired process. Implementation details such as architecture and

quantity of processors that a task requires, software dependencies and parameters, are

described here.

• The case dimension refers to the execution instances of a workflow.

Figure 2.2: Schematic view of the workflow layers.

As Figure 2.2 illustrates, the case layer rests upon the concrete layer, which in turn is built

upon the abstract layer. Each abstract can contain several concrete representations. Every

execution of a concrete is represented in the case dimension. Going across the Instances

axis represents independence of the depicted items. Conversely, the Layers axis indicates

dependency on lower layers. For instance, the abstract A1 is independent from A2. Similarly,

9

2. Background

the concrete representations C1,1, C1,2 and C2,1 are independent from each other. However,

the execution R2,2,1 depends on the concrete C2,2, which in turns depends on the abstract A2.

For the sake of clarity and brevity, we prefer the use of the abstract/concrete terminology

throughout our work.

2.1.2 Formal Representation

In his doctoral dissertation, Kommunikation mit Automaten1, Carl Adam Petri introduced the

foundations of a theory of communication to formally and precisely describe the several phe-

nomena that occur during the exchange and transformation of information in a system24.

Petri immediately recognized a direct application of his novel theoretical framework: design

and programming of information systems24. His ideas quickly found their way into scholarly

journals and were picked up both by the scientific and the industry communities25–27.

After further refinement, the concepts presented in Petri's doctoral dissertation were con-

densed into what we know today as Petri Nets, offering a concise, abstract, formal model of

information flows28. Petri Nets contain the necessary mathematical rigorousness to precisely

describe and study distributed, concurrent, asynchronous, non–deterministic, parallel, and

stochastic information processing systems, allowing scientists to formulate algebraic equations

and other models to represent the states and transitions of a system25.

a Petri Net is a 5–tuple, PN = (P, T, A, W, S0), where:
P = {p1, p2, ..., pn} is a finite set of places,
T = {t1, t2, ..., tm} is a finite set of transitions,
A⊆ (P × T)∪ (T × P) is a set of arcs,
W : A→ {1,2, 3, ...} is the arc weight function,
S0: P → {0,1, 2, ...} is the initial state,
P ∩ T = ;, P ∪ T 6= ;

N = (P, T, A, W)
represents the Petri Net structure (i.e., a
Petri Net without a given initial state)

Definition 2.1: Formal definition of a Petri Net. Adapted with permission from25. Copyright 1989
IEEE.

Petri Nets are formally defined as directed, weighted, bipartite graphs containing two kinds

of nodes, places and transitions, and an initial state, often referred to as the initial marking, S0.

Each edge, or arc, has an assigned weight and either originates from a place and is directed

towards a transition or stems from a transition and ends on a place (this restriction is what

makes Petri Nets bipartite graphs)25.

Each place models the set of conditions that must be fulfilled for a transition to occur or

fire. On the other hand, transitions represent actions or events that modify the state of the
1Communication with Automata

10

Workflows

system and have a number of input and output places. Places and transitions thus model the

pre– and postconditions of events, respectively. In order for a transition to actually occur, all of

its preceding places must have satisfied all of their represented conditions. Conversely, when

a transition has fired and is completed, a postcondition is satisfied, effecting a change in the

state of subsequent places to which this transition is connected to.

Each state assigns a non–negative integer number to each place. When a state has assigned a

number i to a place p, then it is said that p has been marked with i tokens. States are represented

by n–dimensional vectors, where n is the total number of places. The j–th component of a

given state S, denoted by S(p j), is the number of tokens in place p j . The existence of a token

in a place signifies that the condition associated with the place has been fulfilled25.

In order to depict changes in the modeled system, Petri Nets introduce state changes (i.e.,

the assignment of tokens) according to the following transition rules25:

• If each input place p of a transition t contains at least W (p, t) tokens, where W (p, t) is

the weight of the arc that originates in p and is directed towards t, then t is enabled.

• A transition that has been enabled may or may not fire. This depends on whether the

event represented by the transition actually occurs.

• Whenever an enabled transition t is fired, W (p, t) tokens are removed from each input

place p of t.

• Whenever an enabled transition t is fired, W (t, p) tokens are added to each output place

p of t, where W (t, p) is the weight of the arc that originates in t and ends in p.

Transitions lacking output places are called sink transitions, while transitions without any

input places are referred to as source transitions. Source transitions are inherently enabled.

Sink transitions, while able to consume tokens, do not generate any25.

Petri Nets also offer visual portrayals able to express complex systems where information is

passed among elements, providing the required graphical symbols to represent the concurrent

and dynamic states of a system25. Graphically, places are usually displayed as circles, while

transitions are drawn as bars or rectangles. Tokens are represented as dots inside places. Arcs,

as it is usually done in depictions of weighted directed graphs, are drawn as arrows annotated

with their corresponding weight. These start from a place and are directed to a transition or

vice versa25,27,28. Figure 2.3 illustrates a Petri Net that models the capture and validation of a

4–digit personal identification number (PIN).

11

2. Background

(a) The Petri Net in its initial state. The transition t1 is
enabled because its only input place, p1, has at least as
many tokens as the weight of the arc (i.e., 1) connecting
them.

(b) The Petri Net after t1 has fired once. p1 lost one
token: the weight of the arc connecting it to t1 is one.
Similarly, p2 has been marked with one token as a re-
sult of the unitary weight of the arc connecting it to t1,
which is still enabled.

(c) The Petri Net after all four digits have been intro-
duced. t2 is now enabled because there are at least four
tokens on its precondition place, p2. Since p1 contains
no more tokens, t1 is no longer enabled.

(d) The Petri Net after transition t2 has fired and con-
sumed four tokens from p2. p3 has been marked with
a token.

Figure 2.3: Simplified capture and validation of a 4–digit PIN modeled using a Petri Net and
applying transition rules. Unitary arc weights are omitted. Transitions have been annotated with
a brief description of the modeled events for the sake of explanation.

High–Level Petri Nets

Due to their rigorousness, Petri Nets were promptly proposed as a unifying modeling tool

for information systems, these ranging from computer hardware to distributed databases26–29.

However, adopters quickly noticed that modeling processes using pure, classical Petri Nets often

lead to complex, unmaintainable networks without an appropriate level of detail, rendering

analysis a tedious and cumbersome feat30–34.

Systems modeled by Petri Nets often depend on information about the represented entities

comprising a system. Tokens typically depict material or human resources, yet, in their purest

form, they lack the elements to succinctly describe the components they model. Moreover, the

notion of time, an important facet of dynamic information systems, is not formally encoded in

classical Petri Nets. Representation of processes requiring either individualized treatment of

tokens or a clear definition of how properties and relations change across time is therefore not

possible using classical Petri Nets.

There have been several proposed extensions to Petri Nets30–32,35–38. Literature refers to

non–classical, non–pure Petri Nets as high–level Petri Nets. Genrich and Lautenbach38 intro-

duced the first well–known high–level Petri Nets, predicate/transition Petri Nets (PrT–nets),

adding expressiveness by extending places to make them able to change properties and rela-

tions between the modeled individuals. Transitions in PrT–nets were also modified accordingly

12

Workflows

to feature templates or schemes for the purpose of modifying token assignment rules to better

represent the processes carried modeled systems.

Building upon these concepts, tokens have also been added color32,36,37,39. This does not

refer to the chromatic phenomena, rather, to information contained in tokens to differentiate

them. Thus, transitions are not only able to fire depending on their firing colors, but they

also determine the color of produced tokens based on the color of their input34, as depicted

in Figure 2.4.

(a) Tokens possess colors modeling informa-
tion entered by a user, e.g., password. Transi-
tion t1 is enabled but has not yet fired.

(b) Transition t1 has already fired and, based
on the color of its input tokens, it has produced
a token containing a different color.

Figure 2.4: A high–level Petri Net showing tokens with color. Information contained in tokens is
represented by keys and values using the ke y = value format.

Nevertheless, even after utilizing concepts of time and color, models easily grow in size

and complexity. As introduced by Peterson28, Van der Aalst34, the usage of hierarchies greatly

increases the expressiveness of high–level Petri Nets. This is achieved by allowing aggregation

of places, transitions, and possibly other systems (see Figure 2.5).

13

2. Background

ready

p2

p4

p3

t2
busy

login

t3 p5

(a) Aggregation of places and transitions using
hierarchies to form a basic, generic logger, Y .

(b) A system using three loggers. Depiction is
kept more compact by reusing system Y .

Figure 2.5: Using hierarchies in high–level Petri Nets. Figures adapted with permission from34.
Copyright 1994 Elsevier B.V.

Since high–level Petri Nets are an augmentation of classical Petri Nets, they inherently

offer the same precise mathematical foundation and are suited to a big number of analysis

methods34. High–level Petri Nets provide a rigorous language to formally model complex flows

of information in a compact, manageable manner. Nonetheless, most software tools able to

design and orchestrate the execution of workflows do not explicitly utilize Petri Nets. One can

only speculate about the nature of this design decision, but it is reasonable to believe that this

departure from Petri Nets obeys the fact that such tools aim to facilitate their usage and strive

to widen their user base.

2.1.3 Common Representation

Workflows are commonly represented as unweighted directed acyclic graphs (DAG)40–44. Each

vertex represents a system from a high–level Petri Net, typically containing a place together with

its pre– and postconditions, i.e., the preceding and following transitions from the high–level

Petri Net from which they originate45. Vertices are labeled and contain unique identifiers.

Edges are not weighed, and, akin to Petri Nets, they determine the logical sequence to

follow: an edge between two vertices represents the channeling of an output from a task into

another.

Figure 2.6: An unweighted DAG representing the abstract layer of a workflow. After validating
input data, a three–dimensional representation of the input molecule is generated.

14

Workflow Management Systems

Tasks modeled by vertices are executed once all of their inputs can be resolved. Vertices

are commonly referred to as nodes, jobs or tasks. In this work we will use these terms inter-

changeably.

Figure 2.6 shows an example of a workflow using this high–level representation featuring

a further level of simplification compared to the high–level Petri Net presented in Figure 2.5.

This workflow is composed of four tasks and three edges. The task Input has no predecessors

and will be the first one to be executed. In comparison, the task labeled 3D Generator depends

on the completion of Molecule Check, which in turn depends on the completion of Input.

Figure 2.7: A possible concrete layer of the workflow depicted in Figure 2.6. Information required
to execute tasks composing this workflow is included in this layer.

In contrast to Figure 2.6, Figure 2.7 shows a possible concrete representation of the pre-

sented abstract layer, in which each vertex has been annotated with the information needed to

actually execute the corresponding tasks. While this varies across platforms and architectures,

recall that abstracts are constrained exclusively to the application domain and are thus indepen-

dent of the underlying technical dependencies. On the concrete layer, inputs and outputs are

typically files, e.g., the 3D Generator task receives an input file from its predecessor, Molecule

Check, and generates an output file that will be channeled to the Output task.

2.2 Workflow Management Systems

Workflow management systems, or workflow engines, are software tools designed to create,

manage and execute workflows. The execution order is driven by a computer representation of

the workflow structure. Running a single workflow might take up to several months, depending

on its complexity, parameter settings and amount of processed data46.

While there is no fixed recipe to implement workflow engines, these typically require an

array of information technologies and communications infrastructure, and are able to operate

in environments ranging from a single–user computer to remotely distributed architectures,

yet they exhibit certain common characteristics—providing a basis for integration and interop-

erability capabilities between different implementations, namely46:

15

2. Background

• Build–time functions to define workflows and their constituting tasks: during the build–-

time phase, a real–world business or information process is transcribed into a formal,

computer–processable definition by the use of one or more analysis, modeling and sys-

tem definition techniques. The product of these functions is a workflow model, typically

including both the abstract and concrete layers.

• Runtime control features handling orchestration of workflow execution in an operational

environment: these are in charge of sequencing the various activities to be handled as

part of each execution. During the runtime phase, the workflow model is interpreted by

software responsible for creating and controlling operational instances of the workflow,

as well as scheduling the several tasks comprising it.

• Runtime interactions with users and external software: tasks within a workflow could

depend upon further input from users or external applications (e.g., fill out an electronic

form). These interactions are required to process the various individual tasks.

Reproducibility is a desirable feature in workflow management systems. Parameters, inputs,

and outputs should be permanently recorded: analyses could then be precisely and indepen-

dently repeated. In other words, each independent run of a workflow (i.e., each instance on

the case layer) should be recorded in order to guarantee reproducibility.

2.2.1 The KNIME Analytics Platform

The KNIME Analytics Platform is a desktop–based workflow engine featuring a powerful and

accessible GUI with hundreds of ready–to–run examples40. Users can choose among more

than two thousand KNIME Nodes that serve as the building blocks of a workflow. Nodes can

be added to the KNIME Analytics Platform by either downloading ready–to–use nodes or by

developing new ones using a well–documented Application Programming Interface (API) that

is accessible to inexperienced developers available at KNIME's website2.

The KNIME community is very active, meets at periodic KNIME–organized events and

supplies nodes under the KNIME Community Contributions program. The domain of these

contributions, which are easily obtainable from https://www.knime.com/community, range

from image processing to chemo– and bioinformatics.

Workflows executed on the KNIME Analytics Platform are limited to run on the same

personal computer on which it has been installed, rendering it unsuitable for tasks with high-

–memory or high–performance requirements. Two royalty–based variants to execute workflows

on distributed HPC resources are available: KNIME Cluster Executor and KNIME Server3.
2https://www.knime.com/developer/documentation/wizard
3Further information available at https://www.knime.org/knime-cluster-executor and

https://www.knime.com/knime-software/knime-server, respectively.

16

https://www.knime.com/community
https://www.knime.com/developer/documentation/wizard
https://www.knime.org/knime-cluster-executor
https://www.knime.com/knime-software/knime-server

Workflow Management Systems

Figure 2.8: Screenshot of the KNIME Analytics Platform. Through its friendly GUI, users drag and
drop nodes from the Node Repository (bottom left) and use them to build and execute workflows
using the Workflow Manager (top middle). A summary of the currently selected node is displayed
on the Node Description section (top right). Figure adapted with permission from40. Copyright
2009 ACM.

Users build workflows by dragging and dropping visual representations of nodes. Inputs

and outputs of each of these nodes, commonly referred to as ports, can be connected by using

the intuitive GUI. Ports are assigned data types, thus enforcing compatibility between input

and output ports: only ports with compatible types can be connected.

Users obtain immediate feedback upon running a workflow. It is possible to resume a faulty,

canceled execution after issues have been resolved: the KNIME Analytics Platform correctly

determines which tasks require re–execution. Output data can be visualized in the KNIME

Analytics Platform by right–clicking a node and selecting the desired action on the displayed

pop–up menu.

17

2. Background

2.2.2 WS–PGRADE and gUSE

Together, WS–PGRADE and gUSE make up a web–based engine that taps into several DCI and

HPC infrastructures44. WS–PGRADE, offered as a Liferay portal, acts as the front end and offers

portlets for workflow creation, execution and monitoring, as well as for supporting tasks (e.g.,

usage statistics). Interaction with gUSE is realized through its remote API—based on Web

Services Description Language (WSDL) requests, allowing gUSE to interact with WS–PGRADE

and other workflow engines44,47. Its layered architecture enables administrators to distribute

a setup across resources: WS–PGRADE can be installed on a dedicated front end server, while

gUSE's components can be deployed on shared resources.

Figure 2.9: WS–PGRADE/gUSE's architecture. The Services layer handles tasks such as storage
and execution. The Job Submission and Data Management layer contains the DCI Bridge, which is
responsible to access DCIs. Adapted with permission from48. Copyright 2014 MTA SZTAKI LPDS,
Budapest.

WS–PGRADE splits creation of abstracts and concretes. Abstracts are created via a Java

WebStart application, Graph Editor: users create nodes from scratch, providing details such as

number of input and output ports. Due to an update in security policies denying automatic

execution of Java WebStart applications49, latest versions ship with a browser–based Graph

Editor.

Successfully building and saving an abstract is followed by creation of concretes and their

subsequent node–per–node configuration, a step where users provide a script that will be sub-

mitted to the respective DCI, along with a command line providing any associated parameters.

The potential complexity of WS–PGRADE workflows is reflected in the many available fields

in the concrete configuration portlets, as depicted in Figure 2.10.

18

Workflow Management Systems

Figure 2.10: Concrete node configuration in WS–PGRADE. Users must specify details such as the
resource on which a task will execute and the command line. A script to be submitted on the
corresponding DCI must also be provided. Adapted with permission from50. Copyright 2015 MTA
SZTAKI LPDS, Budapest.

WS–PGRADE offers no real–time feedback regarding the state of a workflow: users must

poll the execution status. Email notifications for changes in the execution status of a workflow

are available, however, these do not cover status updates of single tasks.

There is a steep learning curve associated with WS–PGRADE, and this might intimidate

users lacking technical experience. Nevertheless, gUSE's main strength lies in that it offers

a uniform platform to access several DCIs. Additionally, development of application–domain

specific portlets to facilitate creation and execution of workflows is supported.

2.2.3 The Galaxy Project

Galaxy is a web–based workflow management system that seeks to address the disruptive

changes biomedical research has been subjected to after the introduction of high–throughput

data production technologies, featuring several pre–installed tools for data–intensive biomedi-

cal research. By providing a common platform to share and publish results, Galaxy simplifies

19

2. Background

collaboration via transparent data analyses that can be inspected at every level of detail or

even replicated and extended41.

Through its intuitive browser–based GUI, shown in Figure 2.11, users can seamlessly up-

load data from their workstations, access data from public databases, choose among analysis

toolsets, set workflow parameters, execute workflows, etc. Galaxy also features a user–friendly

workflow editor, the Workflow Canvas, where users create workflows by dragging and dropping

elements41.

Installing additional nodes is achieved by using the Tool Shed's accessible web–based GUI.

There are, at the time of writing, more than 6,700 valid tools available in the public Tool

Shed51.

Galaxy offers a free–to–use public instance, the Galaxy Public Server4, which provides

significant computing power and disk space, making it feasible to analyze large datasets. It

features common analysis tools and data sources, and supports hundreds of thousands task

executions for thousands of users per month41.

It is also possible to install Galaxy on–site by using the Galaxy Software Framework: ad-

ministrators and tool developers maintain their own Galaxy instances and integrate external

tools into Galaxy. The Galaxy Software Framework is an open–source, Python–based, high-

ly–customizable application that can be installed on Unix–like systems as a Galaxy instance.

It executes jobs locally by default, but it can be configured to submit jobs on DCIs. However,

setting up a shared file system between the resources hosting Galaxy instances and comput-

ing resources is required. Furthermore, all jobs are submitted under a single user account,

galaxy_user, complicating administrative tasks such as individual quota enforcement and usage

statistics41,52.
4Available at https://usegalaxy.org

20

https://usegalaxy.org

Workflow Languages

Figure 2.11: Screenshot of the Galaxy Public Server showing an imported workflow. The left
column displays a list of all available tools in the Galaxy Public Server. The middle section contains
the Workflow Canvas, where users can drag and drop tools to build workflows. The rightmost
section allows users to provide parameters for the selected tool. Screenshot by author. Copyright
2005–2015 Pennsylvania State University.

2.3 Workflow Languages

Workflow engines rely on different underlying technologies and focus on particular capabilities,

resulting in incompatible islands of process automation: it is not expected that workflows built

in certain engine could be executed on a different one without some sort of preprocessing.

Ensuring certain degree of interoperability is critical for the success of large–scale workflow

management, where distinct application domains, platforms and engines are involved46,53.

We have introduced how high–level Petri Nets provide a rigorous workflow representation,

but they still lack expressiveness to store designs for their execution on workflow management

systems. Workflow languages were conceived to represent real processes for their execution by

engines, addressing key issues such as task coordination requirements, specification of tasks

and their execution states, and workflow execution requirements to ensure application–domain

standards54,55. Even though they contain elements such as control structures, computational

completeness is not an area of interest for workflow languages55.

21

2. Background

2.3.1 Interoperable Workflow Intermediate Representation

The SHIWA Project, an initiative whose focus is to develop workflow coarse–grained interoper-

ability, utilizes the Interoperable Workflow Intermediate Representation (IWIR) as its workflow

language. IWIR was designed to create a standard that sufficiently describes most existing

workflow constructs using a lower level of abstraction, enabling portability of abstract layers

and decoupling itself from concretes. It is specified using Extensible Markup Language (XML)

documents containing graph–based structures that represent data flows, parallel and sequential

controls14,56.

IWIR Bundles were introduced by Plankensteiner et al.57 to describe concretes. They contain

an IWIR definition of a workflow bundled with a set of files containing binary dependencies

and templates in the Job Submission Description Language (JSDL) describing computational

tasks. Integration developers can extend workflow engines by creating IWIR front–ends able to

convert IWIR definitions—included in IWIR Bundles—into compatible representations.

2.3.2 Common Workflow Language

CWL is a platform–independent standard that has its origins in Make and other similar build

automation tools that determine the execution order based on dependencies between tasks. It

is the joint effort of individuals, organizations and vendors collaborating to facilitate sharing of

data–intensive analysis pipelines among scientists. It observes the principles of the OpenStand

movement, a group that encourages the development of global, market–driven standards for

the benefit of humanity58,59.

CWL documents are written in a mixture of JavaScript Object Notation (JSON) and YAML

Ain't Markup Language (YAML), and they are able to describe large–scale workflows in HPC

environments where tasks are commonly scheduled in parallel across many computing re-

sources58.

22

Chapter 3

Conversion of Workflow Nodes

3.1 Introduction

The computational tasks comprising concrete layers of workflows often result in invocations

of command line tools. Therefore, conversion of individual workflow nodes must consider not

only the disparities between the origin and target node representations but also the underlying

architectural differences among the involved platforms, if any.

Files where inputs, parameters and outputs of a task are formally described greatly sim-

plify their automatic conversion to other formats. Galaxy, CWL documents and CTDs offer

well–structured file formats able to represent all aspects of workflow nodes (with varying de-

grees of expressiveness). A file parser could take any such descriptor file as an input, extract

relevant information, and generate an output in a different format.

There is an intrinsic value in the usage and conversion of tool description files: software

libraries able to provide and interact with such descriptors are easier to integrate into workflow

engines, thus paving the way for increasing interoperability.

3.2 Methods

3.2.1 Definition of Workflow Nodes and Their Conversion

Files describing workflow nodes contain information easily pliable into key–value pairs, regard-

less of the format (e.g., name, output_location could be keys that map to values representing

the name and output location of a certain tool, respectively). Workflow nodes can thus be

represented using key–value pairs, which programming languages commonly implement as

dictionary data structures.

Nodes can be formally represented as a function n: k→ v, where k, v represent sets holding

keys and values, respectively. This, akin to colors in high–level Petri Nets, provides a basis to

store and manipulate information in a more concise fashion.

23

3. Conversion of Workflow Nodes

<ITEM name="lig_chain" type="string"

description="Ligand chain name" />

name = l i g_chain
t ype = st r ing
desc = Ligand chain name
bind_to = −l i g_chain

lig_chain:

type: string

label: Ligand chain name

inputBinding:

prefix: -lig_chain

<param name="lig_chain" type="text"

label="Ligand chain name" />

Figure 3.1: Representation of workflow nodes using dictionaries. The left side shows (top to
bottom) possible depictions of the same input parameter using a CTD, a CWL document and
a Galaxy representation, respectively. The right side displays a dictionary containing the same
information using a “ke y = value” notation.

The first step of our proposed conversion procedure is to parse a descriptor file with the

purpose of extracting information into a dictionary, as briefly depicted in Figure 3.1. Since

node representation formats might contain platform–specific information not pertinent for

the conversion (e.g., inputs in Galaxy allow a size attribute indicating the length of a text

field on which a value can be entered in Galaxy's GUI), only certain attributes are extracted.

What follows is the generation of an output file using a different format. Nowadays, there are

software libraries available with the purpose of parsing and generating structured files, e.g.,

XML parsers. Algorithm 1 details the procedure to convert a workflow node.

Algorithm 1 Single workflow node conversion. An input representation, i fs (in the source
format fs), is first parsed into an in–memory data structure, p fs , dependent on its format.
Relevant information from p fs is then extracted into a dictionary representing the node to
convert, i.e., a function, n: k → v (k, v being the key and value sets, respectively). This
dictionary, which is independent of the source and target formats, is then serialized to a
file, o ft

, using the target format ft . Implementations for the Parse and W rite routines are
commonly available as software libraries, e.g., XML parsers.

1: procedure CO N V E R T NO D E(i fs , o ft
) . source, target files, each having its own format

2: p fs ← Parse(i fs) . parse source file
3: n← Empt yDict ionar y()
4: for all relevant (k, v) in p fs do . visit all relevant entries in parsed input
5: n[k]← F rom fs(v) . translate property from the source format
6: end for
7: for all (k, v) in n do
8: W rite ft

(k, To ft
(v), o ft

) . write transformed property to the target format
9: end for

10: end procedure

24

Methods

3.2.2 Main Challenges

Algorithmically speaking, conversion of workflow nodes is clearly not a complicated process.

Proper translation of elements is trivial if they represent a basic type, e.g., integers, floats

or strings: a simple mapping relating data types among formats would be sufficient. This

translation process is summarized by the F rom fs and To ft
routines introduced in Algorithm 1.

However, workflow management systems represent single tasks using custom formats, each

having its own strengths and caveats. Although all formats describe workflow nodes, some are

capable to convey more information than others through the use of special sections.

A successful conversion of workflow nodes requires a thorough understanding of each

involved format: even though these have overlapping goals, each was designed to fulfill specific

needs, resulting in discrepancies that must be properly dealt with. This also means that any

implementation must consider an adequate direction of the conversion in order to avoid loss

of information throughout the process.

Representation of Galaxy Nodes

Galaxy natively interacts with external command line tools via ToolConfig files. These are

XML documents that describe the inputs, outputs and parameters of tools and act as proxies

between Galaxy instances and command line tools. ToolConfigs, together with the required

dependencies to execute the represented tools, can be imported into a public or a local Tool

Shed51,60.

ToolConfigs are not fully platform–independent: including Python–based snippets (i.e.,

Cheetah templates) for text generation is allowed60,61. When a section containing Cheetah

code is invoked, it is first compiled to Python code and is then executed by the Galaxy engine.

Basic error handling is also supported via stdout/stderr scanning. Additionally, it is possible

to include macros in order to import content from external XML documents in order to reuse

sections across several ToolConfig files.

Even though ToolConfig files can contain Python–like code, users without software devel-

opment experience can also easily generate them60. Refer to Appendix B.0.4 for a sample

ToolConfig file.

Representation of Nodes using CWL

CWL is not a workflow management system proper, rather, it is a set of specifications developed

to represent data–intensive workflows across a variety of platforms supporting the CWL stan-

dard. It offers a single format to define both complete workflows and their underlying tasks. To

achieve this, CWL documents are categorized by document classes: workflows are specified us-

ing the Workflow document class, while command line tools are assigned the CommandLineTool

25

3. Conversion of Workflow Nodes

document class (see Appendix B.0.1). The standard provides a CWL interpreter as part of the

reference implementation1.

Contrasting to Galaxy's ToolConfigs, CWL representation of workflow nodes is inherently

platform–independent. Nevertheless, the CWL standard includes frequently–available features

present in modern workflow engines, e.g., usage of environment variables, support for Docker

containers, capture of stdout/stderr, parameter manipulation via JavaScript expressions, file

staging and definition of nested workflows58.

Command Line Tool Representation Using CTDs

We briefly introduced CTDs as platform–independent tool representations in Chapter 1. CTDs

are XML documents that were originally used inside bioinformatics libraries to avoid using long

command line arguments when executing complex pipelines. Tools featuring native support

to generate and interpret CTD files (e.g., SeqAn62, OpenMS63 and CADDSuite64) are said to

be CTD–enabled. Appendix B.0.2 briefly exemplifies usage of CTD files.

CTDs provide a concise format that limits itself to the representation of inputs, outputs,

and parameters that a task requires to be executed. While ToolConfigs and CWL documents

also contain these details, they also include additional information not supported by CTDs.

One of the main motivations—and advantages—of CTDs is to provide a platform–independent

representation of workflow nodes easy to work with: the simpler a format is kept, the smoother

it will be to integrate with third–party command line tools and workflow engines.

It is possible to couple arbitrary command line tools with CTDs via CTDopts, a Python

module available on the Anaconda Cloud that enables tools to interact with CTDs65.

CTDopts provides a data structure, CTDModel, containing the model of a tool. General

information about a tool (e.g., name, version), parameters, inputs and outputs can be added

to CTDModels, which CTDopts can not only serialize into CTDs but also load them from CTD

files65. Refer to Appendix B.0.3 for sample CTDopts usage.

Conversion of Individual Parameters

Input and output files in CTDs are declared as parameters in the <PARAMETERS> section, re-

ceiving a specific parameter type, i.e., input-file and output-file, respectively. However,

both CWL and ToolConfigs dedicate separate sections for inputs and outputs. File handling in

ToolConfigs and CWL documents drastically differs from how files are declared in CTDs:

• ToolConfigs handle output files separately by using the <outputs> section, while input

files are declared as normal parameters under the <inputs> section (see Listing B.11).

1Available at https://github.com/common-workflow-language/cwltool

26

https://github.com/common-workflow-language/cwltool

Results

• Definition of an output file in CWL requires an input of type string, representing the

file path. Additionally, an output of type File needs to be present and it must be bound

to its corresponding file path. CWL treats the output file path as an input parameter,

while the file itself is seen as a true output. Refer to Listing B.1 for an example.

Files certainly receive different handling across workflow node representations: a simple

mapping is not sufficient to successfully convert this kind of elements. These sections must be

identified and proper dedicated routines for their handling must be implemented.

Direction of the Conversion

The <command> section in ToolConfigs shown in Listing B.11 contains two flow control sections.

It would indeed be possible to program full sub–routines in this section, or even invoke other

programs, elevating the complexity of ToolConfigs. Although limited in scope compared to

the expressiveness achievable in ToolConfig files, the permitted JavaScript fragments in CWL

documents offer support to create complex expressions to manipulate input parameters.

Loss of information could take place if the source format of the conversion, i.e., fs, is more

expressive than the target format, i.e., ft . For instance, conversion of ToolConfigs and CWL

documents into CTDs cannot be guaranteed for all scenarios: CTD files were not designed to

provide support for scripting languages. On the other hand, given the scope of the CTD format,

a full conversion from CTD files into other formats can be, in general, guaranteed.

3.3 Results

3.3.1 CTDConverter

We developed CTDConverter, an easily extensible Python framework able to parse CTD files

and convert them to other formats. Extending CTDConverter to add supplementary output

formats requires significantly less effort than writing a stand–alone script able to parse a CTD

and produce a file in the appropriate format.

Common features such as validation of input CTD files against a schema, blacklisting

parameters, using fixed values for specific parameters and processing several CTD files in a

single invocation are offered as core features.

We designed CTDConverter to be extensible. To support an additional format, tool devel-

opers provide a Python script containing a module defining parameters and options without

having to modify other components. Each extension module has access to the core function-

alities, cutting down development time. Furthermore, CTDConverter can easily be integrated

with other external systems, e.g., scripts in continuous integration build systems.

27

3. Conversion of Workflow Nodes

CTDConverter first scans all provided command line parameters and options, then makes

use of CTDopts to parse all input CTD files and convert them into their corresponding CTD-

Models. Once a CTDModel has been obtained2, each conversion script is responsible to iterate

through the contained data structures to effectively convert them and generate files in the

desired output format. Tool developers extending CTDConverter interact with CTDModels

without the need to write code to neither explicitly parse nor generate CTDs.

Figure 3.2: Schematic view of the overall process to convert CTD documents using the CTD-
Converter framework. The conversion relies on CTDopts to parse input CTD files and to generate
CTDModels, in–memory representations of CTD files. These models are then used by the specific
converter modules to output files in the desired format. Boxes shown in beige represent com-
mon features shared across all supported converters, while green–colored boxes represent specific
actions that are determined by each of the converter modules.

Design

CTDConverter has a modular design that allows developers to easily extend its functionality by

adding independent, supplementary converter modules. Developers extending CTDConverter

are required to implement three functions that will be invoked from the entry point. Each

module is able to specify the preferred extension for generated files, register its own parameters

and options, and convert a CTDModel without parsing or validating any input CTD file. Minimal

changes need to be done in the entry point module. Figures 3.2 and 3.3 depict CTDConverter's

overall design and its detailed component diagram, respectively.

2CTDModels implement the introduced formal representation of workflow nodes, i.e., n, as detailed in Algo-
rithm 1.

28

Results

Figure 3.3: CTDConverter component diagram. Additional formats can be added by providing an
extra Python module implementing the functions in main.converter. No intrinsic knowledge of the
implementation details of the specific converters is included in the entry point, main.convert. Spe-
cific converters, here shown as the galaxy.converter and cwl.converter modules, receive in–memory
representations of CTD documents (i.e., CTDModel), which they can later utilize to generate output
files, and have access to utility functions via the utils module.

Common Features

All converter modules can utilize the core CTDConverter features, which can be controlled via

command line parameters, namely:

• Converting several CTD files at once: instructs CTDConverter to convert all of the pro-

vided CTD files. CTDConverter will automatically generate an adequate file name for

each of the converted CTDModels. This feature is specially useful in build systems, where

a build step could generate a set of CTD files and, in a separate step, they can be converted

using a single command.

• Blacklisting parameters: workflow developers might want to hide certain flags or com-

mands from final users. Some parameters present in command line tools are not to be

exposed in workflow engines (e.g., a typical -help parameter to print usage of a tool to

stdout).

• Validation of input CTD files against a schema: CTDopts requires correct CTD files in

order to parse them to produce CTDModels. In order to guarantee the validity of CTD

29

3. Conversion of Workflow Nodes

files, a schema document can be provided—CTDConverter will stop its execution if any

of the provided CTD files is invalid, providing information about incorrect inputs.

• Hard–coding parameters: inexperienced end users might provide inadequate values to

options such as -threads or -debug, which could lead to errors difficult to track down.

CTDConverter allows to set fixed values for this kind of parameters.

Galaxy–Specific Features

CTDConverter converts arbitrary CTD files into proper ToolConfigs that can be integrated into

any Galaxy Tool Shed, offering the following features to facilitate tool integration:

• Generation of macros files: CTDConverter is able to include macro definitions from any

of the provided input macros. It also ships with a sample XML including default macro

definitions, as shown in Listing B.13. Users can customize or completely override the

included XML macros file and adapt it to their needs.

• Generation of other support files: Galaxy instances utilize ancillary files to define data

types (i.e., datatypes_conf.xml), include tools and assign them a category for display

purposes (i.e., tool_conf.xml). Even though these support files are incompatible with

CTD files, CTDConverter can generate them to fully integrate command line tools in a

Galaxy Tool Shed.

3.3.2 Availability

CTDConverter is distributed under the MIT license and can be obtained directly from its repos-

itory located at https://github.com/WorkflowConversion/CTDConverter.

3.3.3 Use Cases

Integration With the Biochemical Algorithms Library

We integrated CTDConverter in the nightly builds of the Biochemical Algorithms Library (BALL).

At the time of writing, BALL offers more than 60 command line tools designed to perform the

most common tasks in the field of computer–aided drug design, such as molecular docking,

retrieval and processing of protein data bank (PDB) files, and generation of conformational

isomers64. These tools, distributed as the Computer Aided Drug Design Suite (CADDSuite),

are already CTD–enabled and were specifically designed to be integrated into workflows, an

example of this is BALLaxy66, which integrates BALL with Galaxy.

Previously, the generation of ToolConfigs was performed by the BALL codebase. We modi-

fied the existing build scripts to utilize CTDConverter. Since the CADDSuite tools can produce

their own CTDs, we were able to seamlessly plug in CTDConverter and generate the required

30

https://github.com/WorkflowConversion/CTDConverter

Results

files for BALLaxy, i.e., ToolConfig files, tool_conf.xml and datatypes_conf.xml. The content of

the generated Galaxy files before and after integrating CTDConverter did not change.

Integration With OpenMS

Featuring more than 90 command line tools, OpenMS caters to a broad audience of devel-

opers, mass spectrometry laboratories, single users as well as consortia with access to HPC

infrastructures. It offers versatile, CTD–enabled command line tools for file handling, signal

(pre–)processing, visualization, database searching, quantification, as well as peptide identifi-

cation, which can be used individually or as part of complex pipelines for data analysis63.

Developers and enthusiasts of both OpenMS and Galaxy have been manually generating

ToolConfig files to integrate OpenMS into Galaxy’s Tool Shed. We worked closely with the team

whose responsibility was to maintain the OpenMS ToolConfig files. After several iterations, the

result was a stable CTDConverter version that, without breaking compatibility with previous

versions, delivered ToolConfigs for the Galaxy/OpenMS community. Given the needed param-

eters and input files, CTDConverter is now used to automate a task that used to be a manual,

tedious effort. Our efforts translated into configurable features so other communities could

benefit from our work.

CTDConverter as a Conversion Framework

In its current version at the time of writing (2.1), CTDConverter presumes the existence of

CTD files describing workflow nodes. In order to benefit from CTDConverter, integrators of

non–CTD–enabled must somehow generate CTDs. Suites lacking usage of any structured format

to describe and document their tools could undergo a refactoring to become CTD–enabled:

integration with CTDConverter would be automatic.

Large toolsets that utilize other tool description formats could also benefit from CTD-

Converter without any modification of the codebase. For instance, the latest release of the

European Molecular Biology Open Software Suite (EMBOSS) features more than 250 tools that

utilize AJAX Command Definition (ACD) files67,68, which could be parsed into CTDModels for

their conversion into CTDs. Because of its modular design, CTDConverter offers a development

platform for integrators: it could be easily be extended to allow for additional input formats.

31

3. Conversion of Workflow Nodes

3.3.4 Sample Usage

To exemplify CTDConverter, we manually created a CTD for a non–interactive command line

tool, shown in Listing 3.1.

Listing 3.1: CTD file for wget, a non–CTD–enabled internet downloader tool. Only selected

parameters are shown for brevity.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <tool version="1.17.1" name="wget" category="Data" ctdVersion="1.7">
3 <description>Wget - The non-interactive network downloader.</description>
4 <executableName>wget</executableName>
5
6 <PARAMETERS version="1.7">
7 <NODE name="wget" description="Parameters for wget">
8 <ITEM name="outputDocument" type="output-file" required="true" value=""
9 description="Location of the output file" />

10 <ITEM name="noCertificate" type="bool" required="false" value="false"
11 description="Skip checking of certificate" />
12 <ITEM name="noVerbose" type="bool" required="false" value="true"
13 description="Print important information" />
14 <ITEM name="url" type="string" required="true" value="" position="0"
15 description="URL to download" />
16 </NODE>
17 </PARAMETERS>
18
19 <cli>
20 <clielement optionIdentifier="--output-document">
21 <mapping referenceName="outputDocument" />
22 </clielement>
23 <clielement optionIdentifier="--no-check-certificate">
24 <mapping referenceName="noCertificate" />
25 </clielement>
26 <clielement optionIdentifier="--no-verbose">
27 <mapping referenceName="noVerbose" />
28 </clielement>
29 <!-- positional argument, identifier is left blank on purpose -->
30 <clielement optionIdentifier="">
31 <mapping referenceName="url"/>
32 </clielement>
33 </cli>
34 </tool>

We then fed this CTD (stored under wget.ctd) into CTDConverter to generate a ToolConfig

and a CWL document as depicted in Listing 3.2.

Listing 3.2: Commands required to convert the file shown in Listing 3.1 into CWL and ToolConfig

representations, respectively. The used macros.xml file is included in CTDConverter and is displayed

under Listing B.13.

$ python convert.py cwl --input wget.ctd --output wget.cwl
$ python convert.py galaxy --input wget.ctd --output wget.xml --macros galaxy/macros.xml

These invocations produced the output files shown in the next two pages.

32

Results

Listing 3.3: Sample CWL output for the CTD presented in Listing 3.1.

1 #!/usr/bin/env cwl-runner
2 # This CWL file was automatically generated using CTDConverter.
3 # Visit https://github.com/WorkflowConversion/CTDConverter for more information.
4
5 baseCommand: wget
6 class: CommandLineTool
7 cwlVersion: v1.0
8 label: Wget - The non-interactive network downloader.
9 inputs:

10 - id: param_outputDocument_filename
11 doc: Filename for outputDocument output file
12 inputBinding:
13 prefix: --output-document
14 label: Filename for outputDocument output file
15 type: string
16 - id: param_noCertificate
17 default: ’False’
18 doc: Skip checking of certificate
19 inputBinding:
20 prefix: --no-check-certificate
21 label: Skip checking of certificate
22 type: [’null’, boolean]
23 - id: param_noVerbose
24 default: ’True’
25 doc: Print important information
26 inputBinding:
27 prefix: --no-verbose
28 label: Print important information
29 type: [’null’, boolean]
30 - id: param_url
31 doc: URL to download
32 inputBinding:
33 position: 0
34 label: URL to download
35 type: string
36 outputs:
37 - id: param_outputDocument
38 doc: Location of the output file
39 label: Location of the output file
40 outputBinding:
41 glob: $(inputs.param_outputDocument_filename)
42 type: File

33

3. Conversion of Workflow Nodes

Listing 3.4: Sample ToolConfig output for the CTD presented in Listing 3.1. Contents of the

referenced macros file are shown in Listing B.13.

1 <?xml version=’1.0’ encoding=’UTF-8’?>
2 <!--This is a configuration file for the integration of a tools into Galaxy
3 (https://galaxyproject.org/).
4 This file was automatically generated using CTDConverter.-->
5 <!--Proposed Tool Section: [Data]-->
6 <tool id="wget" name="wget" version="1.17.1">
7 <description>Wget - The non-interactive network downloader.</description>
8 <macros>
9 <token name="@EXECUTABLE@">wget</token>

10 <import>macros.xml</import>
11 </macros>
12 <expand macro="stdio"/>
13 <expand macro="requirements"/>
14 <command>wget
15 #if $param_outputDocument:
16 --output-document $param_outputDocument
17 #end if
18 #if $param_noCertificate:
19 --no-check-certificate
20 #end if
21 #if $param_noVerbose:
22 --no-verbose
23 #end if
24 #if $param_url:
25 "$param_url"
26 #end if
27 </command>
28 <inputs>
29 <param name="param_noCertificate" type="boolean" help="(-noCertificate) "
30 label="Skip checking of certificate" />
31 <param name="param_noVerbose" type="boolean" checked="true" help="(-noVerbose) "
32 label="Print important information" />
33 <param name="param_url" type="text" size="30" help="(-url) "
34 label="URL to download" />
35 <sanitizer>
36 <valid initial="string.printable">
37 <remove value="’"/>
38 <remove value="""/>
39 </valid>
40 </sanitizer>
41 </param>
42 </inputs>
43 <expand macro="advanced_options"/>
44 <outputs>
45 <data name="param_outputDocument" format="data"/>
46 </outputs>
47 <help></help>
48 </tool>

3.4 Discussion

There are other well–established formats that achieve the same result such as CWL task def-

initions and Galaxy ToolConfigs. In the end, both CWL files and ToolConfigs are structured

documents that, generally speaking, could be converted to CTD files or to other formats. Of

course, implementations would be required to properly handle sections that are CWL–specific

or Galaxy–specific.

34

Discussion

Since CTDs were designed to be a concise, platform–independent representation of tasks, it

makes sense to use CTDs as a source format to export descriptors into other workflow–specific

formats: one of our goals is to achieve integration of single tasks in workflow engines. The

most sensible solution to achieve this would be to push for platform–independent formats,

such as the one provided by CTD, and convert them across workflow engines.

Development of CTD converters is, in essence, not a complex task, but it certainly widens

the range of workflow engines on which the described tools can be executed. Furthermore,

seamless integration of tools in workflow engines is clearly a feature that surely will be appre-

ciated by users lacking technical skills.

Software libraries that are usable across several workflow engines have value in the scien-

tific community. The bio.tools application registry currently includes more than 12,300 tools

and offers a custom descriptor that, similar to CTD, is not natively supported by workflow

engines69. The Tool Description Generator (ToolDog) simplifies the inclusion of tools from

the bio.tools registry into workflow engines and also features generation of CWL files and

ToolConfigs70.

CTDConverter, similar to ToolDog, is able to greatly simplify the inclusion of software

libraries into workflow engines. Furthermore, the modular design of CTDConverter minimizes

the effort needed to include new output formats.

35

Chapter 4

Conversion of Complete Workflows

Parts of this chapter were published in:

Schubert, B., de la Garza, L., Mohr, C., Walzer, M., Kohlbacher, O., May 2017.

ImmunoNodes: Graphical Development of Complex Immunoinformatics Workflows.

BMC Bioinformatics, 18(1):242.

de la Garza, L., Aicheler, F., Kohlbacher, O., March 2017.

From the Desktop to the Grid and Cloud: Conversion of KNIME Workflows to WS–PGRADE.

In 8th International Workshop of Science Gateways, PeerJ Preprints, 5:e2849v1.

de la Garza, L., Veit, J., Szolek, A., Röttig, M., Aiche, S., Gesing, S., et al., March 2016.

From the Desktop to the Grid: Scalable Bioinformatics via Workflow Conversion.

BMC Bioinformatics, 17(1):127.

de la Garza, L., Krüger, J., Schärfe, C., Röttig, M., Aiche, S., et al., June 2013.

From the Desktop to the Grid: Conversion of KNIME Workflows to gUSE.

In 5th International Workshop on Science Gateways, CEUR Workshop Proceedings, 993:9.

4.1 Introduction

Improving existing workflow engines by adding features already present in other systems leads

to effort duplication and to the allocation of resources that could otherwise be utilized in more

advantageous efforts. This rationale is not an attempt to encourage stagnation in workflow

management systems, rather, it calls for focusing efforts on interoperability between them71.

It is possible to combine different workflow management systems via workflow conversion

techniques, dealing directly with the differences across engines, in particular with the disparities

of how the orchestration of task execution is ultimately implemented. In Section 2.2 we argued

37

4. Conversion of Complete Workflows

that, although limited in computing power, the KNIME Analytics Platform's most salient features

are its intuitive workflow editor and its extensibility, while gUSE and WS–PGRADE constitute an

adaptable back end engine offering interfaces to multiple DCIs, but its workflow editor imposes

a steep learning curve on inexperienced users. Combining these two engines comes with an

intrinsic substantial challenge: gUSE remotely invokes command line tools via wrapper scripts

and uses data staging routines to pass files between tasks, while, in sharp contrast, KNIME

Nodes are Java objects residing within the KNIME Analytics Platform that utilize in–memory

data structures to transfer information to other nodes.

A proper conversion procedure must deal not only with the correct translation of workflow

patterns (e.g., loops, conditionals, and parameter sweep sections) but also with the conversion

of edges, which model how outputs of nodes are channeled as inputs to subsequent tasks.

Furthermore, because workflows are composed of nodes, these must also be converted in a

similar fashion as previously detailed in Chapter 3.

Efforts spent on combining workflow engines to raise their level of interoperability will

directly benefit the scientific community: an automatic workflow conversion mechanism able to

leverage prominent features of different engines with the purpose of curtailing their individual

shortcomings can greatly improve usability and reduce computing times.

4.2 Methods

4.2.1 Definition of Workflows and Their Conversion

As discussed in Section 2.1.3, workflows are depicted as unweighted DAGs. Formally:

A workflow W is a pair, W = (V, E), where:

V = {v1, v2, ..., vi} is a non–empty, finite set of vertices (or nodes),

E ⊆ {(v j , vk) | v j , vk ∈ V ∧ j 6= k}
is a binary relation on V specifying directed

edges between vertices

(v, v) /∈ E+∀v ∈ V and the transitive closure of E is irreflexive

Definition 4.1: Formal definition of a workflow as an unweighted DAG. Adapted with permission
from72. Copyright 2013, Springer–Verlag Berlin Heidelberg.

Furthermore, each vertex is assigned a set of properties identified by name (e.g., id, name).

More formally, we model each vertex v as a function v: k → v, as previously introduced

in Section 3.2.1.

38

Methods

Algorithm 2 Conversion of complete workflows. The source workflow w fs will be exported to
the target file o ft

using an output format ft . The first step is to convert nodes, extracting all
relevant properties from each of the input nodes, after which edges can be added to construct
an intermediate workflow representation, w. This can then be exported to a file, a process
that depends on how the target platform represents nodes, edges and workflows, but is still
captured here as an explicit serialization of nodes and edges.

1: procedure CO N V E R T WO R K F L O W(w fs , o ft
) . input workflow, output file

2: w← Empt yWork f low() . empty intermediate representation

3: for all n fs in w fs .Nodes do . convert nodes from the input workflow

4: n← F indOrConver t(n fs , w)

5: for all e fs in w fs .GetOutputsFor(n fs) do

6: t ← F indOrConver t(e fs .Tar get, w)

7: w.AddEd ge(n, t) . add directed edge from n towards t

8: end for

9: end for

10: Ex por tWork f low(w, o ft
) . use a format–specific exporter

11: end procedure

12: function F I N DOR CO N V E R T(n fs , w)

13: id ← n fs[”id”] . retrieve unique identifier

14: n← w[id] . find node n identified by id

15: if n is NULL then

16: n← Empt yDict ionar y()

17: for all relevant (k, v) in n fs do

18: n[k]← F rom fs(v) . translate property from input format

19: end for

20: w[id]← n . store and identify n by its unique identifier

21: end if

22: return n

23: end function

24: function EX P O R T WO R K F L O W(w, o ft
)

25: for all n in w.Nodes do

26: W rite ft
(n, o ft

) . write node using output format

27: end for

28: for all e in w.Ed ges do

29: W rite ft
(e, o ft

) . write edge using output format

30: end for

31: end function

39

4. Conversion of Complete Workflows

Our proposed method to convert complete workflows (summarized in Algorithm 2) extends

a source workflow management system by modifying its runtime behavior with the purpose

of generating a valid representation of the same workflow. This output can later be imported

into a target engine (a feature available in the workflow engines we have studied), as previ-

ously summarized in Figure 1.1. Workflows and nodes in the source and target engines are

represented using platform–specific formats, i.e., fs and ft , respectively.

All nodes and edges are first converted to constitute a platform–independent, intermediate

workflow representation, i.e., w. Here, conversion of single nodes, although conceptually

identical to Algorithm 1, is operationally different: runtime access to the input workflow and its

constituting nodes is readily available. This intermediate representation contains the abstract

layer from the source workflow as well as pertinent information to build concrete layers. During

the last stage, a concrete layer for the target engine is built during the Ex por tWork f low

routine, a process ultimately determined by the target engine and its workflow representation

format, ft .

Using an intermediate representation has a direct advantage: support for additional output

formats can be included by implementing converters whose input is independent of the source

platform. This not only facilitates development and automated testing but it also shields

developers from changes in the source engine.

4.2.2 Workflow Interoperability

Converting complete workflows across workflow management systems will add certain degree

of interoperability between them. Thus, grasping the nature and limitations of workflow

interoperability is critical to the success of any conversion approach. The varying degrees of

workflow interoperability, as summarized in Figure 4.1, can be categorized in the following

levels71:

• Workflow–task level interoperability: certain workflow engines might feature tasks specif-

ically designed for that engine (e.g., KNIME Nodes). This level of interoperability covers

engines being capable of coordinating workflow tasks that were explicitly created for

other workflow management systems.

• Sub–workflow–task level: at this level of interoperability, workflow engines are able to

share sub–workflows between them. This can be achieved by either including sub–work-

flows as black boxes or by replicating certain functionalities of systems. This is often

referred to as coarse–grained interoperability14.

• Complete workflow–task level: often referred to as fine–grained interoperability14, this

level includes scenarios where workflows designed for one system can be executed on

another engine in an indistinguishable way.

40

Methods

Achieving higher levels of interoperability requires greater efforts and poses new challenges,

but this provides a more precise control over the execution of workflows, easing optimization

of the involved computations (e.g., by executing several independent tasks in parallel). How-

ever, limits on the performance due to higher overhead costs can arise due to an extremely

fine granularity. Too coarse–grained tasks can reduce performance due to a reduction in con-

currency as the execution can no longer be split into smaller sections that could be executed

independently71. Proper conversion of complete workflows must therefore deal with these

questions.

Workflow Engine e1

A B

Workflow Engine e2

C D

(a) Workflow–task level interoperability. Through
feature implementation, engine e1 is able to execute
tasks designed for other systems (i.e., task B).

Workflow Engine e1

A B

Workflow Engine e2

C D

(b) Sub–workflow level interoperability. Engine e1 ex-
ecutes sub–workflows from other engines. Execution
of task B is actually realized in the engine e2.

Workflow Engine e1

A B

Workflow Engine e2

A B

(c) Complete workflow–task level interoperability. Engine e1 is able to execute complete workflows
designed for other systems.

Figure 4.1: Workflow interoperability levels. Figures adapted with permission from71. Copyright
2009 Elsevier B.V.

4.2.3 Main Challenges

Discerning relevant discrepancies in the execution of workflow nodes, as performed by the

involved engines, is the foremost action when combining systems to provide fine–grained

interoperability. Converting KNIME workflows for their execution on other engines accessing

DCIs will likely result in command line invocations: a proper implementation of a conversion

method must devise the means to execute single KNIME Nodes from a workflow using a

41

4. Conversion of Complete Workflows

command line invocation. Furthermore, considering that our proposed method directly extends

the functionality of running workflow management systems, any implementation must carefully

study how features can be added to any involved engine. In addition to converting workflow

nodes and properly recreating edges, translation of patterns such as parameter sweep must

also be properly handled in an automatic workflow conversion procedure.

Execution of Workflow Nodes in the KNIME Analytics Platform

KNIME Nodes are composed of extensions of four abstract Java classes: NodeModel, NodeDialog-

Pane, NodeView and NodeFactory40. These encapsulate the basic functionality, configuration,

graphical representation, and instantiation of KNIME Nodes, respectively.

<<create>>

<<create>>

<<create>>

<<use>>

<<use>>

<<use>>
*

1

NodeFactory

+ createNodeModel() : NodeModel
+ createNodeView() : NodeView
+ createNodeDialogPane() : NodeDialogPane

NewNodeFactory

PortType

NodeModel

- inPortTypes[] : PortType
- outPortTypes[] : PortType

+ execute(in: PortObject[]) : PortObject[]

NewNodeModel

NewNodeDialogPane

NodeDialogPane

NodeView

NewNodeView

<<interface>>
PortObject

+ getSummary() : String
+ getSpec() : PortObjectSpec
+ savePortObject(o: PortObject)
+ loadPortObject(s: InputStream) : PortObject

<<use>>

Figure 4.2: Reduced class diagram of a KNIME Node. Classes extending NodeModel implement
computations on input data, as well as generation of output data. The class NodeDialogPane
provides a basic framework to allow node configuration through a GUI, while NodeView handles
data visualization. NodeFactory is responsible for the instantiation of needed components. Figure
adapted with permission from40. Copyright 2009 ACM.

Nodes that follow the KNIME development guidelines seamlessly interact with other KNIME

Nodes. This makes KNIME Community Contributions a vibrant community: once a node is

part of the main repository, it can easily be imported into a workflow and interact with other

42

Methods

nodes. However, KNIME Nodes suffer from certain lack of portability: nodes are instances of

Java classes spawned by the process under which the KNIME Analytics Platform is executed.

Data consumed and produced by nodes via their ports in the KNIME Analytics Platform are

organized in rows and columns, and are contained in Data Tables. Each row is automatically

assigned a unique identifier and has an inherent index. Nodes access data in Data Tables by

iterating over each individual row. This allows to process large amounts of data without having

to store the complete contents of Data Tables in memory at once40. Figure 4.3 depicts a typical

data flow between KNIME Nodes.

Voters

Allowed to vote?

Non-voters

CSV Reader

CSV Writer

Row Splitter

CSV Writer

Voters

Allowed to vote?

Non-voters

CSV Reader

CSV Writer

Row Splitter

CSV Writer

(a) Simple KNIME workflow. Data are imported using the CSV Reader node and serialized using
CSV Writer nodes. The Row Splitter node is designed to separate data into two configurable
categories. Rows are split based on whether the age column contains a number equal or greater
than 18.

(b) Data flow from the simple workflow shown above. Here we see how KNIME Nodes exclusively
interact with Data Table objects, even if, from the end user's perspective, they seem to interact
with files. Adapted with permission from 40. Copyright 2009 ACM.

Figure 4.3: Relationship between KNIME Nodes and Data Tables.

Interaction with Command Line Tools The Generic KNIME Nodes (GKN) extension, part

of the KNIME Community Contributions, offers an easy way to create KNIME Nodes that

interact with external command line tools73,74. GKN is comprised of two components: a

standalone Node Generator and a plug–in for the KNIME Analytics Platform. Nodes generated

and managed by GKN can interact with other KNIME Nodes and are virtually indistinguishable

from other nodes. The Node Generator (offered as an Apache Ant script) automates node

43

4. Conversion of Complete Workflows

creation, while the plug–in resides within the KNIME Analytics Platform and manages all

execution, visualization and configuration aspects of the generated nodes. GKN supports both

CTD–enabled and non–CTD–enabled tools: CTD files are used only as a vehicle to describe

command line tools that will ultimately be invoked from the KNIME Analytics Platform.

GKN users must provide a descriptor declaring media types allowed for inputs and outputs,

along with a CTD file for each command line tool that will be integrated. A simple text editor

and no programming experience are required to generate these files.

Figure 4.4: Interaction between GKN's components—shown in purple—and the KNIME Analytics
Platform. The KNIME Core components are able to interact with the generated nodes via the GKN
plug–in. Generation of a KNIME Node requires a CTD describing an external command line tool
(e.g., Sample.ctd and Sample.exe, respectively). Media types are provided in the mimetypes.xml file.
The Node Generator creates and compiles Java code on the fly.

Although nodes managed by GKN are virtually indistinguishable from native KNIME Nodes

for end users, these clearly operate in such a different manner that an automatic conversion

mechanism must acknowledge these disparities and foresee adequate procedures for their

conversion, as illustrated by Figure 4.4.

Executing the KNIME Analytics Platform as a Command Line Tool Since our aim is to

provide fine–grained interoperability, conversion of the individual tasks that comprise a KNIME

workflow must be implemented. As we have seen, execution of KNIME Nodes departs from

the common command line approach through which tasks are invoked on HPC resources.

Nevertheless, it is possible to execute whole workflows in the KNIME Analytics Platform without

a GUI by invoking the KNIME Analytics Platform in headless mode (often referred to as batch

mode)75. This allows users to provide the name and location of a workflow to execute along

any needed parameter values. This functionality provides immediate coarse–grained workflow

44

Methods

interoperability (i.e., workflows are treated as a whole), so this solution alone is not enough

to reach our aim of providing fine–grained workflow interoperability, but it provides a solid

foundation to execute individual KNIME Nodes from a workflow.

Installing the KNIME Analytics Platform as an application on HPC resources is a procedure

no different than to install it on a desktop computer. However, depending on the security

settings of the HPC resource in question, this step must be performed by a system administrator

as a one–time only action. One important aspect to keep in mind is that all involved KNIME

Analytics Platform instances in a workflow conversion process must contain the same nodes,

otherwise, difficult to trace runtime errors might arise during the execution of converted

workflows. Furthermore, certain KNIME Nodes require external dependencies, e.g., the R

Snippet KNIME Node depends on an R server (Rserve)76.

Execution of Workflow Nodes in gUSE

As introduced in in Section 2.2.2, the DCI Bridge manages all task–related requests and is fully

compatible with JSDL, enabling other workflow engines to interact with it44,77. Interaction

between DCIs and the DCI Bridge happens through DCI Submitters. DCI Submitters are ulti-

mately responsible for the execution of tasks in gUSE. They are a collection of Java classes

that directly interact with computing resources in order to submit, monitor and cancel jobs (as

depicted in Figure 4.5). This communication can be realized via, e.g., encrypted Secure Shell

(SSH) or a vendor–provided API78.

A DCI Submitter is accompanied by the necessary web pages to extend WS–PGRADE in

order to offer a graphical interface to configure tasks that will be executed by said DCI Submitter,

as previously shown in Figure 2.10. Development of DCI Submitters and their companion web

pages requires a medium to advanced level of Java and Java Server Pages (JSP) knowledge.

These JSPs are where WS–PGRADE users provide custom scripts that will ultimately submit

jobs on DCIs78. A proper conversion mechanism must automatically generate similar scripts

able to invoke remote command line tools for the respective workflow nodes.

45

4. Conversion of Complete Workflows

Figure 4.5: Schematic representation DCI Bridge's interaction with gUSE and other workflow
management systems. Adapted with permission from78. Copyright 2015 MTA SZTAKI LPDS,
Budapest.

Conversion of Workflow Patterns

The ZipLoopStart and ZipLoopEnd KNIME Nodes perform a parametric sweep execution of the

enclosed nodes. A list of uniform resource identifiers (URI), each pointing to an input file,

is provided by ZipLoopStart. Given an input of n URIs, the encircled sub–workflow will be

executed n times (each iteration receives a different URI). ZipLoopEnd will collect all files pro-

duced during the iterations, delivering a list containing the URIs of these files to any subsequent

KNIME Nodes74.

In contrast to the KNIME Analytics Platform, gUSE expects input and output files to be

named after their corresponding ports. Since the number of ports a node contains is determined

during the design phase1, lists of files are not natively supported by gUSE. Furthermore, para-

metric sweep sections are not enclosed by specialized nodes, rather, by generator and collector

ports50. Any port can be configured to function as such in the concrete node configuration

page in WS–PGRADE shown in Figure 2.10. For instance, in the case of a port named out.txt,

the process associated with its parent node must generate files named out.txt_0, out.txt_1, . . . ,

out.txt_n: gUSE will concurrently execute the enclosed section n+ 1 times (using a different

file for each iteration). Collector ports represent the inverse operation performed by generator

ports. Workflow developers are thus responsible for the generation of these files and their

proper naming50. These differences are summarized in Figure 4.6.

1This is a typical behavior of the workflow engines we have studied and not a limitation of gUSE.

46

Methods

(a) The section enclosed between the ZipLoopStart and ZipLoopEnd nodes will be invoked once for every
input file. ZipLoopEnd will collect all results of the enclosed section and pass them to IDMerger as a list
of URIs.

(b) InputFiles' output port has been configured as a generator port while IDMerger's input port has been
declared as a collector port. The sub–workflow between these ports will be executed once for every file
associated with the generator port. Resulting files will be collected by IDMerger.

Figure 4.6: Implementation of the parameter sweep pattern in the KNIME Analytics Platform (top)
and WS–PGRADE.

Extending the KNIME Analytics Platform

The KNIME Analytics Platform's look and feel might remind users of Eclipse, the integrated

development environment (IDE), since both were built with the Eclipse Modeling Framework

(EMF). This positions the KNIME Analytics Platform as an extensible, adaptable platform to

which complex features such as plug–ins can be added40,79.

Extensions for the KNIME Analytics Platform have access to the WorkflowManager class

(part of the KNIME Core components), through which developers can query the current state

of workflows and their comprising nodes. This class also contains methods to manipulate all

aspects of a workflow, e.g., add and remove nodes, start and cancel the execution, and edit

edges.

Extending WS–PGRADE

Users who desire to execute workflow tasks on any of the supported batch queueing systems

in gUSE (e.g., Sun Grid Engine, Portable Batch System and Moab) are required to provide

file paths of remote binaries to execute, along with their corresponding command lines, as

previously shown in Figure 2.10. Since conversion of complete workflows will invariably result

in generation of concrete layers (see Figure 1.1), an instrument to associate applications with

DCIs to perform a mapping between tasks comprising the concrete layers must also be devised.

47

4. Conversion of Complete Workflows

Importing Workflows in WS–PGRADE WS–PGRADE offers a workflow import mechanism

through its standard GUI, where users upload compressed archives. These contain a directory

structure in which input files and executable scripts are placed along an XML file (named

workflow.xml) where both the abstract and concrete layers are defined, as depicted in Figure 4.7.

Entries in these archives refer to elements in the workflow.xml file. A sample workflow.xml file

is provided in Listing B.14.

<sample_worfklow.zip>

workflow.xml

nodes/

MoleculeCheck/

execute.bin

0/

0

3DGenerator/

execute.bin

0/

0

1/

0

Figure 4.7: Contents of a compressed file containing a WS–PGRADE workflow similar to the one
introduced in Section 2.1.3 (the 3DGenerator job is depicted here with two input ports for illus-
tration purposes). An XML file describing both the abstract and the concrete layers, workflow.xml,
is required. Each node receives its own folder, under which an executable script with the fixed
name execute.bin is provided. Ports are identified by their 0–based index, their inputs—regardless
of content or type—must be named 0.

Resource Management in gUSE Managing access to DCIs, a task typically carried out by

administrators, is performed using the DCI Bridge component. Workflow tasks can only interact

with already existent, active DCIs. Programmatic access to this data is achieved via a gUSE

component that acts as a proxy to the DCI Bridge, Information System, briefly introduced

in Section 2.2.2. Additionally, because UNICORE's remote API offers read–only access to its

application registry, WS–PGRADE is able to display a read–only view of these applications in

the node configuration pages introduced in Section 2.2.2, so a proper implementation must be

able to differentiate between these two types of remote computing resources.

Portlet Development WS–PGRADE is offered as a full–fledged Liferay portal: complex, re-

sponsive GUI elements such as Vaadin widgets are available for portlet developers. Given that

it is distributed as a set of web applications along Apache Tomcat (a web server that is able

to act as a Servlet Container80), any portlet has access to core initialization routines through

Tomcat's ApplicationContext class80.

48

Methods

Development and deployment of portlets for WS–PGRADE requires more than 40 external

libraries contained in 10 different repositories. Apache Maven, via the shipped Project Object

Model (POM) documents, perfectly handles each of the dependencies and their required ver-

sions when assembling, or packaging, the binaries that will ultimately be installed on a running

WS–PGRADE instance, i.e., web application resource (WAR) files81.

Manual installation of portlets on a running Liferay portal entails navigation through the

portal's Control Panel, where a WAR file can be uploaded. Liferay will then deploy all included

portlets, making them available for their use. After deploying a portlet that depends on any

of the gUSE services, the Liferay portal on which the WS–PGRADE instance is hosted (i.e., the

Apache Tomcat web server) must be restarted. This is due to the fact that the Information

System component, upon start–up, initializes registered components by invoking web services

and injecting credentials, that is, Information System acts as the subject to all registered observer

components, as described by the observer design pattern82. Any component deployed after

the Information System's loading routine has concluded will not be properly initialized and

therefore will not be able to interact with other gUSE services.

WS–PGRADE/gUSE offers the Application Specific Module (ASM) Java library to simplify

development of application–specific interfaces able to control all aspects of workflows. De-

velopers can enrich their Liferay portlets with ASM to develop GUIs for their domain–specific

solutions83.

Figure 4.8: gUSE's development stack. ASM encapsulates the most common tasks in its API, but
gUSE and DCI Bridge can still be accessed directly. DCI Submitters communicate with their corre-
sponding DCI systems, each using a different communication protocol. Adapted with permission
from83. Copyright 2013 Balaskó et al.83.

ASM provides an extra layer of abstraction to access gUSE: domain–specific portlet de-

velopers can thus focus on tasks relevant to their application field. Scientific portals such

as MoSGrid84, the VisIVO Science Gateway85, and HELIOGate86 are just a few examples of

49

4. Conversion of Complete Workflows

development of such applications that benefit from ASM. ASM is, however, not required to

access neither gUSE's services nor DCI Bridge's components, as summarized in Figure 4.8.

4.3 Results

4.3.1 The KNIME2Grid Extension for the KNIME Analytics Platform

We developed a plug–in extension for the KNIME Analytics Platform that, working together

with GKN and the Application Manager Portlet (discussed in detail in Section 4.3.2), provides

fine–grained interoperability between WS–PGRADE/gUSE and the KNIME Analytics Platform.

Users create and test their workflows in the KNIME Analytics Platform as any other KNIME

workflow. Fully integrated into the KNIME Analytics Platform's GUI, our KNIME plug–in,

KNIME2Grid, features a workflow export wizard that assists users to convert and configure

workflows so they can be later imported into a WS–PGRADE portal (see Figures 4.9 and 4.10).

We have thus successfully combined prominent features of two workflow engines to provide

a solution to design, create and test workflows using a user–friendly interface (KNIME Analytics

Platform), while at the same time providing execution on HPC resources through the use of an

extensible back–end (WS–PGRADE/gUSE).

Figure 4.9: Concrete configuration using our proposed workflow exporter included in KNIME2-
Grid.

50

Results

Figure 4.10: Exporting a converted workflow using KNIME2Grid.

Overall Design

The interaction between the main components of KNIME2Grid during a typical workflow con-

version are depicted in Figure 4.11. Furthermore, we relied on the dependency injection soft-

ware development technique, as defined by Fowler87, in order to provide a flexible, robust and

extensible implementation. Figure 4.12 depicts the most relevant components of KNIME2Grid.

Having resilience and extensibility in mind, our method calls for an internal workflow

representation, and we created a suitable implementation, as depicted in Figure 4.13. Our

proposed internal workflow model closely mimics the abstract layer and contains information

required to construct concrete layers: the model assumes that each Job can be executed as a

command line tool that receives parameters and input files, and produces output files. In the

end, our purpose is to export workflows to platforms that interact with command line tools, so

we deem this decision as a practical compromise. Nevertheless, no further assumptions about

target workflow engines are made. We created this model to add an extra layer of abstraction

and to isolate components from changes in the KNIME Analytics Platform.

51

4. Conversion of Complete Workflows

:W
orkflow

ExportedProvider

w
:W

orkflow

:W
orkflow

ExporterA
ctivator

:C
onvertW

orkflow
H

andler

InternalM
odelC

onverter

start()

initInstance()

new

getC
onverters() / getExporters()

K
N

IM
E A

P U
ser

singleton

convert()

initialized during
start-up

w

new

instantiated via G
U

I elem
ents in the KN

IM
E AP, e.g., m

enu File > W
orkflow

 C
onversion > Export W

orkflow...

:W
orkflow

ExportW
izard

new

display(w
)

interact

exported w
orkflow

 (e.g., /hom
e/user/export.zip)

G
U

I w
izard pages

interm
ediate form

at

Figu
re

4.11:
Sequence

diagram
of

a
conversion

perform
ed

using
the

w
orkflow

export
w

izard
show

n
in

Figures
4.9

and
4.10.

52

Results

or
g.

ec
lip

se
.u

i.p
lu

gi
n.

A
bs

tr
ac

tU
IP

lu
gi

n

<<
 in

te
rf

ac
e

>>
W

or
kfl

ow
Ex

po
rt

er

+
ex

po
rt(

w
: W

or
kfl

ow
, d

es
t:

Fi
le

)

G
us
eW

or
kfl
ow

Ex
po

rt
er

<<
 in

te
rf

ac
e

>>
N

od
eC

on
ta

in
er

C
on

ve
rt

er

+
ca

nH
an

dl
en

: K
N

IM
EN

od
e)

: b
oo

le
an

+
co

nv
er

t(n
: K

N
IM

EN
od

e)
: J

ob

<<
 in

te
rf

ac
e

>>
So

ur
ce

C
on

ve
rt

er

+
ca

nH
an

dl
e(

n:
 K

N
IM

EN
od

e)
: b

oo
le

an
+

co
nv

er
t(p

: K
N

IM
EN

od
e)

 :
IF

ile
Pa

ra
m

et
er

or
g.

ec
lip

se
.c

or
e.

co
m

m
an

ds
.A

bs
tr

ac
tH

an
dl

er

+
ex

ec
ut

e(
e:

 E
xe

cu
tio

nE
ve

nt
)

or
g.

ec
lip

se
.u

i.i
nt

er
na

l.d
ia

lo
gs

.E
xp

or
tW

iz
ar

d

or
g.

ec
lip

se
.jf

ac
e.

w
iz

ar
d.

IW
iz

ar
dP

ag
e

+
is

Pa
ge

C
om

pl
et

e(
):

bo
ol

ea
n

+
cr

ea
te

C
on

tro
l(p

ar
en

t:
C

om
po

si
te

)

C
on

ve
rt
W
or
kfl
ow

H
an
dl
er

or
g.
kn
im
e.
co
re
.n
od

e.
w
or
kfl
ow

.W
or
kfl
ow

M
an
ag
er

W
or
kfl
ow

<<
si
ng

le
to
n>

>
W
or
kfl
ow

Ex
po

rt
er
Pr
ov
id
er

- e
xp

or
te

rs
: W

or
kfl

ow
Ex

po
rte

r[]
- n

od
eC

on
ve

rte
rs

: N
od

eC
on

ve
rte

r[]
- s

ou
rc

eC
on

ve
rte

rs
: S

ou
rc

eC
on

ve
rte

r[]

+
ge

tE
xp

or
te

rs
()

: W
or

kfl
ow

Ex
po

rte
r[]

+
ge

tN
od

eC
on

ve
rte

rs
():

 N
od

eC
on

ve
rte

r[]
+

ge
tS

ou
rc

eC
on

ve
rte

rs
():

 S
ou

rc
eC

on
ve

rte
r[]

+
in

itI
ns

ta
nc

e(
e:

 W
or

kfl
ow

Ex
po

rte
r[]

,

 n
: N

od
eC

on
ve

rte
r[]

,

 s
: S

ou
rc

eC
on

ve
te

r[]
)

W
or
kfl
ow

Ex
po

rt
er
A
ct
iv
at
or

C
om

po
ne

nt
s

gr
ou

pe
d

fo
r c

la
rit

y

C
SV

R
ea
de
rC
on

ve
rt
er

M
im
eF
ile
Im
po

rt
er
C
on

ve
rt
er

Ta
bl
eR

ea
de
rC
on

ve
rt
er

Po
rt
O
bj
ec
tR
ea
de
rC
on

ve
rt
er

Li
st
M
im
eF
ile
Im
po

rt
er
C
on

ve
rt
er

C
om

po
ne

nt
s

gr
ou

pe
d

fo
r c

la
rit

y

Lo
op

N
od

eC
on

ve
rt
er

G
en
er
ic
K
ni
m
eN

od
eC

on
ve
rt
er

D
ef
au
ltK

ni
m
eN

od
eC

on
ve
rt
er

C
om

po
ne

nt
s

gr
ou

pe
d

fo
r c

la
rit

y

<<
cr
ea
te
>>

<<
cr
ea
te
>>

In
te
rn
al
M
od

el
C
on

ve
rt
er

+
co

nv
er

t(n
: N

od
eC

on
ve

rte
r[]

,

 s
: S

ou
rc

eC
on

ve
rte

r[]
,

 m

: W
or

kfl
ow

M
an

ag
er

):
W

or
kfl

ow

or
g.
ec
lip
se
.jf
ac
e.
w
iz
ar
d.
W
iz
ar
dD

ia
lo
g

+
op

en
(w

: I
W

iz
ar

d)

<<
in

te
rf

ac
e>

>
or

g.
ec

lip
se

.jf
ac

e.
w

iz
ar

d.
IW

iz
ar

d

+
ad

dP
ag

es
()

+
ca

nF
in

is
h(

):
bo

ol
ea

n
+

pe
rfo

rm
Fi

ni
sh

()
+

ge
tN

ex
tP

ag
e(

):
IW

iz
ar

dP
ag

e
+

di
sp

os
e(

)

<<
us
e>
>

<<
cr
ea
te
>>

W
or
kfl
ow

Ex
po

rt
W
iz
ar
d

- e
xp

or
t(e

: W
or

kfl
ow

Ex
po

rte
r[]

,

 w

: W
or

kfl
ow

)

<<
us
e>
>

<<
cr
ea
te
>>

<<
cr
ea
te
>>

<<
us
e>
>

<<
cr
ea
te
>>

<<
us
e>
>

<<
us
e>
>

<<
us
e>
>

<<
us
e>
>

<<
us
e>
>

<<
cr
ea
te
>>

1 *

C
om

po
ne

nt
s

gr
ou

pe
d

fo
r c

la
rit

y

in
st

an
tia

te
d

by
 e

nd
 u

se
r

vi
a

G
U

I e
le

m
en

ts
cr

ea
te

d
by

 th
e

pl
at

fo
rm

 a
t s

ta
rt-

up

<<
cr
ea
te
>>

<<
in

te
rf

ac
e>

>
or

g.
os

gi
.fr

am
ew

or
k.

B
un

dl
eA

ct
iv

at
or

+
st

ar
t(c

: B
un

dl
eC

on
te

xt
)

+
st

op
(c

: B
un

dl
eC

on
te

xt
)

W
or
kfl
ow

Ex
po

rt
Pa

ge

A
pp

lic
at
io
nS

el
ec
tio

nP
ag
e

Fi
gu

re
4.

12
:

C
la

ss
di

ag
ra

m
of

th
e

K
N

IM
E2

G
ri

d
pl

ug
–i

n.

53

4. Conversion of Complete Workflows

Workflow

- name: String
- jobs : Job[]

Job

- name: String
- inputs: Input[]
- outputs: Output[]
- remoteApplication: Application
- remoteQueue: Queue
- commandLine: String[]

Port

- associatedFile: File
- connectionType: ConnectionType
- name: String
- portNr: int

Input

- sourceId: org.knime.NodeID
- sourcePortNr: int

Output

- targets: Destination[]

Destination

- job: Job
- portNr: int

<<enumeration>>
ConnectionType

+ NotAssigned
+ Channel
+ UserProvided
+ Collector
+ Generator

1*

1 *

1 *

*

1

*

1

Application

- name: String
- version: String
- path: String
- description: String
- owningResource: Resource

Resource

- name: String
- type: String
- queues: Queue[]
- applications: Application[]

Queue

-name: String

1

1

1*

<<references>>

1 *

1

1

Figure 4.13: Class diagram of our internal workflow model. Using this generic representation
of a workflow provides stability and flexibility to our proposed extension. Note: setter and getter
methods were omitted for brevity.

Categorization of KNIME Nodes Before embarking on complete workflow conversion, our

implementation makes a clear distinction of KNIME Nodes based on their operation. This is

an important aspect since a successful conversion must ultimately execute KNIME Nodes as

individual tasks within the context of a different workflow engine. KNIME2Grid categorizes

KNIME Nodes as follows:

• Loop nodes: sections enclosed by ZipLoopStart and ZipLoopEnd KNIME Nodes correspond

to parameter sweep operations, as such, implementation varies across platforms.

• KNIME Nodes imported via the GKN extension: these nodes represent an external com-

mand line tool that is independent of the KNIME Analytics Platform.

• Other KNIME Nodes: this category represents nodes that require a running KNIME

Analytics Platform to execute.

54

Results

Implementations of our NodeContainerConverter interface convert specific KNIME Nodes to

Job instances. Supplementary KNIME Node converters, if ever needed, can be added without

modifying any core components. Similarly, the SourceConverter interface defines the contract

to transform input data files into instances of IFileParameter, an interface that represents files

and lists of files, along with their allowed media types. These interfaces protect KNIME2Grid

against future changes in the KNIME Analytics Platform.

Implementation of Workflow Exporters Although KNIME2Grid currently only supports

WS–PGRADE/gUSE as a target platform via the GuseWorkflowExporter class, we created an

interface with the purpose of providing additional export formats. This interface, Workflow-

Exporter, defines a single method receiving an instance of our intermediate workflow model

and a destination file. There are no required KNIME dependencies: developers can build and

test converters outside the context of any KNIME component.

Initialization and Dependencies

KNIME2Grid is an extension offered as an EMF bundle. As such, activation and initialization

routines occur within the context of the EMF: the platform invokes the start method of all

registered bundles during start–up.

The class WorkflowExporterActivator, through its inheritance chain, is an implementation

of the BundleActivor interface offered by the EMF. Our activator acts as the entry point of

KNIME2Grid, injecting required dependencies into a singleton class, WorkflowExporterProvider,

acting as a bridge between the entry point and the rest of the components, shielding most

parts of our code from implementation details: whether this singleton was created within the

context of a platform or during testing is irrelevant to classes depending on it.

Generation of an Intermediate Workflow Representation

The InternalModelConverter class produces intermediate workflow representations (refer to Fig-

ure 4.13), directly interacting with KNIME's WorkflowManager, which is used to extract infor-

mation about the workflow being converted. WorkflowManager is, in fact, contained within a

WorkflowEditor, which is the abstraction of the graphical editor users interact with. Based on

the idea behind our internal workfow model, InternalModeConverter separates KNIME imple-

mentation details from the user interface comprising our workflow export wizard.

Configuring Concrete Layers Using the Workflow Export Wizard

Our WorkflowExportWizard class interacts with end users. Internally, it receives an instance of

our internal workflow model and a list of workflow exporters. It derives from the ExportWizard

55

4. Conversion of Complete Workflows

abstract class contained in the EMF. Wizards in the EMF are defined as a sequence of IWiz-

ardPages. Each of these pages models a screen in the EMF’s GUI, as shown in Figures 4.9

and 4.10.

Before being able to export a workflow to WS–PGRADE, users need to configure the con-

crete layer. Our workflow export wizard assists users to configure each of the nodes comprising

the exported workflow. The purpose of our proposed wizard is not to replace WS–PGRADE's

configuration pages (introduced in Section 2.2.2), rather, to leverage KNIME Analytics Plat-

form's user–friendly GUI to offer a better user experience.

Our wizard is fully integrated into the KNIME Analytics Platform's user interface via menu

and toolbar elements. Users are first prompted for an XML file containing a resource descriptor

file (see sample file in Listing 4.4). If no local copy is available, users can enter a URL to

obtain one via the Representational State Transfer (REST) API offered by the Application

Manager Portlet2, which we will introduce in Section 4.3.2. Next, users press the Refresh

resources button to fill out the Remote Application and Queue columns. The table associates

KNIME Nodes with applications available on the desired target gUSE installation. This action

automatically preselects remote applications based on the Levenshtein distance88 between

the names of KNIME Nodes and remote applications to accelerate the configuration process

(users can override this behavior to choose a more suitable remote application). Nodes that

represent an external command line tool will be individually displayed in the Local Application

column. However, since all native KNIME Nodes exist only within the context of a running

KNIME Analytics Platform, they will be represented as a single item in this column.

Pressing the Apply button saves changes and advances users to the next screen. Here, users

provide the location on which the exported workflow will be saved. Our extension is able to

generate archives that can be imported into any WS–PGRADE portal.

Execution of Converted Nodes in gUSE

We previously introduced how gUSE utilizes user–provided scripts to execute command line

tools on DCIs. GuseWorkflowExporter automatically generates these scripts during the export

process, performing in–place substitution of variables in template scripts using placeholders,

e.g., @@EXECUTABLE@@. Conversion of ports associated with a list of files is realized via the use

of compressed archives.

Loop Nodes Listings 4.1 and 4.2 present the template scripts to realize the conversion of

KNIME loop nodes in gUSE. GuseWorkflowExporter will additionally mark the corresponding

ports as generator/collector in the generated workflow.xml file containing the converted work-

flow.
2e.g., http://portal.org/ApplicationManagerPortlet/rest/apps

56

Results

Listing 4.1: Script template implementing ZipLoopStart in gUSE.

1 #!/usr/bin/env bash
2
3 # we know that the port name refers to an archive (e.g., foo.tar.gz)
4 INPUT_PORT_NAME="@@INPUT_PORT_NAME@@"
5 OUTPUT_BASE_NAME="@@OUTPUT_BASE_NAME@@"
6
7 # gUSE expects files from a generator to be named, e.g., bar_0, bar_1, ...
8 FILENAME_INDEX=0
9 for input_file in ‘tar tfz ${INPUT_PORT_NAME}‘; do

10 tar xvfOz ${INPUT_PORT_NAME} ${input_file} > \
11 ${OUTPUT_BASE_NAME}_${FILENAME_INDEX}
12 FILENAME_INDEX=$(expr ${FILENAME_INDEX} + 1)
13 done

Listing 4.2: Script template implementing ZipLoopEnd in gUSE.

1 #!/usr/bin/env bash
2
3 # gUSE will provide files named after this port name, e.g., foo_0, foo_1, ...
4 INPUT_BASE_NAME="@@INPUT_BASE_NAME@@"
5 OUTPUT_PORT_NAME="@@OUTPUT_PORT_NAME@@"
6
7 tar cvfz ${OUTPUT_PORT_NAME} ${INPUT_BASE_NAME}_*
8 rm ${INPUT_BASE_NAME}_*

Other Nodes and List of Files Other types of converted nodes in gUSE will be executed via

the wrapper template script shown in Listing 4.3.

57

4. Conversion of Complete Workflows

Listing 4.3: Wrapper script template capable to handle dynamic file lists on gUSE.

1 #!/usr/bin/env bash
2
3 # contains names of input ports that take filelists, separated by whitespace
4 INPUT_PORTS_WITH_FILELIST="@@INPUT_PORTS_WITH_FILELIST@@"
5
6 ##### start filename translation variables
7 @@INPUT_FILENAME_TRANSLATION@@
8 ##### end
9

10 # contains names of output ports that generate filelists, separated by whitespace
11 OUTPUT_PORTS_WITH_FILELIST="@@OUTPUT_PORTS_WITH_FILELIST@@"
12 EXECUTABLE="@@EXECUTABLE@@"
13 COMMAND_LINE_PARAMETERS="@@COMMAND_LINE_PARAMETERS@@"
14
15 ARCHIVE_INDEX=0
16 if [-n "$INPUT_PORTS_WITH_FILELIST"]; then
17 for input_port in ${INPUT_PORTS_WITH_FILELIST}; do
18 echo "expanding ${input_port}"
19 # extract files individually and rename them
20 FILE_INDEX=0
21 BASENAME_VARIABLE_NAME="KNIME2GRID_VAR_${FILE_INDEX}"
22 for input_file in ‘tar tfz ${input_port}‘; do
23 # use basename and index to rename the file as its written to stdout
24 tar xOfz ${input_port} ${input_file} > ${FILE_INDEX}_${!BASENAME_VARIABLE_NAME}
25 FILE_INDEX=$(expr ${FILE_INDEX} + 1)
26 done
27 ARCHIVE_INDEX=$(expr ${ARCHIVE_INDEX} + 1)
28 done
29 fi
30
31 ${EXECUTABLE} ${COMMAND_LINE_PARAMETERS}
32
33 # compress the multi-file outputs
34 if [-n "$OUTPUT_PORTS_WITH_FILELIST"]; then
35 for output_port in ${OUTPUT_PORTS_WITH_FILELIST}; do
36 echo "compressing outputs for ${output_port}"
37 tar cfz ${output_port} *_${output_port:0:(-7)}
38 done
39 fi

Conversion of KNIME Nodes

In order to split the execution of a KNIME workflow into individual tasks, we devised a pro-

cedure that benefits from KNIME's batch mode, introduced in Section 4.2.3. The first step is

to generate a command line invocation for each of the nodes comprising the workflow. The

generated command line invocations can later be used to execute the same task on a DCI. In

order to generate these per–node commands, KNIME2Grid first determines whether the node

in question requires a running instance of the KNIME Analytics Platform to execute.

Conversion of Nodes Generated With GKN Even though KNIME Nodes created by the GKN

extension interact with the KNIME Core components, they rely on an external binary: their

execution is possible without the KNIME Analytics Platform. In this case, generation of an

equivalent command line is somewhat trivial. However, conversion of a single node interacting

with CTD–enabled tools requires two extra steps: an automatic generation of a CTD file con-

taining the runtime parameters, and its inclusion as an input file to the converted node. This

58

Results

process is summarized in Figures 4.2 and 4.3. For a detailed example of how CTD–enabled

tools interact with CTD files, refer to Appendix B.0.2.

Conversion of Native KNIME Nodes In order to execute a single native KNIME Node using

the command line, its inputs and outputs must first be available as files, not as Data Tables.

Since KNIME's batch mode is able to execute only whole workflows, KNIME2Grid automatically

generates a KNIME workflow for each of the converted native KNIME Nodes. These generated

workflows contain a copy of the native KNIME Node in question, whose configuration settings

are replicated, along with utility KNIME Nodes to deserialize any incoming inputs and to serial-

ize any produced outputs. The major trade–off of this approach is that there is some inherent

overhead in the serialization and deserialization process. Figure 4.4 depicts this conversion

mechanism.

→ $ PDBCutter -par params.ctd

Figure 4.2: Generation of a command line to execute a CTD–enabled tool. Conversion requires
the automatic creation of params.ctd, which must be included as an input file. Figure adapted with
permission from13.

→ $ wget -O db.sdf http://samp.le/db.sdf

Figure 4.3: Generation of the command line needed to execute an non–CTD–enabled tool. In this
case, the full command line must be generated. Generation of the required command line relies on
a CTD representing the tool. Since the tool wget was imported into the KNIME Analytics Platform
via GKN, it can be assumed that a CTD exists. Figure adapted with permission from13.

59

4. Conversion of Complete Workflows

→

$ knime -nosplash

-workflowFile=generated.zip

-workflow.variable=

input0,input0.bin,String

-workflow.variable=

output0,output0.bin,String

-workflow.variable=

output1,output1.bin,String

Figure 4.4: Conversion of native KNIME Nodes. The KNIME Analytics Platform can be started in
batch mode by providing the -nosplash flag. KNIME2Grid generates a small workflow (top–right)
able to read its inputs (i.e., input0.bin) into Data Tables using a Table Reader node. Once all inputs
have been loaded, a copy of the KNIME Node (whose settings have been duplicated from the source
node) will be executed. Outputs will be serialized into files (i.e., output0.bin and output1.bin)
using Table Writer nodes. A sample command line execution of the generated workflow is shown
on the bottom–right. Figure adapted with permission from13.

4.3.2 The WS–PGRADE Extensions

Rather to limit our efforts to create a single do–it–all portlet, we created a basic development

platform to extend WS–PGRADE/gUSE. Building upon it, we developed an application database

portlet that allows users to manage applications which they can later use when converting

workflows, the Application Manager Portlet.

Our proposed portlet does not concern itself with proper installation of binaries, rather,

it limits itself to be a registry of applications available to gUSE, as displayed in Figures 4.14

to 4.17. It also features a REST API to provide read–only remote access to the application

registry. This web service, when invoked, generates a resource file descriptor (see Listing 4.4)

that can be used in external applications, e.g., in the KNIME2Grid extension.

60

Results

Figure 4.14: View of the available batch queueing systems. Pressing the top–right button will dis-
play a dialog where users can manage applications associated with the currently selected resource
and see a list of the available queues (see Figure 4.15). The button located on the bottom–right
allows users to add or edit several applications at once by uploading an XML file similar to the one
presented in Listing 4.4.

Figure 4.15: View of the applications and queues associated with a specific batch queueing system.
Users can edit, insert, and delete applications using the intuitive controls.

61

4. Conversion of Complete Workflows

Figure 4.16: Dialog that permits users to manually associate an application to a specific batch
queueing system. Optionally, users can bulk add applications via uploading an XML file, as depicted
in Figure 4.14.

Figure 4.17: A view of available UNICORE applications using the application database portlet.
The controls to perform editions are not available due to UNICORE exposing its application registry
as read–only.

62

Results

Listing 4.4: Sample XML resources file containing available resources, queues and applications.

To improve usability, we use a single format across all related operations (i.e., bulk uploads and

REST API output as described in this section, as well as the job configuration screen included in

the workflow export wizard previously shown in Figures 4.9 and 4.10).

1 <resources>
2 <resource name="abimaster2.informatik.uni-tuebingen.de" type="moab">
3 <application name="Maestro" version="1.9" description="Maestro"
4 path="/share/schroedinger/bin/maestro" />
5 <application name="R" version="3.3.3" description="R"
6 path="/share/R/bin/R" />
7 <queue name="default"/>
8 <queue name="fast"/>
9 </resource>

10 <resource name="abimaster.informatik.uni-tuebingen.de" type="pbs">
11 <application name="KNIME" version="3.3.1" description="KNIME"
12 path="/share/knime/knime" />
13 <queue name="default"/>
14 </resource>
15 </resources>

Overall Structure

Even though the Application Manager Portlet is currently the only portlet based on our pro-

posed framework, developers of supplementary portlets would benefit from the components

comprising our framework. We structured our proposed development framework as follows:

• core–lib: contains the core components, utility methods, and data structures that are

used throughout the extensions and the ui–components library.

• ui–components: our custom Vaadin widgets on which the WS–PGRADE portlets depend

on are contained in this module.

• application–manager–portlet: contains the code specific for Application Manager Portlet

and the REST API; future, supplementary portlets would be at this same level on the

development stack.

The relationship between these projects and other libraries is shown in Figure 4.18. Each

of the components we created is delivered as a separate Apache Maven artifact, allowing

simplification of two tasks that, were they not automated, development could quickly be

stunted: assembly and dependency management.

Overall Design

Similar to the implementation provided in KNIME2Grid, we also followed the dependency

injection technique to resolve dependencies only during construction time. In order to further

raise the level of abstraction, each relevant component has been modeled by an interface

and a set of separate implementations. Configurable dependencies are defined in the Settings

63

4. Conversion of Complete Workflows

core-lib

ui-components

application-manager-portlet

Java 1.8

gUSE ServicesVaadin 7

REST API

Figure 4.18: Dependencies between the different software components that comprise our WS–
PGRADE extensions. core-lib depends on the gUSE services and standard Java classes (e.g., for
database access), but is independent on Vaadin. The elements contained in ui-components, on
the other hand, depend on Vaadin and also on core-lib. application-manager-portlet builds upon
core-lib and ui-components, including a REST API.

singleton class, which is then used to provide the required dependencies of components at

construction time.

Since WS–PGRADE/gUSE already requires MySQL for its proper operation, we chose to

implement our application registry using MySQL (refer to Figure 4.19 for its schema). During

its initialization, the Application Manager Portlet will automatically create this database if

needed. Additionally, users are not required to provide additional credentials: our portlet

queries the Information System component to obtain these. We include the REST API as

part of Application Manager Portlet to provide consistency for users, developers and portal

administrators: access to both the REST API and our the Application Manager Portlet can be

done using the same base URL.

tbl_application

 resource_namePK

 resource_typePK

 namePK

 versionPK

 pathPK

 description

Figure 4.19: Schema of the application database. DCI Bridge maintains a registry for resources
and their associated queues. A single table is sufficient to add an application database. All fields
but description comprise the primary key.

64

Results

As a feature to speed–up development and automated testing, we created mock components

containing in–memory data structures whose content is independent of gUSE services. These

data structures are automatically populated with synthetic data during initialization. To enable

the usage of these mock components, a single property on the deployment descriptor file needs

to be modified (as depicted on the top–right corner of the diagram shown in Figure 4.20). After

a successful assembly and deployment, any portlet using these mock components is ready to

use, thus bypassing the need to restart the Liferay portal.

Deployment Script

Development or maintenance of our WS–PGRADE extensions can become a stultifying task

after a handful of cycles of coding, WAR file deployment, and manual restarting of the Liferay

portal. In order to expedite development efforts, we created a support Apache Ant script that

automates building and deployment of WAR files on a running WS–PGRADE instance. This

script depends on a simple configuration file to read values such as location and credentials of

the server on which portlets will be deployed. This procedure, along a sample configuration

file and the support script, are detailed in Appendix B.0.7.

Initialization

Our WS–PGRADE extensions define hook–ups to perform initialization and clean–up tasks

by registering an implementation of the ServletContextListener interface in the deployment

descriptor file (i.e., the web.xml file). Our implementation is realized in WorkflowConversion-

ContextListener, a class that properly initializes the singleton Settings class.

Once the single instance of the Settings class has been created, the Servlet Container pro-

ceeds to instantiate all pertinent Servlets as declared in the deployment descriptor. We created

WorkflowConversionUI, an abstract class designed to provide uniform access to basic Vaadin

mechanisms and other initialization routines. The Application Manager Portlet provides a

custom extending class, ApplicationManagerUI, and is responsible to prepare the graphical

content that will ultimately be displayed. Tasks requiring a lazy initialization are handled in

the WorkflowConversionUI abstract class we provide.

Following the guidelines for multithreading programming detailed by Goetz and Peierls89

(i.e., immutable objects are always thread–safe), instances of the Settings class are immutable

objects. This is an important aspect in multi–user, concurrent web–based systems such as

WS–PGRADE. We thus applied a modified version of the builder design pattern as described

by Gamma et al.82 in the SettingsBuilder class to avoid possible race conditions.

Figures 4.20 and 4.21 show the class and sequence diagrams of the Application Manager

Portlet, respectively, highlighting the components involved during the initialization.

65

4. Conversion of Complete Workflows
<<interface>>

javax.servlet.ServletC
ontextListener

+ contextInitialized()
+ contextD

estroyed()

W
orkflow

C
onversionC

ontextListener

w
eb.xm

l

<<singleton>>
Settings

- constructor()
+ getW

orkflow
M

anagerFactory(): W
orkflow

M
anagerFactory

+ getW
orkflow

ExporterFactory(): W
orkflow

ExporterFactory
+ getR

esourceProviders(): R
esourceProvider[]

W
orkflow

C
onversionU

I

prepareC
ontent()

A
pplicationM

anagerU
I

U
I = {A

pplicationM
anagerU

I}
use_m

ocks = {true, false}

com
.vaadin.ui.U

I

+ init(r: VaadinR
equest)

SettingsB
uilder

+ w
ithR

esourceProviders(r: R
esourceProvider[])

+ w
ithW

orkflow
M

anagerFactory(f: W
orkflow

M
anagerFactory)

+ w
ithW

orkflow
ExporterFactory(f: W

orkflow
ExporterFactory)

+ new
Settings(): Settings

org.apache.catalina.core.A
pplicationC

ontext

VaadinServlet
Provided by Apache Tom

cat

<<interface>>
javax.servlet.ServletC

ontext

+ addListener(l: String)
+ addServlet(s: String)

<<interface>>
javax.servlet.Servlet

+ service(a: ServletR
equest, b: ServletR

esponse)

<<use>>

<<create>>

<<initialize>>
<<read>>

<<read>>

<<read>>

<<create>>

<<create>>

<<use>>

<<create>>

Figu
re

4.20:
C

lass
diagram

of
the

A
pplication

M
anager

Portlet
highlighting

the
interactions

betw
een

com
ponents

needed
during

initialization.
T

he
portlet

can
be

set
on

developm
ent

m
ode

by
m

odifying
a

single
property

on
the

w
eb.xm

lfile,as
previously

described
in

Section
4.3.2.

66

Results

:W
or

kfl
ow

C
on

ve
rs

io
nC

on
te

xt
Li

st
en

er

:V
aa

di
nS

er
vl

et

:A
pp

lic
at

io
nC

on
te

xt

:S
et

tin
gs

B
ui

ld
er

s:
Se

tti
ng

s :W
or

kfl
ow

C
on

ve
rs

io
nU

I

in
iti
al
iz
e(
)

ne
w

ne
w

ne
w

w
ith
R
es
ou
rc
eP

ro
vi
de
rs
()

ne
w

co
nt
ex
tIn
iti
al
iz
ed
()

ne
w

Po
rt

al
 U

se
r

se
rv
ic
e(
)

pr
ep
ar
eC

on
te
nt
()

in
it(
)

ge
tIn
st
an
ce
()

se
tti
ng
s

fo
rw

ar
d

re
qu

es
t

si
ng

le
to

n

se
tIn
st
an
ce
()

in
it(
)

re
qu

es
t s

er
vi

ce
d

in
vo

ke
d

by

Ap
ac

he
 T

om
ca

t

ne
w

al
t [fi

rs
t s

es
si

on
-w

id
e

re
qu

es
t]

Va
ad
in
Se

rv
le
t i

ns
ta

nt
ia

te
s
A
pp

lic
at
io
nM

an
ag
er
U
I.,

 a

cl
as

s
ex

te
nd

in
g
W
or
kfl
ow

C
on

ve
rt
er
U
I.

Te
xt

Fi
gu

re
4.

21
:

Se
qu

en
ce

di
ag

ra
m

of
th

e
in

it
ia

liz
at

io
n

ro
ut

in
e

of
th

e
A

pp
lic

at
io

n
M

an
ag

er
Po

rt
le

t.
A

pp
lic

at
io

nC
on

te
xt

is
in

st
ru

ct
ed

to
in

it
ia

liz
e

th
e

po
rt

le
t.

Th
is

pr
oc

es
s

in
cl

ud
es

cr
ea

ti
ng

an
in

st
an

ce
of

th
e

W
or

kfl
ow

Co
nv

er
si

on
Co

nt
ex

tL
is

te
ne

r
cl

as
s,

w
ho

in
tu

rn
is

re
sp

on
si

bl
e

to
in

it
ia

liz
e

th
e

Se
tt

in
gs

cl
as

s
an

d
to

se
t

th
e

si
ng

le
to

n
in

st
an

ce
to

be
us

ed
th

ro
ug

ho
ut

th
e

lif
e

cy
cl

e
of

th
e

po
rt

le
t.

67

4. Conversion of Complete Workflows

Abstraction of Applications: Resources and ResourceProviders

We modeled each of the available computing resources using the class Resource (see Fig-

ure 4.22). Individual instances of the Resource class represent computing resources configured

in gUSE, each containing a number of applications and queues (modeled by the Application

and Queue classes, respectively).

Similar to the usage of the Settings singleton, instances of these classes must also be im-

mutable, due to the fact that they will be shared among concurrent threads. We also applied

the same modified version of the builder pattern.

In order to offer a clean and consistent access to the available computing resources, we

defined an interface, ResourceProvider, defining interaction with components that are able

to manage applications. Implementations of this interface specify whether it is possible to

edit applications, and they must provide a name to identify the provider, an initialization

method, and a list of Resources. The UNICOREResourceProvider implementation, for instance,

uses the UNICORE remote API and displays a read–only view of resources and applications

(refer to Section 4.2.3 for an explanation of this behavior). The ClusterResourceProvider class,

on the other hand, queries the Information System component to obtain the list of the active

batch job processing computing resources and their associated queues. It then uses this set of

resources to associate applications using our application registry. The REST API benefits from

this design: it accesses all available ResourceProviders to generate an XML document containing

all applications visible to the gUSE without having to directly rely on gUSE components or the

UNICORE remote API.

Generic Graphical Components

We implemented a series of configurable graphical components using Vaadin widgets to allow

any portlet to easily integrate acquire the look and feel of the hosting Liferay portal. The Appli-

cation Manager Portlet's GUI was put together using these components, the most important of

them being the generic tables on which users can interact with our application registry. These

tables contain configurable, additional controls to add, edit, and remove displayed elements.

This sort of situation perfectly aligns itself with the intent of abstract factories: provide an

interface for creating families of related objects without specifying their concrete class82.

In order to implement this design pattern we created both an interface and a direct im-

plementation in the form of an abstract class as generic components (TableWithControls and

AbstractTableWithControls, respectively). We used Java generics to encapsulate the common

functionalities and to increase the application domain of our graphical components. The

AbstractTableWithControls generic abstract class contains the implementation of the core fea-

tures allowing elements to be inserted, edited, and removed in a table. Each row is the textual

representation of an item, each cell displaying the value of a specific property of said item.

68

Results

The concrete classes are only responsible to provide a proper bidirectional translation between

the contents of a row and their represented elements (e.g., application, resource, queue), thus

simplifying development efforts. Furthermore, in the interest of enforcing the abstract factory

pattern, constructors of these tables were hidden as private methods, forcing usage of the

provided builder factory static inner class.

Since these concrete classes are a transitive implementation of the TableWithControls

generic interface, the ApplicationManagerUI will be able to further abstract itself from the

concrete classes by interacting with an interface, rather than communicating with specific

concrete classes.

The class diagram presented in Figure 4.23 highlights the relationships of the most relevant

entities of our graphical components.

69

4. Conversion of Complete Workflows

<<interface>>
R
esourceProvider

+ init()
+ hasInitErrors(): boolean
+ canAddApplications(): boolean
+ getN

am
e(): String

+ getR
esources(): R

esource[]

A
pplication

- nam
e: String

- version: String
- path: String
- description: String

- constructor()
+ getN

am
e(): String

+ getVersion(): String
+ getPath(): String
+ getD

escription(): String

R
esource

- nam
e: String

- type: String
- applications: Application[]
- queues: Q

ueue[]

- constructor()
+ getN

am
e(): String

+ getType(): String
+ getApplications(): Application[]
+ getQ

ueues(): Q
ueue[]

+ rem
oveApplication(a: Application)

+ saveApplication(a: Application)

Q
ueue

- nam
e: String

- constructor()
+ getN

am
e(): String

1

1

*
*

R
esourceB

uilder

+ w
ithN

am
e(n: String)

+ w
ithType(t: String)

+ w
ithApplications(a: Application[])

+ w
ithQ

ueues(q: Q
ueue[])

+ new
R

esource(): R
esource

Q
ueueB

uilder

+ w
ithN

am
e(n: String)

+ new
Q

ueue(): Q
ueue

A
pplicationB

uilder

+ w
ithN

am
e(n: String)

+ w
ithVersion(v: String)

+ w
ithPath(p: String)

+ w
ithD

escription(d: String)
+ new

Application(): Application

1
*

<<use>>
<<use>>

<<use>>

<<create>>

<<create>>

<<create>>
U

N
IC

O
R

ER
esourceProvider

C
lusterR

esourceProvider

M
ockR

esourceProvider

U
N

IC
O

R
E A

PI
gU

SE Services,
M

ySQ
L<<use>>

<<use>>

C
om

ponents
grouped for clarity

Figu
re

4.22:
C

om
ponent

diagram
highlighting

interaction
betw

een
Resources

and
ResourceProviders.

70

Results

Fi
gu

re
4.

23
:

C
la

ss
di

ag
ra

m
di

sp
la

yi
ng

th
e

re
la

ti
on

sh
ip

s
be

tw
ee

n
th

e
co

nc
re

te
ta

bl
es

an
d

th
ei

r
fa

ct
or

ie
s.

71

4. Conversion of Complete Workflows

4.3.3 Availability

KNIME2Grid is available at https://github.com/WorkflowConversion/KNIME2Grid and

is distributed under the MIT license. The presented WS–PGRADE extensions can be down-

loaded from https://github.com/WorkflowConversion/WS-PGRADE-Extensions (also

distributed under the MIT license).

Furthermore, http://workflowconversion.github.io contains a summary we pre-

pared to highlight the work presented both in this chapter and in Section 3.3.

4.3.4 Use Cases

We have argued that usage of HPC resources speeds up computation and retrieval of scientific

results. Runtime of a converted workflow will depend on factors outside the scope of this

work, e.g., latency of storage systems and hardware specifications. The work presented in Sec-

tions 4.3.1 and 4.3.2 is able to generate workflows fully compatible with WS–PGRADE/gUSE,

but performance and running time of workflows ultimately depends on the capabilities and

current load of available HPC resources.

Combined usage of our presented extensions to WS–PGRADE and the KNIME Analytics

Platform adds value to the field of life sciences: workflows designed and tested on a desktop

computer can be—with minimal required input—executed on HPC resources.

Each presented workflow was designed and tested using the KNIME Analytics Platform.

Workflows were then converted using the workflow export wizard contained in KNIME2Grid.

In order to obtain a resource descriptor file (refer to Listing 4.4 for a sample file), the REST API

was remotely accessed by the introduced workflow export wizard. The generated workflows

were then imported on a WS–PGRADE/gUSE instance, their concrete was then submitted using

WS–PGRADE's standard user interface. The WS–PGRADE/gUSE installation had access to a

batch queueing system with the Moab Workload Manager on which all mentioned command

line tools, as well as the KNIME Analytics Platform, were installed.

Structural Bioinformatics

Molecular docking is a technique in structural bioinformatics with direct applicability to the

drug discovery pipeline. Fundamentally, molecular docking algorithms attempt to fit molecules

(ligands) in advantageous conformational isomers using their topographic features into binding

sites of proteins (receptors), performing free energy calculations of the overall system with the

purpose of finding a local minimum. The vast solution space and complexity of the operations

do not allow for an exhaustive search for the best global conformation, rendering molecular

docking a field where combinatorial optimization is often applied84,90.

72

https://github.com/WorkflowConversion/KNIME2Grid
https://github.com/WorkflowConversion/WS-PGRADE-Extensions
http://workflowconversion.github.io

Results

The presented workflow starts by reading an input PDB file containing a receptor whose

binding site already holds a well–known ligand. PDBCutter then separates the input com-

plex into its constituting elements. The extracted receptor, still requiring some processing,

is forwarded to ProteinProtonator, where, based on a given pH value, protons (H+) will be

inserted64.

Placement of the reference ligand is extremely relevant for docking algorithms. In this

case, a tridimensional grid is built around the reference ligand to assist in the computation

of the free energy of the system (a task performed by the collaboration of PocketDetector and

GridBuilder)64.

The second input is a structure data file (SDF) where a list of candidate ligands is provided.

These compounds, if deemed favorable by the algorithm, could then be used in later phases

of the drug discovery pipeline. This ligand database is received by Ligand3DGenerator, where

each input compound will be transformed into a tridimensional conformation that is ready for

docking64.

IMGDock (short for iterative multi–greedy docking) consolidates the information about the

binding site, along with the processed list of compounds. It will then dock each of the given

ligands into the binding site of the receptor to compute a score. The list of scores is then

collected, sorted and written to an output file by DockResultMerger64.

The workflow was composed using the CTD–enabled CADDSuite tools, which were in-

tegrated into the the KNIME Analytics Platform using GKN (a process we described in Sec-

tion 4.2.3). Conversion of these nodes was performed as shown in Figure 4.2. This scenario

presents the most trivial type of conversion for our extensions: executing command line tools

on DCIs does not require a running instance of the KNIME Analytics Platform. Figures 4.24

and 4.25 present the original and converted workflows, respectively.

Figure 4.24: Docking workflow on the KNIME Analytics Platform. Adapted with permission
from13.

73

4. Conversion of Complete Workflows

Figure 4.25: Converted docking workflow on WS–PGRADE. Since all tools are CTD–enabled, an
additional input port was created on each node to provide a pre–configured CTD file as an input.

Immunoinformatics

The exponential growth of biological data relevant to immunology research, coupled with

the rapid increase of clinical and epidemiologic information available in medical records and

scientific literature, motivated scientists interested in pathogenesis and immune function to lay

the foundations of immunoinformatics. With applications varying from basic immunological

and translational research to oncological research, immunoinformatics methods have ever

since become a vital part of biomedical research91,92.

The complexity of the required methods, lack of standardized interfaces and data formats

usually prohibits the use of different tools in the same workflows. Although this has prompted

creation of web–based workbenches that provide access via unified interfaces, factors such as

data volume and legal considerations (e.g., restrictions on sharing patient data) might render

these approaches unusable. ImmunoNodes, part of the KNIME Community Contributions, was

developed to offer researchers a unified platform consisting of a toolbox where each individual

ImmunoNode carries out a specific analysis or computation in immunoinformatics92.

The presented workflow in Figure 4.26 implements a population–based vaccine design

pipeline. This process starts by reading specific geographical regions (or populations) of inter-

est with the purpose of producing a list of human leukocyte antigen (HLA) alleles with their

corresponding occurrence probability, a task performed by the AlleleFrequency. A further input,

a file containing well–known pathogens in the form of protein sequences is provided to Epitope-

Prediction. This node generates peptides off the given input and produces a file containing the

predicted binding affinities of these, along with the selected HLAs. Finally, EpitopeSelection,

given a user–defined number of epitopes from the candidate pool, writes these together with

other statistics into an output file92.

74

Results

Each ImmunoNode was generated by GKN and uses Docker containerization to interact

with arbitrary external command line tools contained in the Framework for Epitope Detection

(FRED2)92. However, the toolset is not CTD–enabled, therefore conversion of each Immuno-

Node was performed as shown in Figure 4.3. The converted workflow is shown in Figure 4.27.

Figure 4.26: Population–based vaccine design workflow on the KNIME Analytics Platform using
ImmunoNodes. Figure adapted with permission from92. Copyright 2017 Schubert et al.92.

Figure 4.27: Converted vaccine design workflow on WS–PGRADE.

Metabolomics

Metabolomics is a set of methods based on mass spectrometry data with the intent of evaluating

the entirety of a metabolite sample. Common applications of metabolomics include discovery

of mechanisms behind diseases, analysis of chemicals and their byproducts in waste water, and

cancer type identification. Compared to other so–called omics techniques (e.g., proteomics and

transcriptomics), metabolomics finds itself closer to the actual biochemical processes, making

it promising for development of biomarkers. Studies interested in comparative metabolite con-

centrations often resort to label–free quantification approaches: independence from chemical

labels allows direct comparison of small molecules across an arbitrary number of samples. The

need to concurrently evaluate considerable amounts of data (often hundreds of gigabyte–sized

samples), while numbers and sizes of available data are steadily increasing, urges researchers

to utilize distributed computing approaches.

75

4. Conversion of Complete Workflows

The presented metabolomics workflow performs biomarker discovery using a detection la-

bel–free quantification method for small molecules using the OpenMS KNIME Nodes extension

(also part of the KNIME Community Contributions)63 together with other KNIME Nodes.

Previous to executing the workflow, some preparations must be performed: data reduction

by means of peak picking and conversion from closed, vendor–specific formats to the open

mzML data format.

The pipeline shown in Figure 4.28 starts with quantification, a process that consists of

sample–specific feature detection (i.e., finding convex hulls and their respective centroids of

analyte mass traces) followed by temporal alignment of samples and quantification of features

across samples. These tasks are performed by the collaboration of FeatureFinderMetabo, Map-

AlignerPoseClustering and FeatureLinkerUnlabeledQT, all three part of OpenMS. Furthermore,

feature detection is a process that is performed inside a parametric sweep section, i.e., it is

enclosed between ZipLoopStart and ZipLoopEnd nodes.

Downstream small molecule identification was performed via mass–based search in the

Human Metabolome Database by AccurateMassSearch, this being the last OpenMS–based task

executed in the pipeline. Analytes whose abundances vary significantly after false discovery rate

correction are annotated with the mass–based identifications and exported to a spreadsheet.

This last analysis is performed by a combination of standard KNIME Nodes and R scripts (the

R Snippet KNIME Node directly interacts with a local R installation).

Contrasting to the other presented use cases, this workflow contains a mixture of the three

type of KNIME Nodes we identified, as presented in Figures 4.2 to 4.4, as well as a parametric

sweep workflow pattern. Figure 4.29 depicts the converted workflow.

76

Results

Fi
gu

re
4.

28
:

B
io

m
ar

ke
r

di
sc

ov
er

y
pi

pe
lin

e
on

th
e

K
N

IM
E

A
na

ly
ti

cs
Pl

at
fo

rm
.

Fi
gu

re
ad

ap
te

d
w

it
h

pe
rm

is
si

on
fr

om
13

.

77

4. Conversion of Complete Workflows

Figu
re

4.29:
C

onverted
biom

arker
discovery

w
orkflow

on
W

S–PG
R

A
D

E.

78

Discussion

4.4 Discussion

Researchers and developers have made meaningful efforts to increase interoperability between

other workflow management systems. As presented by Grunzke et al.17, execution of KNIME

workflows using UNICORE is a simple task: once users are satisfied with the design of their

KNIME workflow, they use the standard KNIME Analytics Platform export dialog to save it in a

submission directory that is readable by the UNICORE Server, where it will be automatically

executed.

Taverna offers simplified access to freely available resources from life science institutions

such as the European Bioinformatics Institute (EBI) and the National Center of Biotechnology

Information (NCBI). Tavaxy and Taverna 2–Galaxy are initiatives that allow integration of

Taverna workflows into Galaxy sub–workflows, offering support for cloud computing15,16,93.

Similarly, the SHIWA Simulation Platform, comprised of several engines, offers an integrated

environment on which users can share executable workflows using its workflow repository,

allowing users to build meta–workflows composed of workflows for any of the supported en-

gines14.

These projects have one particular aspect in common: they only offer coarse–grained inter-

operability. Our fine–grained approach delivers a more flexible solution and produces a true

node–by–node translation of a workflow. Fine–grained approaches allow to individually opti-

mize each of the converted tasks, providing a higher degree of scalability. Another aspect that

coarse–grained interoperability does not fully address is troubleshooting of faulty workflows:

whole workflows are treated as nodes, so identifying a problem on a complex pipeline might

be a tedious task. In contrast, our proposed extensions allow the target engine to pinpoint

the source of an error. Furthermore, the SHIWA Simulation Platform, Galaxy, Taverna, and

UNICORE offer different levels of support of various DCIs. However, WS–PGRADE/gUSE, via

its DCI Bridge component, is able to communicate with most major DCIs. Also, as presented

in Section 4.2.3, it is possible to develop new DCI Submitters for DCIs that are not supported.

Finally, using the KNIME Analytics Platform as a source engine on which users would

design workflows offers the creation of complex pipelines on a user–friendly environment, as

presented in Section 4.3.4. Integrating external command line tools into the KNIME Analytics

Platform is a simple task, as discussed in Section 4.2.3, but integrating single KNIME nodes on

other workflow engines is not a trivial task—as described in Section 4.3.1—yet our proposed

solution performs this task automatically.

79

Chapter 5

Conclusion and Outlook

Each workflow management system we have studied addresses specific concerns of the com-

munity it was designed for. Throughout this work, we have argued that development efforts

should be directed towards integration of already existent workflow engines with the intent of

leveraging their combined features.

Recognizing the near ubiquity of command line tools in life sciences, we created CTD-

Converter, a Python–based framework that boosts integration of such tools into workflow

engines. This was achieved by usage and translation of platform–independent tool representa-

tions, CTDs. We also combined the features of WS–PGRADE/gUSE and the KNIME Analytics

Platform to provide fine–grained workflow interoperability, enabling users to create and test

workflows on a user–friendly platform, while transparent workflow execution occurs on dis-

tributed HPC resources.

The speed at which workflow technologies and distributed computing evolves can be over-

whelming for workflow developers. Innovative solutions present at the commencement of

our research are now posing themselves as mature, dominant platforms, e.g., containerization

and cloud computing. Having this aspect in mind, our proposed implementations were built

following software development techniques that lend flexibility and resilience: generation

of task representations for additional workflow engines calls for insertion of a small Python

module into CTDConverter, adding supplementary output format to the KNIME2Grid extension

requires implementation of a single class.

Nevertheless, there are still areas of improvement. As presented, executing individual

KNIME Nodes as command line tools has certain overhead associated to it: serialization and

deserialization of Data Tables is an expensive input/output (I/O) operation. This could be

alleviated by dynamically creating sub–workflows out of sequential sections composed exclu-

sively of native KNIME Nodes. Instead of loading and writing the inputs and outputs of each

converted node, these operations would occur once per identified sub–workflow section.

81

5. Conclusion and Outlook

Similarly, conversion of KNIME nodes that loop over a list of input files could also be

optimized. WS–PGRADE encloses parameter sweep sections between an output generator port

and an input collector port. Having a dedicated job on a cluster to implement parametric

sweeps is an approach that suffers of unnecessary I/O overhead.

A functionality in the KNIME Analytics Platform that our converter does not support is data

streaming. The KNIME Streaming Executor feature allows for concurrent node execution by

immediately providing partial outputs as inputs to downstream nodes. This feature cuts down

I/O operations and reduces the memory footprint of nodes. Since gUSE workflows rely almost

exclusively on channeling of files, implementation of a similar feature—while attractive—poses

a paramount challenge.

There are some KNIME Nodes whose conversion, as currently implemented, poses no value

for researchers. Visualizing results using KNIME Nodes on a desktop computer is intuitive:

double–clicking a visualization node (e.g., Box Plot) displays a chart on the user’s screen. In

contrast, obtaining these graphical results off the computational output of a workflow executed

on WS–PGRADE requires certain knowledge of the platform. KNIME2Grid could be extended

to directly download and display the output of such nodes.

Transparently executing a set of KNIME Nodes on remote resources is an area worthy of

study. KNIME offers the KNIME Cluster Executor node, but it has been designed to perform

remote execution of single nodes and is offered as a royalty–based extension to the KNIME

Analytics Platform. Our proposal would execute computationally demanding sub–workflows

on a remote system, while nodes displaying results would still be executed on the KNIME

Analytics Platform used to design the converted workflow. This, of course, does not lie within

the theoretical boundaries of fine–grained workflow interoperability, however, it would greatly

assist researchers by speeding up generation of scientific results.

82

Bibliography

[1] Roger D Peng, Francesca Dominici, and Scott L Zeger. Reproducible epidemiologic research. Am.
J. Epidemiol., 163(9):783–789, May 2006.

[2] Roger D Peng. Reproducible research in computational science. Science, 334(6060):1226–1227,

December 2011.

[3] Monya Baker. Over half of psychology studies fail reproducibility test. Nature News & Comment,
https://doi.org/10.1038/nature.2015.18248 (Accessed Jun 2, 2019), August 2015.

[4] Marcia McNutt. Reproducibility. Science, 343(6168):229, January 2014.

[5] Jan Vitek and Tomas Kalibera. Repeatability, reproducibility and rigor in systems research. In 2011
Proceedings of the Ninth ACM International Conference on Embedded Software (EMSOFT), pages

33–38. IEEE, October 2011.

[6] Alexander Etz and Joachim Vandekerckhove. A bayesian perspective on the reproducibility project:

Psychology. PLOS ONE, 11(2):1–12, February 2016.

[7] Ian Sample. Study delivers bleak verdict on validity of psychology experiment results. The
Guardian, https://www.theguardian.com/science/2015/aug/27/study-

delivers-bleak-verdict-on-validity-of-psychology-experiment-results

(Accessed Jun 2, 2019), August 2015.

[8] Trouble at the lab. The Economist, 409(8858):26–30, October 2013.

[9] Let’s just try that again: the scientific method. The Economist, 418(8975):74, February 2016.

[10] Lin Dai, Xin Gao, Yan Guo, Jingfa Xiao, and Zhang Zhang. Bioinformatics clouds for big data

manipulation. Biol. Direct, 7(1):43, November 2012.

[11] Neil Savage. Big data versus the big C. Nature, 509(7502):S66–S67, May 2014.

[12] Jianwu Wang, Ilkay Altintas, Parviez R Hosseini, Derik Barseghian, Daniel Crawl, Chad Berkley,

and Matthew B Jones. Accelerating parameter sweep workflows by utilizing ad–hoc network

computing resources: an ecological example. In 2009 Congress on Services – I, pages 267–274.

IEEE, July 2009.

83

https://doi.org/10.1038/nature.2015.18248
https://www.theguardian.com/science/2015/aug/27/study-delivers-bleak-verdict-on-validity-of-psychology-experiment-results
https://www.theguardian.com/science/2015/aug/27/study-delivers-bleak-verdict-on-validity-of-psychology-experiment-results

Bibliography

[13] Luis de la Garza, Fabian Aicheler, and Oliver Kohlbacher. From the desktop to the grid and

cloud: Conversion of KNIME workflows to WS–PGRADE. In 8th International Workshop of Science
Gateways, volume 5, page e2849v1. PeerJ Preprints, March 2017.

[14] Gabor Terstyanszky, Tamas Kukla, Tamas Kiss, Peter Kacsuk, Ákos Balaskó, and Zoltan Farkas.

Enabling scientific workflow sharing through coarse–grained interoperability. Future Gener. Comp.
Sy., 37:46–59, July 2014.

[15] Mohamed Abouelhoda, Shadi Alaa Issa, and Moustafa Ghanem. Tavaxy: Integrating Taverna and

Galaxy workflows with cloud computing support. BMC Bioinformatics, 13(1):77, May 2012.

[16] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams, David Withers, Stuart Owen,

Stian Soiland-Reyes, Ian Dunlop, Aleksandra Nenadic, Paul Fisher, et al. The Taverna workflow

suite: Designing and executing workflows of web services on the desktop, web or in the cloud.

Nucleic Acids Res., 41(W1):W557–W561, July 2013.

[17] Richard Grunzke, Florian Jug, Bernd Schuller, René Jäkel, Gene Myers, and Wolfgang E Nagel.

Seamless HPC integration of data–intensive KNIME workflows via UNICORE. In European Confer-
ence on Parallel Processing, pages 480–491. Springer, August 2016.

[18] Diimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An overview of workflow management:

From process modeling to workflow automation infrastructure. Distrib. Parallel. Dat., 3(2):119–

153, April 1995.

[19] Frank B Gilbreth and LM Gilbreth. Process charts and their place in management. Mech. Eng., 70:

38–41, January 1922.

[20] Raúl Medina-Mora, Terry Winograd, Rodrigo Flores, and Fernando Flores. The action workflow

approach to workflow management technology. Inform. Soc., 9(4):391–404, October 1993.

[21] Wil MP Van der Aalst. The application of Petri Nets to workflow management. J. Circuit. Syst.
Comp., 8(01):21–66, February 1998.

[22] Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Karan Vahi, Kent

Blackburn, Albert Lazzarini, Adam Arbree, Richard Cavanaugh, et al. Mapping abstract complex

workflows onto grid environments. J. Grid Comput., 1(1):25–39, March 2003.

[23] Jia Yu and Rajkumar Buyya. A taxonomy of workflow management systems for grid computing.

J. Grid Comput., 3(3–4):171–200, September 2005.

[24] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Technische Universität Darmstadt,

June 1962.

[25] Tadao Murata. Petri Nets: Properties, analysis and applications. P. IEEE, 77(4):541–580, April

1989.

[26] Anatol W Holt. Information system theory project. Technical report, Applied Data Research, Inc.,

Princeton, NJ, September 1968.

84

Bibliography

[27] Chander Ramchandani. Analysis of Asynchronous Concurrent Systems by Timed Petri Nets. PhD

thesis, Massachusetts Institute of Technology, September 1973.

[28] James L Peterson. Petri Nets. ACM Comput. Surv., 9(3):223–252, September 1977.

[29] Tilak Agerwala. Putting Petri Nets to work. Computer, 12(12):85–94, December 1979.

[30] Hartmann J. Genrich and Kurt Lautenbach. System modelling with high–level Petri Nets. Theor.
Comput. Sci., 13(1):109–135, January 1981.

[31] Kurt Jensen. High–level Petri Nets. In Applications and Theory of Petri Nets, pages 166–180.

Springer, 1983.

[32] Kurt Jensen. Coloured Petri Nets and the invariant–method. Theor. Comput. Sci., 14(3):317–336,

January 1981.

[33] Kees M van Hee. Information Systems Engineering: a Formal Approach. Cambridge University

Press, June 1994.

[34] Wil MP Van der Aalst. Putting high–level Petri Nets to work in industry. Comput. Ind., 25(1):

45–54, November 1994.

[35] Jerre D Noe and Gary J Nutt. Macro e–nets for representation of parallel systems. IEEE T. Comput.,
100(8):718–727, August 1973.

[36] Cristian Radu Zervos and Keki B Irani. Colored Petri Nets: Their properties and applications.

Technical report, Michigan University, Ann Arbor Systems Engineering Lab, August 1977.

[37] James L Peterson. A note on colored Petri Nets. Inform. Process. Lett., 11(1):40–43, August 1980.

[38] Hartmann J Genrich and Kurt Lautenbach. The analysis of distributed systems by means of

predicate/transition–nets. In Semantics of Concurrent Computation, pages 123–146. Springer,

1979.

[39] Wil MP Van der Aalst. Timed Coloured Petri Nets and Their Application to Logistics. PhD thesis,

Technische Universiteit Eindhoven, September 1992.

[40] Michael R Berthold, Nicolas Cebron, Fabian Dill, Thomas R Gabriel, Tobias Kötter, Thorsten Meinl,

Peter Ohl, Kilian Thiel, and Bernd Wiswedel. KNIME–the Konstanz Information Miner: Version

2.0 and beyond. SIGKDD Explor., 11(1):26–31, November 2009.

[41] Enis Afgan, Dannon Baker, Bérénice Batut, Marius Van Den Beek, Dave Bouvier, Martin Čech, John

Chilton, Dave Clements, Nate Coraor, Björn A Grüning, et al. The Galaxy platform for accessible,

reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res., 46(W1):

W537–W544, May 2018.

[42] Dassault Systèmes BIOVIA. BIOVIA Pipeline Pilot. http://www.3dsbiovia.com/products/

collaborative-science/biovia-pipeline-pilot/ (Accessed Jun 3, 2019), 2002.

85

http://www.3dsbiovia.com/products/collaborative-science/biovia-pipeline-pilot/
http://www.3dsbiovia.com/products/collaborative-science/biovia-pipeline-pilot/

Bibliography

[43] Johannes Junker, Chris Bielow, Andreas Bertsch, Marc Sturm, Knut Reinert, and Oliver Kohlbacher.

TOPPAS: A graphical workflow editor for the analysis of high–throughput proteomics data. J.
Proteome Res., 11(7):3914–3920, May 2012.

[44] Péter Kacsuk, Zoltán Farkas, Miklós Kozlovszky, Gábor Hermann, Ákos Balaskó, Krisztián Karóczkai,

and István Márton. WS–PGRADE/gUSE generic DCI gateway framework for a large variety of

user communities. J. Grid Comput., 10(4):601–630, December 2012.

[45] Khodakaram Salimifard and Mike Wright. Petri net–based modelling of workflow systems: an

overview. Eur. J. Oper. Res., 134(3):664–676, November 2001.

[46] David Hollingsworth. The workflow reference model. http://www.wfmc.org/standards/

docs/tc003v11.pdf (Accessed Jun 4, 2019), January 1995.

[47] W3C. Web service definition language (WSDL). http://www.w3.org/TR/wsdl (Accessed

Jun 2, 2019), June 2007.

[48] MTA SZTAKI Laboratory of Parallel and Distributed Systems. gUSE in a nutshell. https://

sourceforge.net/projects/guse/files/gUSE_in_a_Nutshell.pdf (Accessed Jun

2, 2019), January 2015.

[49] Oracle. Java SE development kit 7, update 51, release notes. http://www.oracle.com/

technetwork/java/javase/7u51-relnotes-2085002.html (Accessed Jun 2, 2019),

January 2014.

[50] MTA SZTAKI Laboratory of Parallel and Distributed Systems. WS–PGRADE portal user

manual, version 3.7.4. https://sourceforge.net/projects/guse/files/3.7.4/

Documentation/Portal_User_Manual_v3.7.4.pdf (Accessed Jun 2, 2019), November

2015.

[51] Daniel Blankenberg, Gregory Von Kuster, Emil Bouvier, Dannon Baker, Enis Afgan, Nicholas Stoler,

James Taylor, and Anton Nekrutenko. Dissemination of scientific software with Galaxy ToolShed.

Genome Biol., 15(2):403, February 2014.

[52] Running Galaxy tools on a cluster. https://docs.galaxyproject.org/en/release_19.

01/admin/cluster.html (Accessed Jun 2, 2019), January 2019.

[53] Shi Meilin, Yang Guangxin, Xiang Yong, and Wu Shangguang. Workflow management systems: a

survey. In 1998 International Conference on Communication Technology. Proceedings (IEEE Cat. No.
98EX243), volume 2, page 6. IEEE, October 1998.

[54] Marek Rusinkiewicz and Amit P Sheth. Specification and execution of transactional workflows.

In Modern Database Systems: The Object Model, Interoperability, and Beyond, volume 1995, pages

592–620. ACM Press, January 1995.

[55] Mathias Weske and Gottfried Vossen. Workflow languages. In Handbook on Architectures of
Information Systems, pages 359–379. Springer, 1998.

86

http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.w3.org/TR/wsdl
https://sourceforge.net/projects/guse/files/gUSE_in_a_Nutshell.pdf
https://sourceforge.net/projects/guse/files/gUSE_in_a_Nutshell.pdf
http://www.oracle.com/technetwork/java/javase/7u51-relnotes-2085002.html
http://www.oracle.com/technetwork/java/javase/7u51-relnotes-2085002.html
https://sourceforge.net/projects/guse/files/3.7.4/Documentation/Portal_User_Manual_v3.7.4.pdf
https://sourceforge.net/projects/guse/files/3.7.4/Documentation/Portal_User_Manual_v3.7.4.pdf
https://docs.galaxyproject.org/en/release_19.01/admin/cluster.html
https://docs.galaxyproject.org/en/release_19.01/admin/cluster.html

Bibliography

[56] Kassian Plankensteiner, Johan Montagnat, and Radu Prodan. IWIR: a language enabling portability

across grid workflow systems. In Proceedings of the 6th Workshop on Workflows in Support of Large–
Scale Science, pages 97–106. ACM, November 2011.

[57] Kassian Plankensteiner, Radu Prodan, Matthias Janetschek, Thomas Fahringer, Johan Montagnat,

David Rogers, Ian Harvey, Ian Taylor, Ákos Balaskó, and Péter Kacsuk. Fine–grain interoperability

of scientific workflows in distributed computing infrastructures. J. Grid Comput., 11(3):429–455,

September 2013.

[58] Peter Amstutz, Michael R Crusoe, Nebojša Tijanić, Brad Chapman, John Chilton, Michael Heuer,

Andrey Kartashov, Dan Leehr, Hervé Ménager, Maya Nedeljkovich, et al. Common Workflow

Language, v1.0. https://www.commonwl.org/v1.0/Workflow.html (Accessed Jun 3,

2019), July 2016.

[59] OpenStand: Principles for the modern standard paradigm. http://open-stand.org (Ac-

cessed Jun 2, 2019), August 2012.

[60] Galaxy tool XML file. https://docs.galaxyproject.org/en/release_19.01/dev/

schema.html (Accessed Jun 2, 2019), January 2019.

[61] Tavis Rudd, Mike Orr, Ian Bicking, and C Esterbrook. Cheetah: the Python–powered template

engine. In 10th International Python Conference, February 2002.

[62] Knut Reinert, Temesgen Hailemariam Dadi, Marcel Ehrhardt, Hannes Hauswedell, Svenja

Mehringer, René Rahn, Jongkyu Kim, Christopher Pockrandt, Jörg Winkler, Enrico Siragusa, et al.

The SeqAn C++ template library for efficient sequence analysis: a resource for programmers. J.
Biotechnol., 261:157–168, November 2017.

[63] Hannes L Röst, Timo Sachsenberg, Stephan Aiche, Chris Bielow, Hendrik Weisser, Fabian Aicheler,

Sandro Andreotti, Hans-Christian Ehrlich, Petra Gutenbrunner, Erhan Kenar, et al. OpenMS: a

flexible open–source software platform for mass spectrometry data analysis. Nat. Methods, 13(9):

741, September 2016.

[64] Oliver Kohlbacher. CADDSuite — a workflow–enabled suite of open–source tools for drug discovery.

J. Cheminformatics, 4(1):O2, December 2012.

[65] CTDopts. https://github.com/WorkflowConversion/CTDopts (Accessed Jun 3, 2019),

March 2013.

[66] Anna Katharina Hildebrandt, Daniel Stöckel, Nina M Fischer, Luis de la Garza, Jens Krüger, Stefan

Nickels, Marc Röttig, Charlotta Schärfe, Marcel Schumann, Philipp Thiel, et al. BALLaxy: Web

services for structural bioinformatics. Bioinformatics, 31(1):121–122, September 2014.

[67] EMBOSS: the applications (programs). http://emboss.sourceforge.net/apps/

release/6.6/emboss/apps/ (Accessed Jun 2, 2019), July 2012.

[68] Peter Rice, Ian Longden, and Alan Bleasby. EMBOSS: the european molecular biology open

software suite. Trends Genet., 16(6):276–277, June 2000.

87

https://www.commonwl.org/v1.0/Workflow.html
http://open-stand.org
https://docs.galaxyproject.org/en/release_19.01/dev/schema.html
https://docs.galaxyproject.org/en/release_19.01/dev/schema.html
https://github.com/WorkflowConversion/CTDopts
http://emboss.sourceforge.net/apps/release/6.6/emboss/apps/
http://emboss.sourceforge.net/apps/release/6.6/emboss/apps/

Bibliography

[69] Hervé Ménager, Matúš Kalaš, Kristoffer Rapacki, and Jon Ison. Using registries to integrate

bioinformatics tools and services into workbench environments. Int. J. Softw. Tools Te., 18(6):

581–586, November 2016.

[70] ToolDog – tool description generator. http://github.com/bio-tools/ToolDog (Accessed

Jun 2, 2019), January 2017.

[71] Erik Elmroth, Francisco Hernández, and Johan Tordsson. Three fundamental dimensions of

scientific workflow interoperability: Model of computation, language, and execution environment.

Future Gener. Comp. Sy., 26(2):245–256, February 2010.

[72] Marcelo Fiore and Marco Devesas Campos. The algebra of directed acyclic graphs. In Computation,
Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky, pages 37–51.

Springer, 2013.

[73] Marc Röttig. Combining Sequence and Structural Information Into Predictors of Enzymatic Activity.

Verlag Dr. Hut, 2013.

[74] Generic KNIME Nodes. https://github.com/genericworkflownodes/

GenericKnimeNodes (Accessed Jun 3, 2019), August 2011.

[75] KNIME AG. FAQ — is there any way to run KNIME in batch mode, i.e. only on command line and

without the graphical user interface? http://tech.knime.org/faq#q12 (Accessed Jun 2,

2019), 2018.

[76] KNIME AG. RSnippet KNIME Node. https://nodepit.com/node/de.mpicbg.knime.

scripting.r.RSnippetNodeFactory (Accessed Jun 2, 2019), December 2018.

[77] Ali Anjomshoaa, Fred Brisard, Michel Drescher, Donal Fellows, An Ly, Stephen McGough, Darren

Pulsipher, and Andreas Savva. Job submission description language (JSDL) specification, version

1.0. https://www.ogf.org/documents/GFD.56.pdf (Accessed Jun 2, 2019), November

2005.

[78] MTA SZTAKI Laboratory of Parallel and Distributed Systems. DCI Bridge administrator man-

ual, version 3.7.4. https://sourceforge.net/projects/guse/files/DCI_BRIDGE_

MANUAL_v3.7.4.pdf (Accessed Jun 2, 2019), January 2015.

[79] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse Modeling
Framework 2.0. Addison–Wesley Professional, 2nd edition, 2009.

[80] Aleksa Vukotic and James Goodwill. Apache Tomcat 7. Apress, 2011.

[81] The Apache Software Foundation. Apache Maven Project. https://maven.apache.org/

(Accessed Jun 2, 2019), 2002.

[82] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Software Components. Addison–Wesley Professional, 1995.

88

http://github.com/bio-tools/ToolDog
https://github.com/genericworkflownodes/GenericKnimeNodes
https://github.com/genericworkflownodes/GenericKnimeNodes
http://tech.knime.org/faq#q12
https://nodepit.com/node/de.mpicbg.knime.scripting.r.RSnippetNodeFactory
https://nodepit.com/node/de.mpicbg.knime.scripting.r.RSnippetNodeFactory
https://www.ogf.org/documents/GFD.56.pdf
https://sourceforge.net/projects/guse/files/DCI_BRIDGE_MANUAL_v3.7.4.pdf
https://sourceforge.net/projects/guse/files/DCI_BRIDGE_MANUAL_v3.7.4.pdf
https://maven.apache.org/

Bibliography

[83] Ákos Balaskó, Zoltán Farkas, and Péter Kacsuk. Building science gateways by utilizing the generic

WS–PGRADE/gUSE workflow system. Computer Science, 14(2):307, 2013.

[84] Jens Krüger, Richard Grunzke, Sandra Gesing, Sebastian Breuers, André Brinkmann, Luis de la

Garza, Oliver Kohlbacher, Martin Kruse, Wolfgang E Nagel, Lars Packschies, et al. The MoSGrid

science gateway—a complete solution for molecular simulations. J. Chem. Theory Comput., 10

(6):2232–2245, May 2014.

[85] Eva Sciacca, Marilena Bandieramonte, Ugo Becciani, Alessandro Costa, Mel Krokos, Piero Mas-

simino, Catia Petta, Costantino Pistagna, Simone Riggi, and Fabio Vitello. VisIVO science gateway:

a collaborative environment for the astrophysics community. In 5th International Workshop on
Science Gateways, volume 993, page 1. CEUR Workshop Proceedings, June 2013.

[86] Gabriele Pierantoni and Eoin Carley. HELIOGate: a portal for the heliophysics community. In

Science Gateways for Distributed Computing Infrastructures, pages 195–207. Springer, 2014.

[87] Martin Fowler. Inversion of control containers and the dependency injection pattern.

https://martinfowler.com/articles/injection.html (Accessed Jun 2, 2019), Jan-

uary 2004.

[88] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. In

Soviet Physics Doklady, volume 10, pages 707–710, February 1966.

[89] Brian Goetz and Tim Peierls. Java Concurrency in Practice. Pearson Education, 2006.

[90] Brian K Shoichet, Irwin D Kuntz, and Dale L Bodian. Molecular docking using shape descriptors.

J. Comput. Chem., 13(3):380–397, April 1992.

[91] Namrata Tomar and Rajat K De. Immunoinformatics: a brief review. In Immunoinformatics, pages

23–55. Springer, 2014.

[92] Benjamin Schubert, Luis de la Garza, Christopher Mohr, Mathias Walzer, and Oliver Kohlbacher.

ImmunoNodes — graphical development of complex immunoinformatics workflows. BMC Bioin-
formatics, 18(1):242, May 2017.

[93] Taverna 2–Galaxy. http://www.taverna.org.uk/documentation/taverna-galaxy/

(Accessed Jun 2, 2019), 2011.

[94] CTDopts sample script. https://github.com/WorkflowConversion/CTDopts/blob/

master/example.py (Accessed Jun 2, 2019), November 2013.

89

https://martinfowler.com/articles/injection.html
http://www.taverna.org.uk/documentation/taverna-galaxy/
https://github.com/WorkflowConversion/CTDopts/blob/master/example.py
https://github.com/WorkflowConversion/CTDopts/blob/master/example.py

Appendix A

Abbreviations

A
ACD AJAX Command Definition

API Application Programming Interface

ASM Application Specific Module

B
BALL Biochemical Algorithms Library

C
CADDSuite Computer Aided Drug Design Suite

CTD Common Tool Descriptor

CWL Common Workflow Language

D
DAG Directed Acyclic Graph

DCI Distributed Computing Interface

E
EBI European Bioinformatics Institute

EMBOSS European Molecular Biology Open Software Suite

EMF Eclipse Modeling Framework

F
FRED2 Framework for Epitope Detection

G
GKN Generic KNIME Nodes

GUI Graphical User Interface

gUSE Grid and Cloud User Support Environment

H
HPC High–Performance Computing

91

A. Abbreviations

I
IDE Integrated Development Environment

I/O Input/Output

IWIR Interoperable Workflow Intermediate Representation

H
HLA Human Leukocyte Antigen

J
JSP Java Server Page

JSDL Job Submission Description Language

JSON JavaScript Object Notation

K
KNIME Konstanz Information Miner

N
NCBI National Center of Biotechnology Information

P
PDB Protein Data Bank

PIN Personal Identification Number

POM Project Object Model

PrT–Nets Predicate/Transition–Nets

R
REST Representational State Transfer

S
SHIWA Sharing Interoperable Workflows for large–scale scientific Simulations on

Available DCIs
SSH Secure Shell

SDF Structure Data File

U
UNICORE Uniform Interface to Computing Resources

URI Uniform Resource Identifier

W
WAR File Web Application Resource File

WSDL Web Services Description Language

WS–PGRADE Web Services Parallel Grid Runtime and Developer Environment Portal

X
XML Extensible Markup Language

Y
YAML YAML Ain’t Markup Language

92

Appendix B

Sample Code

B.0.1 Platform–Independent Workflow Representation

In this section we will present both CWL and IWIR representations for the following workflow:

Figure B.1: Molecule preparation using the CADDSuite64. Input and output files are shown as
gray ports, while parameters are shown as dark orange ports.

The task PDBDownload receives a parameter, Molecule ID, which is the 4–character unique

identification code from the PDB website, and outputs the molecule in a file. The PDBCutter

task receives said molecule file as an input, taking three parameters: name of the reference

ligand, name of the chain in which the reference ligand is found, and the residue(s) to remove.

PDBCutter outputs two files: a file in which the reference ligand is contained, and the macro-

molecule that will be used as a receptor. The output files of PDBCutter can be used in any

standard molecular docking pipeline. Both tools are part of the CADDSuite64.

93

B. Sample Code

Listing B.1: CWL definition of PDBCutter from the workflow depicted in Figure B.1

1 cwlVersion: v1.0
2 class: CommandLineTool
3 baseCommand: PDBCutter
4 requirements:
5 EnvVarRequirement:
6 envDef:
7 BALL_DATA_PATH: /Users/delagarza/Projects/ball/data
8 inputs:
9 pdb_in:

10 type: File
11 inputBinding:
12 prefix: -i
13 receptor_filename:
14 type: string
15 default: receptor.pdb
16 inputBinding:
17 prefix: -rec
18 ligand_filename:
19 type: string
20 default: ligand.pdb
21 inputBinding:
22 prefix: -lig
23 ligand_chain:
24 type: string
25 inputBinding:
26 prefix: -lig_chain
27 ligand_name:
28 type: string
29 inputBinding:
30 prefix: -lig_name
31 remove_residue:
32 type: string
33 inputBinding:
34 prefix: -rm_res
35 outputs:
36 receptor_out:
37 type: File
38 outputBinding:
39 glob: $(inputs.receptor_filename)
40 ligand_out:
41 type: File
42 outputBinding:
43 glob: $(inputs.ligand_filename)

94

Listing B.2: CWL definition of PDBDownload from the workflow depicted in Figure B.1.

1 cwlVersion: v1.0
2 class: CommandLineTool
3 baseCommand: PDBDownload
4 requirements:
5 EnvVarRequirement:
6 envDef:
7 BALL_DATA_PATH: /Users/delagarza/Projects/ball/data
8 inputs:
9 pdb_id:

10 type: string
11 inputBinding:
12 prefix: -id
13 output_filename:
14 type: string
15 default: molecule.pdb
16 inputBinding:
17 prefix: -o
18 proxy:
19 type: [’null’, string]
20 inputBinding:
21 prefix: -p
22 outputs:
23 molecule_out:
24 type: File
25 outputBinding:
26 glob: $(inputs.output_filename)

Listing B.3: CWL definition of the workflow depicted in Figure B.1. The files presented in List-

ings B.1 and B.2 are automatically included if they are located on the same directory as this

workflow definition. In this case, they were stored under PDBCutter.cwl and PDBDownload.cwl,
respectively.

1 cwlVersion: v1.0
2 class: Workflow
3 inputs:
4 pdb_id: string
5 ligand_chain: string
6 ligand_name: string
7 remove_residue: string
8
9 outputs:

10 receptor_out:
11 type: File
12 outputSource: PDBCutter/receptor_out
13 ligand_out:
14 type: File
15 outputSource: PDBCutter/ligand_out
16
17 steps:
18 PDBDownload:
19 run: PDBDownload.cwl
20 in:
21 pdb_id: pdb_id
22 out: [molecule_out]
23
24 PDBCutter:
25 run: PDBCutter.cwl
26 in:
27 pdb_in: PDBDownload/molecule_out
28 ligand_chain: ligand_chain
29 ligand_name: ligand_name
30 remove_residue: remove_residue
31 out: [receptor_out, ligand_out]

95

B. Sample Code

Listing B.4: CWL run file to execute the workflow defined in Listing B.3. Run files contain the

parameters that will be passed to tasks and workflows.

1 pdb_id: 1DX6
2 ligand_chain: A
3 ligand_name: GNT
4 remove_residue: HOH

Listing B.5: Command line to execute the workflow defined in Listing B.3. The cwl–runner tool is

passed two files as inputs: a workflow definition (see Listing B.3) and a run file (see Listing B.4),

here shown as PDBPreparationWorkflow.cwl and PDBPreparationWorkflow_run.yml, respectively.

$ cwl-runner PDBPreparationWorkflow.cwl PDBPreparationWorkflow_run.yml

Listing B.6: IWIR representation of the workflow depicted in Figure B.1.

1 <IWIR version="1.1" wfname="PDBPreparationWorkflow"
2 xmlns="http://shiwa-workflow.eu/IWIR">
3 <task name="PDBDownload" tasktype="binary">
4 <inputPorts>
5 <inputPort name="pdb_id" type="string"/>
6 <inputPort name="molecule_filename" type="string"/>
7 </inputPorts>
8 <outputPorts>
9 <outputPort name="molecule_out" type="file"/>

10 </outputPorts>
11 </task>
12 <task name="PDBCutter" tasktype="binary">
13 <inputPorts>
14 <inputPort name="pdb_in" type="file"/>
15 <inputPort name="ligand_name" type="string"/>
16 <inputPort name="ligand_chain" type="string"/>
17 <inputPort name="remove_residue" type="string"/>
18 <inputPort name="ligand_filename" type="string"/>
19 <inputPort name="receptor_filename" type="string"/>
20 </inputPorts>
21 <outputPorts>
22 <outputPort name="receptor_out" type="file"/>
23 <outputPort name="ligand_out" type="file"/>
24 </outputPorts>
25 </task>
26 <links>
27 <link from="PDBDownload/molecule_out" to="PDBCutter/pdb_in"/>
28 </links>
29 </IWIR>

96

B.0.2 CTD Usage

Listing B.7: Definition of CADDSuite's PDBDownload using a CTD (refer to Appendix B.0.1 for

details on this tool). The CADDSuite offers CTD–enabled command line tools.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <tool version="1.1.0" name="PDBDownload" category="Get Data" ctdVersion="1.7">
3 <description>retrieve pdb-file from pdb.org</description>
4 <manual>Download a pdb-file from the pdb data bank (http://www.pdb.org/)
5 using the specified ID of the desired protein structure.</manual>
6 <executableName>PDBDownload</executableName>
7 <PARAMETERS version="1.7">
8 <NODE name="1" description="Instance ’1’ section for ’PDBDownload’">
9 <ITEM name="id" type="string" required="true" value=""

10 description="PDB ID for desired structure" />
11 <ITEM name="o" type="output-file" supported_formats="pdb" value=""
12 description="output file" required="true" />
13 <ITEM name="p" type="string" description="proxy" value=""/>
14 <ITEM name="env" type="string" value="cmdline"
15 description="set runtime environment (default cmdline) " />
16 </NODE>
17 </PARAMETERS>
18 </tool>

Listing B.8: Executing a CTD–enabled tool using a CTD file. The contents of params.ctd are as

shown in Listing B.7.

$ PDBDownload -par params.ctd

Listing B.9: Execution of a CTD–enabled tool without usage of CTD files.

$ PDBDownload -id 1DX6 -o /Users/delagarza/Projects/1DX6.pdb -p "http://proxy.edu"

97

B. Sample Code

B.0.3 CTDopts Usage

Listing B.10: Generating a CTD file for a non–CTD–enabled command line tool using CTDopts.

Modified from94.

1 import CTDopts.CTDopts
2 from CTDopts.CTDopts import CTDModel
3
4 model = CTDModel(
5 name=’Sample Tool’,
6 version=’1.0’,
7 description=’This is an example tool illustrating CTDopts usage’,
8 category=’Testing’,
9 executableName=’sampletool’,

10 executablePath=’/path/to/sampletool’)
11
12 model.add(
13 ’positive_int’,
14 type=int,
15 num_range=(0, None),
16 default=5,
17 description=’A positive integer parameter’)
18
19 model.add(
20 ’input_files’,
21 required=True,
22 type=’input-file’,
23 is_list=True,
24 file_formats=[’fastq’, ’fastq.gz’],
25 description=’A list of filenames to feed this tool with’)
26
27 model.write_ctd(’example_tool.ctd’)

98

B.0.4 Sample ToolConfig Files

Listing B.11: Sample ToolConfig file with Python–like code in the <command> section. Only

selected arguments of the wget tool are shown.

1 <?xml version=’1.0’ encoding=’UTF-8’?>
2 <tool id="Wget" name="wget" version="1.17.1">
3 <description>The non-interactive network downloader.</description>
4 <command>
5 wget --quiet
6 #if $bypass_certificate:
7 --no-check-certificate
8 #end if
9 -O $output_file

10 #for url in $urls:
11 $url
12 #end for
13 </command>
14 <inputs>
15 <param name="urls" type="text" multiple="true" optional="false"/>
16 <param name="bypass_certificate" type="boolean" optional="true"/>
17 </inputs>
18 <outputs>
19 <data name="output_file" format="html"/>
20 </outputs>
21 </tool>

Listing B.12: Two possible command lines generated by the Galaxy engine for the ToolConfig

shown in Listing B.11.

$ wget --quiet --no-check-certificate -O http://server.com/page.html
$ wget --quiet -O http://server.com/page.html http://site.com/index.html

99

B. Sample Code

B.0.5 Galaxy Support Files in CTDConverter

Listing B.13: Macros file used for the generation of the ToolConfig shown in Listing 3.4. This file

is included in CTDConverter.

1 <?xml version=’1.0’ encoding=’UTF-8’?>
2 <macros>
3 <xml name="requirements">
4 <requirements>
5 <requirement type="binary">@EXECUTABLE@</requirement>
6 </requirements>
7 </xml>
8 <xml name="stdio">
9 <stdio>

10 <exit_code range="1:"/>
11 <exit_code range=":-1"/>
12 <regex match="Error:"/>
13 <regex match="Exception:"/>
14 </stdio>
15 </xml>
16 <xml name="advanced_options">
17 <conditional name="adv_opts">
18 <param name="adv_opts_selector" type="select" label="Advanced Options">
19 <option value="basic" selected="True">Hide Advanced Options</option>
20 <option value="advanced">Show Advanced Options</option>
21 </param>
22 <when value="basic"/>
23 <when value="advanced">
24 <yield/>
25 </when>
26 </conditional>
27 </xml>
28 </macros>

100

B.0.6 Representation of Workflows in WS–PGRADE

Listing B.14: Sample workflow.xml file containing a possible implementation of the workflow

shown in Section 2.1.3 using CADDSuite tools and a computer cluster where the Moab Workload

Manager has been installed. The abstract and conrete layers are defined by the <graf> and

<real> elements, respectively. The script referred to in binary attributes is responsible to parse

the provided command line provided via params attributes. WS–PGRADE/gUSE expects such

scripts to be preppended with the C:/fakepath/ path. Jobs will be submitted to a Moab batch

queueing system on the fast queue, as specified by the gridtype and resource attributes.

1 <workflow name="Ligand_Preparation_WF" maingraf="LigPrep" mainreal="LigPrep"
2 download="all" export="proj" mainabst="">
3 <graf name="LigPrep">
4 <job name="MoleculeCheck">
5 <input name="molecule" prejob="" preoutput="" seq="0"/>
6 <output name="checked" seq="1"/>
7 </job>
8 <job name="3DGenerator">
9 <input name="2dmolecule" prejob="MoleculeCheck" preoutput="1" seq="0"/>

10 <output name="3dmolecule" seq="1"/>
11 </job>
12 </graf>
13 <real name="LigPrep" abst="" graph="LigPrep">
14 <job name="MoleculeCheck">
15 <input name="molecule" prejob="" preoutput="" seq="0">
16 <port_prop key="file" value="C:/fakepath/mol.sdf"/>
17 <port_prop key="intname" value="molecule"/>
18 </input>
19 <output name="checked" seq="1"/>
20 <execute key="gridtype" value="moab"/>
21 <execute key="resource" value="fast"/>
22 <execute key="binary" value="C:/fakepath/runjob.sh"/>
23 <execute key="jobistype" value="binary"/>
24 <execute key="grid" value="masternode.informatik.uni-tuebingen.de"/>
25 <execute key="params" value="/share/bin/BALL/LigCheck -i molecule -o checked/>
26 </job>
27 <job name="3DGenerator">
28 <input name="2dmolecule" prejob="MoleculeCheck" preoutput="1" seq="0"/>
29 <output name="3dmolecule" seq="1"/>
30 <execute key="gridtype" value="moab"/>
31 <execute key="resource" value="fast"/>
32 <execute key="binary" value="C:/fakepath/runjob.sh"/>
33 <execute key="jobistype" value="binary"/>
34 <execute key="grid" value="masternode.informatik.uni-tuebingen.de"/>
35 <execute key="params" value="/share/bin/BALL/Ligand3DGenerator -i 2dmolecule -o 3dmolecule"/>
36 </job>
37 </real>
38 </workflow>

101

B. Sample Code

B.0.7 Support Ant Script for the WS–PGRADE Extensions

Listing B.15: Command required to build and deploy portlets using our support Ant Script (shown

in Listing B.17). Files are copied using scp. Credentials are provided via paswordless authentication,

location of the required SSH public key is provided using a configuration file, deployment.properties
(refer to Listing B.16 for an example of this file).

$ ant deploy

Listing B.16: Sample deployment.properties file used to deploy portlets on a remote server.

1 # remote server to which the war file will be copied
2 remote.server=knime2guse.informatik.uni-tuebingen.de
3
4 # location of your keyfile
5 keyfile.location=~/.ssh/id_rsa
6
7 # username (passwordless SSH, using provided key)
8 remote.server.username=guseuser
9

10 # remote server’s liferay deploy folder
11 remote.server.deploy.path=/home/guseuser/guse/deploy

102

Listing B.17: Apache Ant script to facilitate deployment of portlets on a running Liferay instance.

1 <project name="WS-PGRADE-Extensions" default="deploy" basedir=".">
2 <description>Builds, deploys portlets on a remote Liferay instance.</description>
3 <property name="deployment.properties.file" value="deployment.properties" />
4 <property name="application.manager.path" value="application-manager" />
5
6 <target name="resource-check">
7 <available file="${deployment.properties.file}" property="deployment.properties.present" />
8 </target>
9

10 <target name="fail-if-missing-properties-file" depends="resource-check"
11 unless="deployment.properties.present">
12 <fail message="Missing file ${deployment.properties.file}" />
13 </target>
14
15 <target name="fail-if-missing-property" unless="${required.property}">
16 <fail message="Missing property ${required.property} in file ${deployment.properties.file}" />
17 </target>
18
19 <target name="fail-if-missing-properties" depends="fail-if-missing-properties-file">
20 <property file="${deployment.properties.file}" />
21 <antcall target="fail-if-missing-property">
22 <param name="required.property" value="remote.server" />
23 </antcall>
24 <antcall target="fail-if-missing-property">
25 <param name="required.property" value="remote.server.username" />
26 </antcall>
27 <antcall target="fail-if-missing-property">
28 <param name="required.property" value="remote.server.deploy.path" />
29 </antcall>
30 <antcall target="fail-if-missing-property">
31 <param name="required.property" value="remote.server.scripts.path" />
32 </antcall>
33 <antcall target="fail-if-missing-property">
34 <param name="required.property" value="keyfile.location" />
35 </antcall>
36 </target>
37
38 <target name="build">
39 <exec dir="${basedir}" executable="mvn"><arg value="clean"/><arg value="package"/></exec>
40 </target>
41
42 <target name="upload-portlet-tmpfile" depends="fail-if-missing-properties">
43 <property file="${portlet.dir}/build.properties" />
44 <echo>Uploading ${portlet.name}.war.</echo>
45 <scp file="${portlet.dir}/target/${portlet.name}.war" trust="true" verbose="false"
46 remoteTofile="${remote.server.username}@${remote.server}
47 :${remote.server.deploy.path}/${portlet.name}.war_tmp"
48 keyfile="${keyfile.location}" />
49 <sshexec host="${remote.server}" username="${remote.server.username}" trust="true"
50 keyfile="${keyfile.location}" verbose="false"
51 command="mv ${remote.server.deploy.path}/${portlet.name}.war_tmp
52 ${remote.server.deploy.path}/${portlet.name}.war" />
53 </target>
54
55 <target name="deploy" depends="fail-if-missing-properties">
56 <echo>Building...</echo>
57 <antcall target="build" />
58 <echo>Stopping WS-PGRADE portal.</echo>
59 <sshexec host="${remote.server}" username="${remote.server.username}" trust="true"
60 verbose="false" keyfile="${keyfile.location}"
61 command="${remote.server.scripts.path}/stop.sh" />
62 <echo>Uploading... This might take a while depending on the speed of your connection.</echo>
63 <antcall target="upload-portlet-tmpfile">
64 <param name="portlet.dir" value="${application.manager.path}" />
65 </antcall>
66 <echo>Starting WS-PGRADE portal. This will take a few minutes.</echo>
67 <sshexec host="${remote.server}" username="${remote.server.username}" trust="true"
68 verbose="false" keyfile="${keyfile.location}"
69 command="${remote.server.scripts.path}/start.sh" />
70 </target>
71 </project>

103

Appendix C

Contributions

All ideas, approaches and results here presented were developed and discussed with my super-

visor, Oliver Kohlbacher (OK). The following colleagues contributed as detailed below:

Ákos Balaskó (AB) Julianus Pfeuffer (JP)

Alexander Fillbrunn (AF) Johannes Veit (JV)

András Szolek (AS) Marc Röttig (MR)

Björn Grüning (BG) Mathias Walzer (MW)

Benjamin Schubert (BS) Peter Ohl (PO)

Bernd Wiswedel (BW) Philipp Thiel (PT)

Christopher Mohr (CM) Stephan Aiche (SA)

Charlotta Schärfe (CS) Thorsten Meinl (TM)

Fabian Aicheler (FA) Thomas Gabriel (TG)

István Márton (IM) Zoltán Farkas (ZF)

Jens Krüger (JK)

Chapter 3: Conversion of Workflow Nodes

The project was designed by myself, AS and OK. BG and PT contributed to this project by

providing use cases in bioinformatics for the converter.

Chapter 4: Conversion of Complete Workflows

The project was designed by myself and OK. AB, AF, BW, IM, JP, MR, SA, TG, TM, and ZF

provided assistance to elucidate implementation details of both workflow engines.

Section 4.3.4: Use Cases

The showcased pipelines were designed by BS, CM, CS, FA, JK, PT, JV, MW, and OK.

105

Appendix D

Publications

2019

de la Garza, L.∗, Fillinger, S.∗, Peltzer, A.∗, Kohlbacher, O., Nahnsen, S., May 2019. Challenges

of Big Data Integration in the Life Sciences. Anal. Bioanal. Chem., Manuscript submitted

for publication.

2018

Friedrich, A., de la Garza, L., Kohlbacher, O., Nahnsen, S., December 2018. Interactive

Visualization for Large–Scale Multi–Factorial Research Designs. In International Conference

on Data Integration in the Life Sciences, Springer, pp. 75–84.

2017

Schubert, B., de la Garza, L., Mohr, C., Walzer, M., Kohlbacher, O., May 2017. ImmunoNodes:

Graphical Development of Complex Immunoinformatics Workflows. BMC Bioinformatics,

18(1):242.

de la Garza, L., Aicheler, F., Kohlbacher, O., March 2017. From the Desktop to the Grid and

Cloud: Conversion of KNIME Workflows to WS-PGRADE. In 8th International Workshop of

Science Gateways, PeerJ Preprints, 5:e2849v1.

107

D. Publications

2016

de la Garza, L., Veit, J., Szolek, A., Röttig, M., Aiche, S., Gesing, S., Reinert, K., Kohlbacher,

O., March 2016. From the Desktop to the Grid: Scalable Bioinformatics via Workflow

Conversion. BMC Bioinformatics, 17(1):127.

2015

Herres–Pawlis, S., Hoffmann, A., Balaskó, Á., Kacsuk, P., Birkenheuer, G., Brinkmann, A., de

la Garza, L., Krüger, J., Gesing, S., Grunzke, R., Terstyansky, G., February 2015. Quantum

Chemical Meta–Workflows in MoSGrid. Concurr. Comp.–Pract. E., 27(2):344–357.

Hildebrandt, A.K., Stöckel, D., Fischer, N.M., de la Garza, L., Krüger, J., Nickels, S., Röttig,

M., Schärfe, C., Schumann, M., Thiel, P., Lenhof, H.P., Kohlbacher, O., Hildebrandt, A., January

2015. BALLaxy: Web Services for Structural Bioinformatics. Bioinformatics, 31(1):121–122.

2014

Gesing, S., Krüger, J., Grunzke, R., de la Garza, L., Herres–Pawlis, S., Hoffmann, A., October

2014. Molecular Simulation Grid (MoSGrid): a Science Gateway Tailored to the Molec-

ular Simulation Community. In Science Gateways for Distributed Computing Infrastructures,

Springer, pp. 151–165.

Olabarriaga, S.D., Benabdelkader, A., Caan, M.W., Jaghoori, M.M., Krüger, J., de la Garza, L.,

Mohr, C., Schubert, B., Danezi, A., Kiss, T., October 2014. WS–PGRADE/gUSE–Based Science

Gateways in Teaching. In Science Gateways for Distributed Computing Infrastructures, Springer,

pp. 223–234.

Grunzke, R., Breuers, S., Gesing, S., Herres–Pawlis, S., Kruse, M., Blunk, D., de la Garza, L.,

Packschies, L., Schäfer, P., Schärfe, C., Schlemmer, T., July 2014. Standards–Based Metadata

Management for Molecular Simulations. Concurr. Comp.–Pract. E., 26(10):1744–1759.

Krüger, J., Grunzke, R., Herres–Pawlis, S., Hoffmann, A., de la Garza, L., Kohlbacher, O., Nagel,

W.E., Gesing, S., June 2014. Performance Studies on Distributed Virtual Screening. BioMed

Res. Int., 2014:624024.

108

Herres–Pawlis, S., Hoffmann, A., Grunzke, R., Nagel, W.E., de la Garza, L., Krüger, J., Ter-

styansky, G., Weingarten, N., Gesing, S., June 2014. Meta–Metaworkflows for Combining

Quantum Chemistry and Molecular Dynamics in the MoSGrid Science Gateway. In 6th

International Workshop on Science Gateways, IEEE, pp. 73–78.

Herres–Pawlis, S., Hoffmann, A., de la Garza, L., Krüger, J., Grunzke, R., June 2014. Expan-

sion of Quantum Chemical Metadata for Workflows in the MoSGrid Science Gateway. In

6th International Workshop on Science Gateways, IEEE, pp. 67–72.

Krüger, J., Grunzke, R., Gesing, S., Breuers, S., Brinkmann, A., de la Garza, L., Kohlbacher, O.,

Kruse, M., Nagel, W.E., Packschies, L., Müller–Pfefferkorn, R., May 2014. The MoSGrid Sci-

ence Gateway: a Complete Solution for Molecular Simulations. J. Chem. Theory Comput.,

10(6):2232–2245.

2013

Herres–Pawlis, S., Hoffmann, A., de la Garza, L., Krüger, J., Gesing, S., Grunzke, R., September

2013. User–Friendly Metaworkflows in Quantum Chemistry. In 2013 IEEE International

Conference on Cluster Computing (CLUSTER), IEEE, pp. 1–3.

de la Garza, L., Krüger, J., Schärfe, C., Röttig, M., Aiche, S., Reinert, K., Kohlbacher, O., June

2013. From the Desktop to the Grid: Conversion of KNIME Workflows to gUSE. In 5th

International Workshop on Science Gateways, CEUR Workshop Proceedings, 993:9.

∗ co–first author

109

	Contents
	1 Introduction
	2 Background
	3 Conversion of Workflow Nodes
	4 Conversion of Complete Workflows
	5 Conclusion and Outlook
	Bibliography
	A Abbreviations
	B Sample Code
	C Contributions
	D Publications

